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Abstract. In 1998, Boneh, Durfee and Frankel [4] presented several at-
tacks on RSA when an adversary knows a fraction of the secret key bits.
The motivation for these so-called partial key exposure attacks mainly
arises from the study of side-channel attacks on RSA. With side channel
attacks an adversary gets either most significant or least significant bits
of the secret key. The polynomial time algorithms given in [4] only work
provided that the public key e is smaller than N

1
2 . It was raised as an

open question whether there are polynomial time attacks beyond this
bound. We answer this open question in the present work both in the
case of most and least significant bits. Our algorithms make use of Cop-
persmith’s heuristic method for solving modular multivariate polynomial
equations [8]. For known most significant bits, we provide an algorithm
that works for public exponents e in the interval [N

1
2 , N0.725]. Surpris-

ingly, we get an even stronger result for known least significant bits: An
algorithm that works for all e < N

7
8 .

We also provide partial key exposure attacks on fast RSA-variants that
use Chinese Remaindering in the decryption process (e.g. [20,21]). These
fast variants are interesting for time-critical applications like smart-cards
which in turn are highly vulnerable to side-channel attacks. The new at-
tacks are provable. We show that for small public exponent RSA half of
the bits of dp = d mod p−1 suffice to find the factorization of N in poly-
nomial time. This amount is only a quarter of the bits of N and therefore
the method belongs to the strongest known partial key exposure attacks.

Keywords: RSA, known bits, lattice reduction, Coppersmith’s method

1 Introduction

Let (N, e) be an RSA public key with N = pq, where p and q are of equal bit-size.
The secret key d satisfies ed = 1 mod φ(N).

In 1998, Boneh, Durfee and Frankel [4] introduced the following question:
How many bits of d does an adversary need to know in order to factor the mod-
ulus N? In addition to its theoretical impact on understanding the complexity
of the RSA-function, this is an important practical question arising from the in-
tensive study of side-channel attacks on RSA in cryptography (e.g. fault attacks,
timing attacks, power analysis, see for instance [6,15,16]).
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In many scenarios, an attacker using a side-channel attack either succeeds to
obtain the most significant bits (MSBs) or the least significant bits (LSBs) of d in
consecutive order. Whether he gets MSBs or LSBs depends on the different ways
of computing an exponentiation with d during the decryption process. Therefore
in this work, we just focus on the case where an adversary knows either MSBs
or LSBs of d and we ignore attacks where an adversary has to know both sorts
of bits or intermediate bits.

Cases have been reported in the literature [9] where side-channel attacks are
able to reveal a fraction of the secret key bits, but fail to reveal the entire key.
For instance it is often the case that an attacker gets the next bit of d under
the conditional probability that his hypothesis of the previous bits is correct.
Hence, it gets harder and harder for him to make a correct guess with a certain
probability. This makes it essential to know how many bits of d suffice to discover
the whole secret information.

Boneh, Durfee and Frankel [4] were the first that presented polynomial time
algorithms when an attacker knows only a fraction of the bits. In the case of
known least significant bits, they showed that for low public exponent RSA (e.g.
e = poly(log N)) a quarter of the bits of d are sufficient to find the factorization
of N . Their method makes use of a well-known theorem due to Coppersmith [8]:
Given half of the bits of p, the factorization of N can be found in polynomial
time.

Considering known MSBs, Boneh, Durfee and Frankel presented an algorithm
that works for all e < N

1
2 , again using Coppersmith’s theorem. However it

remained an open question in [4] whether there are polynomial time algorithms
that find the factorization of N for values of e substantially larger than N

1
2 given

only a subset of the secret key bits.
In this work, we answer this question both in the case of known MSBs and

of known LSBs.

MSBs of d Known:
We present a method that works for all public exponents e in the interval
[N

1
2 , N0.725]. The number of bits of d that have to be known increases with

e. Let us provide some examples of the required bits: For e = N0.5 one has to
know half of the MSBs of d, for e = N0.55 a 0.71-fraction suffices whereas for
e = N0.6 a fraction of 0.81 is needed to factor N .

In contrast to Boneh, Durfee and Frankel we do not use Coppersmith’s result
for known bits of p. Instead we directly apply Coppersmith’s method for finding
roots of modular multivariate polynomial equations [8]. This method has many
applications in cryptography. Since it is a heuristic in the multivariate case, our
result is heuristic as well. However, in various other applications of Coppersmith’s
method (see [1,3,10,14]) a systematic failure of the multivariate heuristic has
never been reported. Hence the heuristic is widely believed to work perfectly in
practice. We also provide various experiments that confirm the reliability: None
of our experiments failed to yield the factorization of N .

In Figure 1 we illustrate our result for MSBs. The size of the fraction of
the bits that is needed in our attack is plotted as a function of the size of the



New Partial Key Exposure Attacks on RSA 29

public exponent e. We express the size of e in terms of the size of N (i.e. we use
logN (e)). For a comparison with previous results, we also include in our graphs
the results of Boneh, Durfee and Frankel. The marked regions in Figure 1 are
the feasible regions for the various approaches.

Note that the area belonging to BDF2 requires that the factorization of e
is known. The result BDF3 is not explicitly mentioned as a polynomial time
algorithm in [4], but can be easily derived from a method stated by the same
authors in [5]: The upper logN (e) bits of d immediately yield half of the MSBs
of d and the attacker can use the remaining quarter of bits to factor N .

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
��������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

BDF 1

BDF 3
Section 4

0.5

0.6

0.7

0.8

0.4

0.3

0.2

0.9

1.0

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Most significant bits known

BDF 2

Fraction of bits that is sufficient

logN (e)

Fig. 1. The results for known MSBs of d
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Fig. 2. The results for known LSBs of d

LSBs of d Known:
We start by proving a result for all but a negligible fraction of the public expo-
nents e < N

1
2 . Previously, only polynomial time algorithms for e of the order

poly(log N) were known [4]. Our approach uses a 3-dimensional lattice to find
the factorization of N using a single lattice basis reduction, whereas the method
in [4] requires about e lattice reductions. We tested our attack with the frequently
used RSA-exponent e = 216 + 1. Our algorithm is faster than the method in [4]
but requires more bits of d.

Interestingly, our approach makes use of the linear independence of two suf-
ficiently short vectors in the lattice and we do not need to apply Coppersmith’s
heuristic in this case. This makes our method rigorous and at the same time in-
troduces a new method to solve modular multivariate polynomial equations of a
special form. Therefore we believe that our approach is of independent interest.
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Next, we generalize the 3-dimensional approach to multi-dimensional lattices.
This improves the bound up to all e < N

7
8 , which is the largest bound for e

in partial key exposure attacks that is known up to now. Unfortunately, since
our attack relies on Coppersmith’s method for modular multivariate polynomial
equations, it becomes heuristic. But again in our experiments, we could not
find a single failure of the multivariate heuristic. The results are illustrated in
Figure 2 in the same fashion as before.

We raise the question whether it is possible to derive results for all keys
e < φ(N). In the light of our new results, this bound does not seem to be out
of reach. Maybe a modification of our lattices could already suffice (e.g. using
non-triangular lattice bases), but at the moment this is an open question.

Known Bits in CRT-Variants:
We present results on known bits of dp = d mod p − 1 (and symmetrically on
dq = d mod q − 1). The value dp is used in fast Chinese Remainder variants
of the decryption process. This includes the well-known Quisquater-Couvreur
method [21]. With suitable modifications, the attack applies also to other fast
RSA-variants like for instance Takagi’s scheme [20], which uses a modulus of the
form pkq.
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Fig. 3. LSBs/MSBs of dp.

These fast variants of RSA are especial-
ly interesting for time-critical applications.
Therefore they are frequently used on smart-
cards. On the other hand, it is well-known
that smart-cards are highly vulnerable to dif-
ferent sorts of side-channel attacks. Hence it
is of important practical interest to study the
complexity of partial key exposure attacks for
CRT-variants.

We provide provable attacks for both
cases: LSBs and MSBs. Interestingly, in our
proofs we use a less known variant of a result
of Coppersmith [8] that is due to Howgrave-
Graham. Coppersmith showed that an ap-
proximation of p up to an additive error of N

1
4 yields the factorization of N .

Howgrave-Graham [13] observed that an approximation of kp for some (un-
known) k with the same error bound already suffices.

We prove that for low public exponents e (i.e. e = poly(log N)), half of the
LSBs of dp always suffice to factor N . Therefore the attack is a threat to RSA-
implementations with the commonly used public exponent e = 216 + 1. Note
that half of the bits of dp is only an amount of a quarter of the bits of N and
therefore the result is as strong as the best known partial key exposure attacks.

In the case of known MSBs of dp, we present an algorithm that even works for
all e < N

1
4 in polynomial time. Again for low public exponent RSA, it requires

only half of the MSBs of dp in order to factor N . The results are illustrated in
Figure 3.
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Detailed Overview:
We briefly overview all known polynomial time partial key exposure attack by
giving the precise functions of the bits that have to be known. Let α = logN (e)
denote the size of e in terms of N . In Figure 4, the upper half of the table states
the results for known MSBs whereas the lower half is dedicated to the results
for known LSBs. The attacks for known bits of dp are stated in the last lines of
each half.

α = logN (e) Fraction of bits that is needed Restriction/Comment

BDF [4] [ 14 , 1
2 ] α e prime/known fact.

BDF [4] [0, 1
2 ] 1 − α d

φ(N) = Ω(1)

Section 4 [ 12 ,
√

6−1
2 ] 1

8

(
3 + 2α +

√
36α2 + 12α − 15

)
heuristic

BDF [5] [0, 1
2 ] 3

4
d

φ(N) ,
|p−q|√

N
= Ω(1)

Section 2 [0, 1
4 ] 1

4 + α bits of dp

BDF [5] O(logN log N) 1
4 N = 3 mod 4

Section 5 [0, 1
2 ] 1

2 + α all but O(Nα−ε) e’s

Section 6 [0, 7
8 ] 1

6 + 1
3

√
1 + 6α heuristic

Section 2 O(logN log N) 1
4 bits of dp

Fig. 4. Detailed summary of the results

The paper is organized as follows: In Section 2, we present our methods for
the CRT-variants. Here we use lattice reduction methods only as a black-box.
In order to give the more elaborate results for partial key exposure attacks with
large public exponent, we have to define some lattice notation in Section 3.
The method for MSBs is presented in Section 4, the LSB-attacks are given in
Section 5 and 6.

2 Known MSBs/LSBs and Chinese Remaindering

Throughout this work we will consider RSA-public keys (N, e) with N = pq,
where p and q are of equal bit-size. Therefore p, q ≤ 2

√
N . Furthermore, we

assume wlog that p ≤ q which implies p ≤ √
N and



32 J. Blömer and A. May

p + q ≤ 3
√

N.

The secret exponent d corresponding to (N, e) satisfies the equality ed =
1 mod φ(N), where φ(N) is the Euler totient function.

We will often talk of known most or least significant bits (MSBs/LSBs) of
d, but we want to point out that this should only be understood as a helpful
simplification to explain our results in the context of side-channel attacks. To
be more precise, when we talk of k known LSBs of d, then in fact we only
need to know integers d0, M such that d0 = d mod M , where M ≥ 2k. Thus,
M = 2k is only the special case where we really know the bits. Analogously, in
the case of known MSBs: We do not really need to know the MSBs but only an
approximation d̃ of d such that |d − d̃| can be suitably upper-bounded.

In order to speed up the decryption/signing process, it is common practice
to use the values dp = d mod p − 1 and dq = d mod q − 1. To sign m, one
computes mdp mod p and mdq mod q and combines the results using the Chinese
Remainder Theorem (CRT).

These fast RSA-variants are especially interesting for time-critical applica-
tions like smart-cards, which are highly vulnerable to side-channel attacks. How-
ever, it has never been studied how many bits of dp (or symmetrically of dq)
suffice in order to find the factorization of N . We present two provable results
for RSA-variants with CRT in this section.

Both of our proofs use the following variation of a well-known theorem of
Coppersmith [8] that is due to Howgrave-Graham. Coppersmith showed how to
factor N given half of the MSBs of p. Howgrave-Graham [13] observed that this
holds in more general form for the MSBs of multiples of p.

Theorem 1 (Howgrave-Graham) Let N = pq be an RSA-modulus and k be
an unknown integer which is not a multiple of q. Given an approximation of kp
with additive error at most N

1
4 , the factorization of N can be found in polynomial

time.

First, we consider the case of known LBSs of dp. We show that whenever
the public exponent e is of size poly(log N), then half of the lower bits of dp are
sufficient to find the factorization of N in polynomial time.

Theorem 2 Let (N, e) be an RSA public key with N = pq and secret key d. Let
dp = d mod p − 1. Given d0, M with d0 = dp mod M and

M ≥ N
1
4 .

Then the factorization of N can be found in time e · poly(log N).

Proof: We know that
edp − 1 = k(p − 1)

for some k ∈ N. Since dp < p − 1, we know that k = edp−1
p−1 < e. Let us write

dp = d1M + d0, where d1 <
dp

M < p
M ≤ N

1
4 . We can rewrite our equation as

ed0 + k − 1 = kp − eMd1.
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Let E be the inverse of eM modulo N , e.g. there exist a c ∈ N such that E ·eM =
1 + cN (if E does not exist, we obtain the factorization of N). Multiplying the
above equation by E yields

E(ed0 + k − 1) = (Ek − cqd1)p − d1.

The only unknown parameter on the left hand side of the equation is k. We
make a brute force search for k in the interval [1, e). The correct guess of k gives
us a multiple of p up to an additive error d1 < N

1
4 . Thus, when the algorithm

of Theorem 1 is applied to the correct guess of k, we obtain the factorization of
N . Note that q divides the term Ek − cqd1 iff q divides k which is easily testable
(q cannot divide k in the case e < q). This concludes the proof of the theorem.

In our second approach, we consider the case when MSBs of dp are known.

Theorem 3 Let (N, e) be an RSA public key with secret key d and e = Nα for
some a ∈ [0, 1

4 ]. Furthermore, let dp = d mod p − 1. Given d̃ with

|dp − d̃| ≤ N
1
4 −α.

Then N can be factored in polynomial time.

Proof: We start again by looking at the equation edp − 1 = k(p − 1). Since
dp < p−1, we know that k < Nα, which implies that q cannot divide k. Compute
p̃ = ed̃ − 1. Now, p̃ is an approximation of kp up to an additive error of at most

|p̃ − kp | = |e(d̃ − dp) − k| ≤ N
1
4 + Nα ≤ 2N

1
4 .

Thus, either p̃+N
1
4 or p̃−N

1
4 is an approximation of kp with error at most N

1
4 .

Applying the algorithm of Theorem 1 to both values yields the factorization of
N .

3 Preliminaries on Lattices

Since our partial key exposure attacks for large public exponents use polynomial
arithmetic, we introduce some helpful notations. Let f(x, y) =

∑
i,j ai,jx

iyj be
a bivariate polynomial with coefficients ai,j ∈ Z. All terms xiyj with non-zero
coefficients are called monomials. The coefficient vector of f is defined by the
vector of the coefficients ai,j . We define the norm of f as the Euclidean norm of
the coefficient vector: ||f ||2 =

∑
i,j a2

i,j . The definitions for trivariate polynomials
are analogous. In the following, we state a few basic facts about lattices and
lattice basis reduction and refer to the textbooks [7,11,18] for an introduction
to the theory of lattices.

Let v1, . . . , vn ∈ R
n be linearly independent vectors. A lattice L spanned by

{v1, . . . , vn} is the set of all integer linear combinations of v1, . . . , vn. We call n
the dimension of L, which we denote by dim(L).
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The set B = {v1, . . . , vn} is called a basis of L, the (n×n)-matrix consisting of
the row vectors v1, . . . , vn is called basis matrix. A basis of L can be transformed
into another basis by applying an unimodular transformation to the basis matrix.
The determinant det(L) is the absolute value of the determinant of a basis
matrix.

The famous L3-lattice reduction algorithm of Lenstra, Lenstra and
Lovász [17] can be used to approximate a shortest vector.

Theorem 4 (Lenstra, Lenstra, Lovász) Let L ∈ Z
n be a lattice spanned by

{v1, . . . , vn}. The L3-algorithm outputs in polynomial time a reduced lattice basis
{v′

1, . . . , v
′
n} with

||v′
i|| ≤ 2

n(n−1)+(i−1)(i−2)
4(n−i+1) det(L)

1
n−i+1 for i = 1, . . . , n.

This theorem can easily be proven using [7], Theorem 2.6.2.
In Sections 4 and 6, we will use a heuristic of Coppersmith [8] for multivariate

modular polynomial equations. This heuristic has proven to be very useful in
many attacks (see [1,3,10,14]). We made various experiments for our approaches
and the methods never failed to reveal the desired factorization of N . Therefore,
we make the following assumption which refers to the only heuristic part in our
computations of Section 4 and 6.

Assumption 5 The resultant computations for the multivariate polynomials
constructed in our approaches yield non-zero polynomials.

4 MSBs Known: A Method for e ∈ [N
1
2 , N0.725]

In this section, we present an attack on RSA for public exponents e in the interval
[N

1
2 , N

√
6−1
2 ] given most significant bits of d. This answers an open question of

Boneh, Durfee and Frankel [4] whether there are partial key exposure attacks in
the case of known MSBs beyond the bound e =

√
N . Our approach makes use of

Coppersmith’s method for modular polynomial equations in the trivariate case.

Theorem 6 Under Assumption 5, for every ε > 0 there exists an integer N0
such that for every N > N0 the following holds:
Let (N, e) be an RSA public key, where α = logN (e) is in the range [ 12 ,

√
6−1
2 ].

Given an approximation d̃ of d with

|d − d̃| ≤ N
1
8 (5−2α−√

36α2+12α−15)−ε.

Then N can be factored in time polynomial in log N .

Before we start to prove Theorem 6, in Figure 5 we provide some experimental
results to give an idea of the amount of bits that is needed in our partial key
exposure attack. The experiments also confirm the reliability of the multivariate
heuristic and support our Assumption 5.
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Define δ = 1
8

(
5 − 2α − √

36α2 + 12α − 15
) − ε. Then a fraction of 1 − δ of

the MSBs of d is required (asymptotically) for the new attack. For α = 0.55
this is a 0.710-fraction and for α = 0.6 we require a 0.809-fraction. Note that
these theoretical bounds hold as N and the lattice dimension go to infinity. All
of our experiments were carried out on a 500-MHz workstation using Shoup’s
NTL [19].

N e known MSBs Lattice parameters L3-time

1000 bit 600 bit 955 bit m = t = 1, dim(L) = 7 1 sec

1000 bit 550 bit 855 bit m = t = 1, dim(L) = 7 1 sec

1000 bit 600 bit 905 bit m = t = 2, dim(L) = 19 40 sec

1000 bit 550 bit 810 bit m = t = 2, dim(L) = 19 40 sec

1000 bit 600 bit 880 bit m = t = 3, dim(L) = 50 57 min

1000 bit 550 bit 785 bit m = t = 3, dim(L) = 50 72 min

Fig. 5. Experimental results for known MSBs

Proof (Theorem 6). : We start by looking at the public key equation

ed − 1 = kφ(N), where k ∈ Z. (1)

Boneh, Durfee and Frankel [4] observed that a suitable fraction of the MSBs of
d yields the parameter k. The main drawback of the methods presented in [4] is
that they all require that k is known exactly. This restricts the methods’ usability
to public exponents e ≤ √

N .
Now let us relax this restriction and look at the case where one obtains only

an approximation k̃ of k. Let k̃ = ed̃−1
N+1 , then

|k − k̃| =

∣
∣
∣
∣
∣

ed − 1
φ(N)

− ed̃ − 1
N + 1

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(ed − 1)(N + 1) − (ed̃ − 1)(N + 1 − (p + q))
φ(N)(N + 1)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

e(d − d̃)
φ(N)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

(p + q)(ed̃ − 1)
φ(N)(N + 1)

∣
∣
∣
∣
∣
≤ e

φ(N)
(N δ + 3N− 1

2 d̃)
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We claim that the hard case is the one where the term N− 1
2 d̃ dominates

N δ. Let us first assume the opposite, i.e. N δ > N− 1
2 d̃. In this case, |k − k̃|

can be bounded by Nα+δ−1, where we neglect low order terms. Hence whenever
α + δ − 1 ≤ 0, then k can be determined exactly. Note that the condition in
Theorem 6 implies the desired inequality δ ≤ 1 − α.

But if k is known, we can compute p + q = N + 1 − k−1 mod e. On the other
hand e ≥ N

1
2 and therefore we get p + q over the integers and not modulo e.

This leads to the factorization of N .
Hence, we assume in the following that N− 1

2 d̃ ≥ N δ. In this case, we can
bound |k − k̃| by 4Nα− 1

2 .
Now, let us define d0 = d − d̃ and k0 = k − k̃. Then, we can reformulate

equation (1) as
e(d̃ + d0) − 1 = (k̃ + k0)φ(N).

This can also be written as

ed0 + (k̃ + k0)(p + q − 1) + ed̃ − 1 = (k̃ + k0)N. (2)

Equation (2) gives us a trivariate polynomial

fN (x, y, z) = ex + (k̃ + y)z + ed̃ − 1

with the root (x0, y0, z0) = (d0, k0, p+q−1) modulo N . Define the upper bounds
X = N δ, Y = 4Nα− 1

2 and Z = 3N
1
2 . Then, we have x0 ≤ X, y0 ≤ Y and z0 ≤ Z.

Now we use Coppersmith’s method [8] in order to construct from fN (x, y, z)
a polynomial f(x, y, z) with the same root (x0, y0, z0) over Z (and not just mod-
ulo N). The following theorem due to Howgrave-Graham [12] is a convenient
reformulation of Coppersmith’s method.

Theorem 7 (Howgrave-Graham) Let f(x, y, z) be a polynomial that is a sum
of at most ω monomials. Suppose that
(1) f(x0, y0, z0) = 0 mod Nm, where |x0| ≤ X, |y0| ≤ Y and |z0| ≤ Z
(2) ||f(xX, yY, zZ)|| < Nm√

ω
.

Then f(x0, y0, z0) = 0 holds over the integers.

Next, we construct polynomials that all satisfy condition (1) of Howgrave-
Graham’s Theorem. Thus, every integer linear combination of these polynomials
also satisfies the first condition. We search among these linear combinations for
a polynomial f that satisfies condition (2). This will be done using the L3-lattice
reduction algorithm.

Let us start by defining the following polynomials gi,j(x, y, z) and hi,j(x, y, z)
for some fixed integers m and t:

gi,j,k = xj−kzkN ifm−i
N for i = 0, . . . , m; j = 0, . . . , i; k = 0, . . . , j

hi,j,k = xjykN ifm−i
N for i = 0, . . . , m; j = 0, . . . , i; k = 1, . . . , t

The parameter t has to be optimized as a function of m.
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One can build a lattice L(m) by using the coefficient vectors of the polyno-
mials gi,j,k(xX, yY, zZ) and hi,j,k(xX, yY, zZ) as basis vectors for a basis B(m)
of L(m). The following lemma shows, that the L3-algorithm always finds at least
three different vectors in L(m) that satisfy condition (2) of Howgrave-Graham’s
Theorem. The proof makes use of Theorem 4.

Lemma 8 Let X = N δ, Y = Nα− 1
2 and Z = N

1
2 . Then one can find three

linearly independent vectors in L(m) with norm smaller than Nm√
dim L(m)

using

the L3-algorithm.

Proof: Let n = dimL(M) denote the lattice dimension. We want to find
a reduced basis of L(m) with three basis vectors smaller than Nm√

n
. Applying

Theorem 4, we know that for an L3-reduced basis {v′
1, v

′
2, . . . , v

′
n}

||v′
1|| ≤ ||v′

2|| ≤ ||v′
3|| ≤ 2

n(n−1)+2
4(n−2) det L(M)

1
n−2 .

Since we need ||v′
3|| < Nm√

n
, we have to satisfy the condition

det(L) < cNm(n−2),

where c = 2− n(n−1)+2
4 n− n−2

2 does not depend on N and therefore contributes to
the error term ε.

Most of the following computations are straightforward but tedious. So we
only sketch the rest of the proof. Let t = τm, then the determinant of L(M) is

det L(M) =
(
N8τ+3X4τ+1Y 6τ2+4τ+1Z4τ+2

) 1
24 m4(1+o(1))

.

Using the bounds X = N δ, Y = 4Nα− 1
2 and Z = 3N

1
2 we obtain

det L(M) = N
1
24 m4(3τ2(2α−1)+4τ(δ+α+2)+δ+α+ 7

2 )(1+o(1)).

An easy calculation shows that n = 1
24m3(12τ + 4)(1 + o(1)). Neglecting low

order terms, our condition simplifies to

3τ2(2α − 1) + 4τ(δ + α − 1) + δ + α − 1
2

< 0.

The left hand side is minimized for the choice τ = 2
3

1−δ−α
2α−1 . Plugging this value

in, we obtain the desired condition

δ ≤ 1
8

(
5 − 2α −

√
36α2 + 12α − 15

)
,

which concludes the proof.

Combining Theorem 7 and Lemma 8, from the three vectors with norm smaller
than Nm√

dim L(m)
we obtain three polynomials f1(x, y, z), f2(x, y, z) and f3(x, y, z)
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with the common root (x0, y0, z0). Our goal is to extract the value z0 = p+q−1.
The equation N = pq together with the number z0 yields the factorization of
N . Therefore, we take the resultants resx(f1, f2) and resx(f1, f3) with respect
to x. The resulting polynomials g1 and g2 are bivariate polynomials in y and z.
In order to remove the unknown y, we compute the resultant resy(g1, g2) which
is an univariate polynomial in z. The root z0 most be among the roots of this
polynomial. Thus, if resy(g1, g2) is not the zero polynomial (Assumption 5) then
z0 can be found by standard root finding algorithms. This concludes the proof
of Theorem 6.

5 LSBs Known: A Provable Method for e < N
1
2

In this section, we present a provable attack on RSA with public key e < N
1
2 ,

where we know d0 = d mod M for some modulus M . For instance assume that
an attacker succeeds to get the lower k bits of d, then M = 2k.

In the following we show that whenever M is sufficiently large then N can
be factored in polynomial time for all but a negligible fraction of choices for e.

Theorem 9 Let N be an RSA-modulus and let 0 < α, ε < 1
2 . For all but a

O( 1
Nε )-fraction of the public exponents e in the interval [3, Nα] the following

holds: Let d be the secret key. Given d0, M satisfying d = d0 mod M with

Nα+ 1
2+ε ≤ M ≤ 2Nα+ 1

2+ε.

Then the factorization of N can be found in polynomial time.

Before we prove the theorem, we want to give some experimental results. We
tested our algorithm with the commonly used public exponent e = 216 + 1 and
varying 1000-bit moduli N , where we knew 525 LSBs of d. Note that in com-
parison to the Boneh-Durfee-Frankel-approach for LSBs, we need about twice as
many bits but in their method one has to run a lattice reduction about e times.
The running time of our algorithm is about 1 second on a 500 MHz workstation.
In 100 experiments, the algorithm never failed to yield the factorization of N .

Proof (Theorem 9). We start by looking at the RSA key equation ed−1 = kφ(N).
Let us write d = d1M + d0, where d1 is the unknown part of d. Then

ed1M + k(p + q − 1) − 1 + ed0 = kN. (3)

Equation (3) in turn gives us a bivariate polynomial

fN (x, y) = eMx + y + ed0

with a root (x0, y0) = (d1, k(p + q − 1) − 1) modulo N . In order to bound y0
notice that

k =
ed − 1
φ(N)

< e
d

φ(N)
< e ≤ Nα.
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Since d1 ≤ N
M , we can set the bounds X = N

1
2 −α−ε and Y = 3N

1
2+α satisfying

x0 ≤ X and y0 ≤ Y .
As in Section 4, we want to transform our polynomial fN (x, y) into a poly-

nomial f(x, y) with the root (x0, y0) over the integers. Therefore, we apply
Howgrave-Graham’s Theorem (Theorem 7) in the bivariate case. For this purpose
we take the auxiliary polynomials N and Nx which are both the zero polynomial
modulo N . Thus, every integer linear combination f = a0N +a1Nx+a2fN (x, y)
has the root (x0, y0) modulo N .

According to the second condition of Howgrave-Graham’s Theorem we have
to look for an integer linear combination f satisfying ||f(xX, yY )|| ≤ N√

3
. Thus,

we search for a suitably small vector in the lattice L given by the span of the
row vectors of the following (3 × 3)-lattice base

B =




N

NX
ed0 eMX Y



 .

Now, our goal is to find two linearly independent vectors (a0, a1, a2)B and
(b0, b1, b2)B both having norm smaller than N√

3
. Since L has dimension 3, we

can compute two shortest linearly independent vectors in L in polynomial time
using an algorithm of Blömer [2]. In practice, the L3-algorithm will suffice.

Assume we can find two linearly independent vectors with norm smaller than
N√
3
. Then we obtain from Theorem 7 the following two equations

a0N + a1Nx0 + a2fN (x0, y0) = 0 and
b0N + b1Nx0 + b2fN (x0, y0) = 0.

From equation (3) we know that f(x0, y0) = kN . Hence, our equations simplify
to the linear system

a1x0 + a2k = −a0
b1x0 + b2k = −b0

(4)

If (a0, a1, a2), (b0, b1, b2) ∈ Z
3 are linearly independent and satisfy (4), then the

2-dimensional vectors (a1, a2), (b1, b2) are also linearly independent. But this
implies that we can determine x0, k as the unique solution of the linear system.
Afterwards, we can derive y0 by y0 = kN−eMx0−ed0. Therefore, y0+1

k = p+q−1
gives us the necessary term to factor the modulus N .

It remains to show that L contains indeed two linearly independent vectors
with norm smaller than N√

3
. The following lemma proves that this is satisfied for

most choices of e using a counting argument.

Lemma 10 Given N, α, ε and M as defined in Theorem 9. Then for all but
O(Nα−ε) choices of e in the interval [3, Nα] the following holds: Let X =
N

1
2 −α−ε and Y = 3N

1
2+α. Then the lattice L contains two linearly indepen-

dent vectors with norm less than N√
3
.
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Proof: In terms of lattice theory, we have to show that for most of the choices of
e the second successive minima λ2 of L is strictly less than N√

3
. By Minkowski’s

second theorem we know that for any 3-dimensional lattice L and its successive
minima λ1, λ2, λ3

λ1λ2λ3 ≤ 2 det(L).

In our case det(L) = N2XY . Hence for all e such that λ1 > 6XY , we get
λ2 < N√

3
and we are done.

Now assume λ1 ≤ 6XY . Hence, we can find coefficients c0, c1, c2 ∈ Z such
that ‖(c0, c1, c2)B‖ < 6XY . This implies

|c2| ≤ 6X

∣
∣
∣
∣
c1

c2
+

eM

N

∣
∣
∣
∣ ≤ 6Y

c2N

Using XY ≤ 3N1−ε, the second inequality implies
∣
∣
∣
∣
c1

c2
+

eM

N

∣
∣
∣
∣ ≤ 18

c2XN ε
(5)

Next we bound the number of e’s in [3, Nα] that can satisfy (5) for some ratio
c1
c2

.
Since eM

N is positive, without loss of generality we can assume that c1 < 0
and c2 > 0. Now we make the following series of observations.

– The difference between any two numbers of the form eM
N is at least M

N ≥
Nα− 1

2+ε.
– If (5) is true for some ratio c1

c2
and some e then eM

N must lie in the interval
[

c1
c2

− 18
c2XNε , c1

c2
+ 18

c2XNε

]
.

– Combining the first two observations we conclude that for a fixed ratio c1
c2

there are at most 36
c2XNα− 1

2 +2ε
public keys e such that (5) is satisfied.

– Since e ≤ Nα and M ≤ 2Nα+ 1
2+ε, we get eM

N ≤ 2N2α− 1
2+ε. Consider a fixed

but arbitrary c2. Then (5) is satisfied for some c1 and some public key e only
if c1 ∈ [−2N2α− 1

2+εc2, −1].
– The previous two observations imply that for fixed c2 the number of e’s

satisfying (5) is bounded by 72Nα−ε

X .
– The previous observation and c2 ≤ 6X imply, that the number of public keys

e for which (5) is satisfied for some ratio c1
c2

is bounded by 432Nα−ε.

The last observation concludes the proof of Lemma 10.
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6 LSBs Known: A Method for All e with e < N
7
8

In this section, we improve the approach of Section 5 by taking multi-dimensional
lattices. In contrast to Section 5 our results are not rigorous. As in Section 4 they
rely on Coppersmith’s heuristic for multivariate modular equations. However, the
results are even stronger: We obtain an attack for all e < N

7
8 .

Theorem 11 Under Assumption 5, for every ε > 0 there exists N0 such that
for every N ≥ N0 the following holds:
Let (N, e) be an RSA public key with α = logN (e) ≤ 7

8 . Let d be the secret key.
Given d0, M satisfying d = d0 mod M with

M ≥ N
1
6+ 1

3

√
1+6α+ε.

Then N can be factored in polynomial time.

Before we start with the proof of Theorem 11, in Figure 6 we provide some
experimental results to give an idea of the number of bits that are needed in
our partial key exposure attack. We fixed a bit-size of 1000 for the modulus N
and used varying sizes of 300, 400 and 500 bits for e. Theorem 11 states that we
need to know at least 725, 782 and 834 LSBs of d, respectively.

N e known LSBs Lattice parameters L3-time

1000 bit 300 bit 805 bit m = 1, t = 0, dim(L) = 3 1 sec

1000 bit 300 bit 765 bit m = 7, t = 1, dim(L) = 44 405 min

1000 bit 400 bit 880 bit m = 3, t = 1, dim(L) = 14 40 sec

1000 bit 400 bit 840 bit m = 6, t = 1, dim(L) = 35 196 min

1000 bit 500 bit 920 bit m = 4, t = 1, dim(L) = 20 7 min

1000 bit 500 bit 890 bit m = 8, t = 2, dim(L) = 63 50 hours

Fig. 6. Experimental results for known LSBs

Proof (Theorem 11). We start by looking at the equation ed − 1 = kφ(N). As
in Section 5, we write d = d1M + d0. This gives us the equation

k(N − (p + q − 1)) − ed0 + 1 = eMd1. (6)

From (6) we obtain the bivariate polynomial
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feM (y, z) = y(N − z) − ed0 + 1

with the root (y0, z0) = (k, p + q − 1) modulo eM . Analogous to Section 5 we
can derive the bounds Y = Nα and Z = 3N

1
2 satisfying y0 ≤ Y and z0 ≤ Z.

Fix some integers m and t. Define the polynomials

gi,j = yj(eM)ifm−i
eM for i = 0, . . . , m; j = 0, . . . , i

hi,j = zj(eM)ifm−i
eM for i = 0, . . . , m; j = 1, . . . , t.

The parameter t has to be optimized as a function of m.
Since all the polynomials have a term (eM)ifm−i

eM , all integer linear combina-
tions of the polynomials have the root (y0, z0) modulo (eM)m, i.e. they satisfy
the first condition of Howgrave-Graham’s theorem (in the bivariate case). Let
L(m) be the lattice defined by the basis B(m), where the coefficient vectors
of gi,j(yY, zZ) and hi,j(yY, zZ) are the basis vectors of B(m) (with the same
parameter choices of i and j as before).

In order to fulfill the second condition in Howgrave-Graham’s theorem, we
have to find vectors in L(m) with norm less than (eM)m√

dim L(m)
. The following lemma

states that one can always find two such sufficiently short vectors in L(m) using
the L3-algorithm.

Lemma 12 Let e, M be as defined in Theorem 11. Suppose Y = Nα and
Z = 3N

1
2 . Then the L3-algorithm finds at least two vectors in L(M) with norm

smaller than (eM)m√
dim L(m)

.

Proof. Since the proof is analogous to the proof of Lemma 8, we omit it.

Combining Theorem 7 and Lemma 12, we obtain two polynomials f1(y, z),
f2(y, z) with the common root (y0, z0) over the integers. By Assumption 5, the
resultant resy(f1, f2) is non-zero such that we can find z0 = p + q − 1 using
standard root finding algorithms. This gives us the factorization of N .

Acknowledgement. We want to thank Jean-Pierre Seifert for suggesting to
look at partial key exposure attacks on CRT-variants of RSA.
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