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Abstract. In 1992, Dwork and Naor proposed that e-mail messages be accompa-
nied by easy-to-check proofs of computational effort in order to discourage junk
e-mail, now known as spam. They proposed specific CPU-bound functions for
this purpose. Burrows suggested that, since memory access speeds vary across
machines much less than do CPU speeds, memory-bound functions may behave
more equitably than CPU-bound functions; this approach was first explored by
Abadi, Burrows, Manasse, and Wobber [3].
We further investigate this intriguing proposal. Specifically, we

1. Provide a formal model of computation and a statement of the problem;
2. Provide an abstract function and prove an asymptotically tight amortized

lower bound on the number of memory accesses required to compute an ac-
ceptable proof of effort; specifically, we prove that, on average, the sender
of a message must perform many unrelated accesses to memory, while the
receiver, in order to verify the work, has to perform significantly fewer ac-
cesses;

3. Propose a concrete instantiation of our abstract function, inspired by the RC4
stream cipher;

4. Describe techniques to permit the receiver to verify the computation with no
memory accesses;

5. Give experimental results showing that our concrete memory-bound function
is only about four times slower on a 233 MHz settop box than on a 3.06 GHz
workstation, and that speedup of the function is limited even if an adversary
knows the access sequence and uses optimal off-line cache replacement.

1 Introduction

Unsolicited commercial e-mail, or spam, is more than just an annoyance. At two to
three billion daily spams worldwide, or close to 50% of all e-mail, spam incurs huge
infrastructure costs, interferes with worker productivity, devalues the internet, and is
ruining e-mail.
� Incumbent of the Judith Kleeman Professorial Chair. Research supported in part by a grant from

the Israel Science Foundation. Part of this work was done while visiting Microsoft Research,
SVC.

D. Boneh (Ed.): CRYPTO 2003, LNCS 2729, pp. 426–444, 2003.
c© International Association for Cryptologic Research 2003



On Memory-Bound Functions for Fighting Spam 427

This paper focuses on the computational approach to fighting spam, and, more gen-
erally, to combating denial of service attacks, initiated by Dwork and Naor [11] (also
discussed by Back; see [18,9]). The basic idea is:

“If I don’t know you and you want to send me a message, then you must prove
that you spent, say, ten seconds of CPU time, just for me and just for this
message.”

The “proof of effort” is cryptographic in flavor; as explained below, it is a moderately
hard to compute (but very easy to check) function of the message, the recipient’s address,
and a few other parameters. Dwork and Naor called such a function a pricing function
because the proposal is fundamentally an economic one: machines that currently send
hundreds of thousands of spam messages each day, could, at the 10-second price, send
only eight thousand. To maintain the current 2-3 billion daily messages, the spammers
would require 250,000–375,000 machines.

CPU-bound pricing functions suffer from a possible mismatch in processing speeds
among different types of machines (desktops vs. servers), and in particular between
old machines and the presumed new, top of the line, machines that could be used by
a high-tech spam service. In order to remedy these disparities, Burrows proposed an
alternative computational approach, first explored in [3], based on memory latency. His
creative suggestion is to design a pricing function requiring a moderately large number
of scattered memory accesses. Since memory latencies vary much less across machines
than do clock speeds, memory-bound functions should prove more equitable than CPU-
bound functions.

Our Contributions. In the current paper we explore Burrows’suggestion.After reviewing
the computational approach (Section 2) and formalizing the problem (Section 3), we note
that the known time/space tradeoffs for inverting one-way functions [21,14] (where space
now refers to cache) constrain the functions proposed in [3] (Section 4). We propose
an abstract function, using random oracles, and give a lower bound on the amortized
complexity of computing an acceptable proof of effort (Section 5)1. We suggest a very
efficient concrete implementation of the abstract function, inspired by the RC4 stream
cipher (Section 6). We present experimental results showing that our concrete memory-
bound function is only about four times slower on a 233 MHz settop box than on 3.06 GHz
workstation (Section 7). Finally, we modify our concrete proposal to free the receiver
from having to make memory accesses, with the goal of allowing small-memory devices
to be protected by our computational anti-spam protocol. A more complete version of
the paper is available at
www.wisdom.weizmann.ac.il/˜naor/PAPERS/dgn.html.

2 Review of the Computational Approach

In order to send a message m, software operating on behalf of the sender computes a
proof of computational effort z = f(m, sender, receiver, date) for a moderately hard

1 None of [11,18,9,3] obtains a lower bound.
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to compute “pricing” function f . The message m is transmitted together with the other
arguments to f and the resulting proof of effort z2. Software operating on behalf of the
receiver checks that the proof of effort has been properly computed; a missing proof can
result in some user-prespecified action, such as placing the message in a special folder,
marking it as spam, subjecting it to further filtering, and so on. Proof computation and
verification should be performed automatically and in the background, so that the typical
user e-mail experience is unchanged.

The function f is chosen so that (1) f is not amenable to amortization;
in particular, computing f(m, sender, Alice, date) does not help in computing
f(m, sender, Bob, date). This is key to fighting spam: the function must be recomputed
for each recipient (and for any other change of parameters). (2) There is a “hardness”
parameter to vary the cost of computing f , allowing it to grow as necessary to accom-
modate Moore’s Law. (3) There is an important difference in the costs of computing f
and of checking f : the cost of sending a message should grow much more quickly as
a function of the hardness parameter than the cost of checking that a proof of effort is
correct. This allows us to keep verification very cheap, ensuring that the ability to wage
a denial of service attack against a receiver is not exacerbated by the spam-fighting tool.
In addition, if verification is sufficiently cheap, then it can be carried out by the receiver’s
mail (SMTP) server.

Remark 1. With the right architecture, the computational approach permits single-pass
send-and-forget e-mail: once the mail is sent the sender never need take any further
action, once the mail is received the proof of effort can be checked locally; neither sender
nor receiver ever need contact a third party. In other words, single-pass send-and-forget
means that e-mail, the killer application of the Internet, is minimally disturbed.

Remark 2. We briefly remark on our use of the date as an argument to the pricing
function. The receiver temporarily stores valid proofs of effort. The date is used to
control the amount of storage needed. When a new proof of effort, together with its
parameters, is received, one first checks the date: if the date is, say, over a week old, then
the proof is rejected. Otherwise, the receiver checks the saved proofs of effort to see if
the newly received proof is among them. If so, then the receiver rejects the message as
a duplicate. Otherwise, the proof is checked for validity.

In [11], f is a forged signature in a careful weakening of the Fiat-Shamir signature
scheme. Back’s proposal, called HashCash, is based on finding hash collisions. It is
currently used to control access to bulletin boards [18]; verification is particularly simple
in this scheme.

3 Computational Model and Statement of the Problem

The focus on memory-bound functions requires specification of certain details of a com-
putational model not common in the theory literature. For example, in real contemporary

2 Having m as an argument to the function introduces some practical difficulties in real mail
systems. One can instead use the following three arguments: receiver’s e-mail address, date,
and a nonce. However, the intuition is more clear if we include the message.
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hardware there is (at least) two kinds of space: ordinary memory (the vast majority) and
cache – a small amount of storage on the same integrated circuit chip as the central
processing unit3. Cache can be accessed roughly 100 times more quickly than ordinary
memory, so the computational model needs to differentiate accordingly. In addition,
when a desired value is not in cache (a cache miss), and an access to memory is made, a
small block of adjacent words (a cache line), is brought into the cache simultaneously.
So in some sense values nearby the desired one are brought into cache “for free”. Our
model is an abstraction that reflects these considerations, among others.

When arguing the security of a cryptographic scheme one must specify two things:
the power of the adversary and what it means for the adversary to have succeeded in
breaking the scheme. In our case defining the adversary’s power is tricky, since we have
to consider many possible architectures. Nevertheless, for concreteness we assume the
adversary is limited to a “standard architecture” as follows:

1. There is a large memory, partitioned into m blocks (also called cache lines) of b bits
each;

2. The adversary’s cache is small compared to the memory. The cache contains at most
s (for “space”) words; a cache line typically contains a small number (for example,
16) of words;

3. Although the memory is large compared to the cache, we assume that m is still only
polynomial in the largest feasible cache size s;

4. Each word contains w bits (commonly, w = 32);
5. To access a location in the memory, if a copy is not already in the cache (a cache miss),

the contents of the block containing that location must be brought into the cache – a
fetch; since every cache miss results in a fetch, we use these terms interchangeably;

6. We charge one unit for each fetch of a memory block. Thus, if two adjacent blocks
are brought into cache, we charge two units (there is no discount for proximity at
the block level).

7. Computation on data in the cache is essentially free. By not (significantly) charging
the adversary for this computation, we are increasing the power of the adversary;
this strengthens the lower bound.

Thus, the challenge is to design a pricing function f as described in Section 2, together
with algorithms for computing and checking f , in which the costs of the algorithms are
measured in terms of memory fetches and the “real” time to compute f on currently
available hardware is, say, about 10 seconds (in fact, f may be parameterized, and the
parameters tuned to obtain a wide range of target computation times).

The adversary’s goal is to maximize its production of (message, proof of computa-
tional effort) pairs while minimizing the number of cache misses incurred. The adversary
is considered to have won if it has a strategy that produces many (message, proof) pairs
with an amortized number of fetches (per message plus proof) which is substantially less
than the expected number of fetches for a single computation obtained in the analysis
of the algorithm. We do not care if the messages are sensical or not.

We remark that it may be possible to defeat a memory-bound function with specific
parameters by building a special-purpose architecture, such as a processor with a huge,

3 In fact, there are multiple levels of cache; Level 1 is on the chip.
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fast, on-chip cache. However, since the computational approach to fighting spam is
essentially an economic one, it is important to consider the cost of designing and building
the new architecture. These issues are beyond the scope of this paper.

4 Simple Suggestions and Small-Space Cryptanalyses

In the full paper we show that pricing functions based on meet in the middle and subset
sum can be computed with very few memory access, and hence do not solve our problem.
In these proceedings we confine our attention to the proposal in [3], described next.

Easy-to-Compute Functions. These functions are essentially iterates of a single basic
“random-looking” function g. They vary in their choice of basic function. The basic
function has the property that a single function inversion is more expensive than a
memory look-up.

Let n and � be parameters and let g : {0, 1}n −→ {0, 1}n. Let g0 be the identity
function and for i = 1 . . . �, let the function gi(x) = g(gi−1(x))⊕ i.
Input. y = g�(x) for some x ∈ {0, 1}n and α, a hash of the values x, g1(x), . . . , g�(x).
Output. x′ ∈ g−1

� (y) such that the string x′, g1(x′), . . . , g�(x′) hashes to α.
The hope is that the best way to resolve the challenge is to build a table for g−1 and to
work backwards from y, exploring the tree of pre-images4. Since forward computation
of g is assumed to be quite easy, constructing the inverse table should require very little
total time compared to the memory accesses needed to carry out the proof of effort.

The limitation of this approach is that, since g can be computed with no memory
accesses, there is a time/space tradeoff for inverting g in which no memory accesses are
performed (in our context, space refers to cache size, since we are interested in what
can be done without going to memory) [21,14,26]. Those results imply that g can be
inverted at the cost of two forward computations of g, with no memory accesses.

This suggests basing computational challenges on functions that are (in some sense)
hard in both directions.

5 An Abstract Function and Lower Bound on Cache Misses

In this section we describe an “abstract” pricing function and prove a tight lower bound
on the number of memory accesses that must be made in order to produce a message
acceptable to the receiver, in the model defined in Section 3. The function is “abstract”
in that it uses idealized hash functions, also known as random oracles. A concrete im-
plementation is proposed in Section 6.

Meaning of the Model and the Abstraction: Our computational model implicitly con-
strains the adversary by constraining the architecture available to the adversary. Our
use of random oracles for the lower bound argument similarly constrains the adversary,
as there are some things it cannot compute without accessing the oracles. We see two

4 The root of the tree is labelled with y. A vertex at distance d ≥ 0 from the root having label
z ∈ Range(g�−d) has one child labeled with each z′ ∈ g−1(z ⊕ (�−d)) ∈ Range(g�−d−1).
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advantages in such modelling: (i) It provides rationale to the design of algorithms such
as those of Section 6, this is somewhat similar to what Luby and Rackoff [22] did for the
application of Feistel Permutations in the design of DES; (ii) If there is an attack on the
simplified instantiation of the algorithm of Section 6, then the model provides guidelines
for modifications. Note that we assume that the arguments to the random oracle must be
in cache in order to make the oracle call.

The inversion techniques of [21,14] do not apply to truly random functions, as these
have large Kolmogorov complexity (no short representation). Accordingly, our function
involves a large fixed forever table T of truly random w-bit integers5. The table should
be approximately twice as large as the largest existing caches, and will dominate the
space needs of our memory-bound function.

We want to force the legitimate sender of a message to take a random walk “through
T ,” that is, to make a series of random accesses to T , each subsequent location deter-
mined, in part, by the contents of the current location.

Such a walk is called a path. The algorithm forces the sender to explore many different
paths until a path with certain desired characteristics is found. We call this a successful
path. Once a successful path has been identified, information enabling the receiver to
check that a successful path has been found is sent along with the message. Verification
requires work proportional to the path length, determined by a parameter �. Each path
exploration is called a trial. The expected number of trials to find a successful path is
2e, where e (for “effort”) is a parameter. The expected amount of work performed by
the sender is proportional to 2e times the path length.

5.1 Description of the Abstract Algorithm

The algorithm uses a modifiable array A, initialized for each trial, of size |A|w > b bits
(recall that b is the number of bits in a memory block, or cache line)6.

Before we present the abstract algorithm, we introduce a few hash functions H0, H1,
H2, H3, of varying domains and ranges, that we model as idealized random functions
(random oracles). The function H0 is only used during initialization of a path. It takes as
input a message m, sender’s name (or address) S, receiver’s name (or address) R, and
date d, together with a trial number k, and produces an array A. The function H1 takes
an array A as input and produces an index c into the table T . The function H2 takes as
input an array A and an element of T and produces a new array, which gets assigned to
A. Finally, the function H3 is applied to an array A to produce a string of 4w bits.

A word on notation: For arrays A and T , we denote by |A| (respectively, |T |) the
number of elements in the array. Since each element is a word of w bits, the numbers of
bits in these arrays are |A|w and |T |w, respectively.
The path in a generic trial is given by:

5 “Fixed forever” means fixed until new machines have bigger caches, in which case the function
must be updated.

6 The intuition for requiring |A|w > b is that, since A cannot fit into a single memory block, it
is more expensive to fetch A into cache than it is to fetch an element of T into cache.
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Initialization:
A = H0(m, R, S, d, k)

Main Loop: Walk for � steps (� is the path length):
c← H1(A)
A← H2(A, T [c])

Success occurs if:
after � steps the last e bits of H3(A) are all zero.

Path exploration is repeated for k = 1, 2, . . . until success occurs. The information for
identifying the successful path is simply all five parameters and the final H3(A) obtained
during the successful trial7.
Verification that the path is indeed successful is trivial: the verifier simply carries out
the exploration of the one path and checks that success indeed occurs with the given
parameters and that the reported hash value H3(A) is correct.

The connection to Algorithm MBound, described in Section 6, will be clear: we need
only specify the four hash functions. To keep computation costs low in MBound, we
will not invoke full-strength cryptographic functions in place of the random oracles, nor
will we even modify all entries of array A at each step.

The size of A also needs consideration. If A is too small, say, a pointer into T ,
then the spammer can mount an attack in which many different paths (trials for either
the same or different messages) can be explored at a low amortized cost, as we now
informally describe. At any point, the spammer can have many different A’s (that is, A’s
for different trials) in the cache. The spammer then fetches a memory block containing
several elements of T , and advances along each path for which some element in the given
memory block was needed. This allows exploitation of locality in T . Thus, intuitively,
we should choose |A| sufficiently large that it is infeasible to store many different A’s
in the cache.

5.2 Lower Bound on Cache Misses

We now prove a lower bound on the amortized number of block transfers that any
adversary constrained as described in Section 3 must incur in order to find a successful
path. Specifically, we show that the amortized complexity (measured in the number of
memory fetches per message) of the abstract algorithm is asymptotically tight.

The computation on each message must follow a specific sequence of oracle calls
in order to make progress. The adversary may make any oracle calls it likes; however,
to make progress on a path it must make the specified calls. By watching an execution
unfold, we can observe when paths begin, and when they make progress. Calls to the
oracle that make progress (as determined by the history) are called progress calls.

Theorem 1. Consider an arbitrarily long but finite execution of the adversary’s program
– we don’t know what the program is, only that the adversary is constrained to use an
architecture as described in Section 3. Under the following additional conditions, the
amortized complexity of generating a proof of effort that will be accepted by a verifier
is Ω(2e�):

7 The value of H3(A) is added to prevent the spammer from simply guessing k, which has
probability 1/2e of success.
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– |T | ≥ 2s (recall that the cache contains s words of w bits each)
– |A|w ≥ bs1/5 (recall that b is the block size, in bits).
– � > 8|A|
– The total amount of work by the spammer (measured in oracle calls) per successful

path is no more than 2o(w)2e�.
– � is large enough so that the spammer cannot call the oracle 2� times.

Remark 3. First note that |A| is taken to be much larger than b/w. We already noted
that if |A| is very small than a serious attack is possible. However, even if |A| is roughly
b/w, it is possible to attack the algorithm by storing many copies of T under various
permutations. In this case the adversary can hope to concurrently be exploring about
log s paths for which a single memory block contains the value in T needed by all log s
paths. Hence, if (for some reason) it is important that |A| ≤ O(b/w) we can only get a
lower bound of the form Ω(2e�/ log s).

Proof. (of Theorem 1) We start with an easy lemma regarding the number of oracle calls
needed to find a successful path.

Lemma 1. The amortized number of calls to H1 and H2 per proof of effort that will be
accepted by a verifier is Ω(2e�).

Lemma 2. Let b1 . . . bm be independent unbiased random bits and let k ≤ m. Suppose
we have a system that, given a hint of length B < k (which may be based on the value of
b1 . . . bm), produces a subset S of k indices and a guess of the values of {bi | i ∈ S}. Then
the probability that all k guesses are correct is at most 2B/2k, where the probability
is over the random variables and the coin flips of the hint generation and the guessing
system.

We now get to the main content of the lower bound and to the key lemma (Lemma
3): We break the execution into intervals in which, we argue, the adversary is, forced to
learn a large number of elements of T . That is, there will be a large number of scattered
elements of T which the adversary will need in order to make progress during the interval,
and very little information about these elements is in the cache at the start of the interval.

We first motivate our definition of an interval. We want to think of each A as in-
compressible, since it is the output of a random function. However, if, say, this is the
beginning of a path eploration, and A = H0(m, S, R, d, k), then it may require less
space simply to list the arguments to H0; since our model does not charge (much) for
oracle calls, the adversary incurs no penalty for this. For this reason, we will focus on
the values of A only in the second half of a path. Recall that A is modified at each step of
the Main Loop; intuitively, since these modifications require many elements of T , these
“mature” A’s cannot be compressed. Our definition of an interval will allow us to focus
on progress on paths with “mature” A’s.

Let n = s/|A|; it is helpful to think of n as the number of A’s that can simultaneously
fit into cache (assuming they are incompressible). A progress call is mature if it is the
jth progress call of the path, for j > �/2 (recall that � is the length of a path). An
interval is defined by fixing an arbitrary starting point in an execution of the adversary’s
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algorithm (which may involve the simultaneous exploration of many paths), and running
the execution until 8n mature progress calls (spread over any number of paths) have been
made to oracle H1.

Lemma 3. The average number of memory accesses made during an interval is Ω(n),
where the average is taken over the choice of T , the responses of the random oracles,
and the random choices made by the adversary.

It is an easy consequence of this lemma that the amortized number of memory
accesses to find a successful path is Ω(2e�). This is true since by Lemma 1, success
requires an expected Ω(2e�) mature progress calls to H1, and the number of intervals
is the total number of mature progress calls to H1 during the execution, divided by
8n, which is Ω(2e�/n). (Note that we have made no attempt to optimize the constants
involved.)

Proof. (of Lemma 3) Intuitively, the spammer’s problem is that of asymmetric commu-
nication complexity between memory and the cache. Only the cache has access to the
functions H1 and H2 (the arguments must be brought into cache in order to carry out the
function calls). The goal of the (spammer’s) cache is to perform any 8n mature progress
calls. Since by definition the progress calls to H1 are calls in which the arguments have
not previously been given to H1 in the current execution, we can assume the values of
H1’s responses on these calls are uniform over {1, . . . , |T |} given all the information
currently in the system (memory and cache contents and queries made so far). The cache
must tell the memory which blocks are needed for the subsequent call to H2. Let β be
the average number of blocks sent by the main memory to the cache during an interval,
and we assume for the sake of contradiction that β = o(n) (the lemma asserts that
β = Ω(n)). We know that the cache sends the memory β log m bits to specify the block
numbers (which is by assumption o(n log m) bits), and gets in return βb bits altogether
from the memory. The key to the lemma is, intuitively, that the relatively few possibilities
in requesting blocks by the cache imply that many different elements of T indicated by
the indices returned by the 8n mature calls to H1 have to be stored in the same set of
blocks. We will argue that this implies that a larger than s part of T can be reconstructed
from the cache contents alone, which is a contradiction given the randomness of T .

We now proceed more formally. Lemma 3 will follow from a sequence of claims.
The first is that there are many entries of T for which many possible values are consistent
with the cache contents at the beginning of the interval. That is, T is largely unexplored
from the cache’s point of view. The proof is based on Sauer’s Lemma (see [6])

Claim 1. There exist γ, δ ≥ 1/2 such that: given the cache contents at the beginning of
the interval, it is expected that there exists a subset of the entries of T , called T ′, of size
at least δ|T | such that for each entry i in T ′ there is a set Si of 2γw possible values for
T [i] and all the Si’s are mutually consistent with the cache contents.

From now on we assume that we have cache content consistent with a large number
of possibilities for T ′ as in the claim and use this cache configuration to show that it is
possible to extract many entries of T ′.

Claim 2. If the number β of memory accesses is o(n), then the number of different paths
on which a mature progress call is made during an interval is at most 3n.
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It therefore follows that in a typical interval there are at least 8n − 3n = 5n pairs
of consecutive mature progress calls to H1 on a common path. Thus, for example, one
path may experience 5n + 1 mature progress calls, or each of n paths may experience
at least 6 mature progress calls, or something in between. Each such pair of calls to H1
is separated by a call to H2 which requires the contents of the location of T specified
by the first H1 call in the pair. It is these interstitial calls to H2 that are of interest to us:
because their preceding calls to H1 first occur during the interval, and H1 is random,
it cannot be known at the start of the interval which elements of T will be needed as
arguments to these calls to H2. Intuitively, the adversary must go to main memory to
find an expected (|T | − s)/|T | > 1/2 of them.

Consider the set of 8n-tuples over {1, . . . , |T |} as the set of possible answers H1
returns on the mature progress calls in the interval; there are |T |8n such tuples. Fix all
other random choices: the value of T , the previous calls to H1 and H2 and the random
tape of the spammer). The spammer’s behavior in an interval is now determined solely
by this 8n-tuple. If the spammer can defeat our algorithm, then, for some fixed ε > 0, the
spammer completes the interval retrieving at most 2β blocks with at least ε probability,
over the choice of 8n-tuple. Call these tuples the good ones. By Markov’s inequality,
for at least half of these good 8n-tuples the spammer retrieves at least β blocks. We first
claim that in most of those tuples the spammer goes frequently into H2 with values T [i]
where i ∈ T ′.

Claim 3. Let T ′ be any subset of the entries of T of size at least δn. Consider the set
of good 8n-tuples over {1, . . . , |T |} as the set of possible answers H1. Then except for
at most an exponential in n fraction of them the spammer must use an entry in T ′ for a
call to at H2 least n times during an interval.

Claim 4. Suppose that we have subset X of size x of entries in T . Then the probability
over H1 that a 8n-tuple contains more than n/2 entries in X is at most (28x/|T |)n/2.

Claim 5. Suppose that we have a collection of good 8n-tuples and we want to cover at
least x values in T ′ using only a few members of the collection, say 2x/n (assume that
the collection is at least that large). If this is impossible then there is a set X ⊂ T ′ of
size x such that every member of the collection has at least n/2 entries in X .

The idea for deriving the contradiction to the fact that only β = o(n) blocks are
brought from memory to cache is that there should be many good 8n-tuples that share
the same set of blocks (that is, by retrieving one set of blocks all elements appearing in
many good 8n-tuples can be reconstructed in the cache). In fact, since the memory size
is m, a 1/

(
m
2β

)
fraction of them share the same set of blocks (the factor of 2 comes from

the definition of a good 8n-tuple). Consider such a collection and suppose that there are
2x/n tuples in this collection whose union covers x entries in T ′. Then the “memory"
can use these 2x/n tuples to transfer the value of x entries in T ′ by sending the 2βb
bits describing the content of the common blocks and in addition for each tuple in the
cover: (1) Specifying the 8n-tuple: this takes 8n log |T | bits; (2) Specifying which calls
to H2 in the execution have the correct parameters (there may be some “bogus” calls to
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H2 in which the wrong values for elements of T are used as parameters). If the interval
contains z calls to H2 then this takes log

(
z

n/2

)
bits which is O(n log z).

So altogether it suffices for 2βb + 16x log |T | + 2x log z bits to be sent from the
memory to the cache. In return, the cache learns γw bits for each of x entries in T ′, or
xγw bits altogether. To derive the contradiction, since w was taken to be much larger
than log |T | and 2w/2 much larger than the amortized number of oracle calls per interval,
log z is much smaller than w and we only have to worry about the 2βb term.

Assume that β ≤ 1/20n = s/20|A| and, for simplicity that m, the memory size is
|T |2 (recall that in our model m is polynomial in s, and in our theorem |T | = Θ(s)).
Set x = 4βb/w. Of all good tuples, pick the largest collection agreeing with a set of β

blocks, i.e., consisting of at least a 1/
(
T 2

β

)
fraction of the good tuples. We now claim

that this collection has 2x/n 8n-tuples whose union is of size at least x (this will be
sufficient for a contradiction).

Suppose that this is not the case and the 2x/n tuples covering x do not exist. Then as
we have seen above in Claim 5 there is a set X of size x where each tuple in the collection
has at least n/2 entries in X . But we know from Claim 4 that the fraction (among all
tuples) of such a collection can be at most (28x/|T |)n/2. Taking into account ε (the

faction of all tuples that are good) we must compare ((28x/|T |)n/2)(1/ε) to 1/
(
T 2

2β

)
and

if the latter is larger we know that the collection is too large to be compressed into X .
For simplicity take ε = 1. Indeed

(28x/|T |)n/2

(
T 2

2β

) =
(28x)n/2

Tn/2−4β

taking logs we get that we need to compare log 28x and

(log T )
n− 4β

n
= (log T )

s/|A| − 4s/20|A|
s/|A| = (log T )

4
5
.

But since x = 4βb/w = 4sb/(20|A|w) and |A| ≥ s1/5b/w we get that x ≤ 1/5s4/5

and indeed 8 + log x is smaller than 4/5 log |T |.
This concludes the proofs of Lemma 3 and Theorem 1

6 A Concrete Proposal

In this section we describe a concrete implementation of the abstract algorithm of Sec-
tion 5, which we call Algorithm MBound. As in the abstract algorithm, our function
involves a large fixed forever array T , now of 222 truly random 32-bit integers8. In terms
of the parameters of Section 5, we have |T | = 222 and w = 32. This array requires 16
MB and dominates the space needs of our memory-bound function, which requires less
than 18 MB total space.9 The algorithm requires in addition a fixed-forever truly random
array A0 containing 256 32-bit words. A0 is used in the definition of H0. Note that A0
is incompressible.

8 “Fixed forever” means fixed until new machines have bigger caches, in which case the function
must be updated.

9 To send mail, a machine must be able to handle a program of this size.
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6.1 Description of MBound

Our proposal was inspired by the (alleged) RC4 pseudo-random generator (see, e.g., the
descriptions of RC4 in [16,23,24]).

Description of H0. Recall that we have a fixed-forever array A0 of 256 truly random
32-bit words. At the start of the kth trial, we compute A = H0(m, S, R, d, k) by first
computing (using strong cryptography) a 256-word mask and then XORing A0 together
with the mask. Here is one way to define H0:

1. Let αk = h(m, S, R, d, k) (|αk| = 128), for a cryptographically strong hash func-
tion h such as, say, SHA-1.

2. Let η(αk) be the 213-bit string obtained by concatenating the 27-bit αk with itself
26 times10. Treating the array A as a 213-bit string (by concatenating its entries in
row-major order), we let A = A0 ⊕ η(αk). Note that, unlike in the case of RC4,
our array A is not a permutation of elements {1, 2, . . . , 256}, and its entries are 32
bits, rather than 8 bits.

We initialize c, the current location in T , to be the last 22 bits of A (when A is viewed
as a bit string). In the sequel, whenever we say A[i] we mean A[i mod 28]; similarly, by
T [c] we mean T [c mod 222].
The path in a generic trial is given by:

Initialize Indices:
i = 0; j = 0

Walk for � steps (� is the path length):
i = i + 1
j = j + A[i]
A[i] = A[i] + T [c]
A[i] = RightCyclicShift(A[i], 11) (shift forces all 32 bits into

play)
Swap(A[i], A[j])
c = T [c]⊕A[A[i] + A[j]]

Success occurs if the last e bits of h(A) are all 0.
In the last line, the hash function h can again be SHA-1. It is applied to A, treated as a
bit string.

The principal difference with the RC4 pseudo-random generator is in the use of T :
bits from T are fed into MBound’s pseudo-random generation procedure, both in the
modification of A and in the updating of c.

In terms of the abstract function, we can tease our proposal apart to obtain, roughly:

Description of H1 (updates c, leaves A unchanged). The function H1 is essentially
i = i + 1
j = j + A[i]

10 The reason we concatenate the string in order to generate η(αk), rather than generate a crypto-
graphically strong string of length 213 is to save CPU cycles - this is an operation that is done
many times and if each bit of η(αk) is strong it could make the scheme CPU bound.
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v = A[i] + T [c] (v is a temporary variable)
v = RightCyclicShift(v, 11)
c = T [c]⊕A[A[j] + v]

Description of H2 (updates A).
A[i] = A[i] + T [c]
A[i] = RightCyclicShift(A[i], 11)
Swap(A[i], A[j])

Description of H3. The hash function H3(A) is simply some cryptographically strong
hash function with 128 bits of output, such as SHA-1.

This all but completes the description of Algorithm MBound and its connection to
our abstract function; it remains to choose the parameters.

6.2 Parameters for MBound

We can define the computational puzzle solved by the sender as follows.

Input. A message m, a sender’s alias S, a receiver’s alias R, a time t, the table T and
the auxiliary table A0.

Output. m, S, R, d, i and α such that 1 ≤ i ≤ 2e and the ith path (that is, the path with
trial number k = i), is successful and α is the result of hashing the final value of A
in the successful path.

If i > 22e, the receiver rejects the message (with overwhelming probability one of
the first 22e trials should be successful).

To be specific in the following analysis, we make several assumptions. These as-
sumptions are reasonable for current technology, and our analysis is sufficiently robust
to tolerate substantial changes in many of these parameters. Let P be the desired expected
time for computing the proof of effort and let τ be the memory latency. We assume that
P is 10 seconds and τ is .2 microseconds. We also assume that the maximum size of the
fast cache is 8 MB and that cache lines (memory blocks) are 64 bytes wide (so blocks
contain b = 512 bits).

The output conditions ensure that for a random starting point, the probability of a
successful output is 1/2e. The expected number of walks to be checked is 2e. Therefore
the expected value of P is

E[P ] = 2e · � · τ.
The cost of verification by the receiver is essentially � cache misses, by following the
right path. (In Section 8 we discuss how to reduce or eliminate these cache misses.)

We have not yet set the values for e and �. Choosing one of these parameters forces
the value of the other one. Consider the choice of e: one possibility might be to make
e very large, and the paths short, say, even of length 1. This would make verification
extremely cheap. However, while the good sender will explore the paths sequentially, a
cheating sender may try several paths in parallel, hoping to exploit locality by batching
several accesses to T , one from each of these parallel explorations. In addition, A changes
slowly, and to get to the point in which many “mature” values of A cannot be compressed
requires that many entries of A have been modified. For our concrete proposal, therefore,
we let � = 2048. Then 2e = P/�τ = 10/(2048 ∗ 2 ∗ 10−7) ≈ 24, 414.
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Table 1. Computational Platforms, sorted by CPU speed.

name class model processor CPU clock OS
P4-3060 workstation DELL XW8000 Intel Pentium 4 3.06 Ghz Linux
P4-2000 desktop Compaq Evo W6000 Intel Pentium 4 2.0 Ghz Windows XP
P3-1200 laptop DELL Latitude C610 Intel Pentium 3M 1.2 Ghz Windows XP
P3-1000 desktop Compaq DeskPro EN Intel Pentium 3 1.0 Mhz Windows XP
Mac-1000 desktop Power Mac G4 PowerPC G4 1000 Mhz OSX
P3-933 desktop DELL Dimension 4100 Intel Pentium 3 933 Mhz Linux
SUN-900 server SUN Ultra 60 UlraSPARC III+ 900 Mhz Solaris
SUN-450 server SUN Ultra 60 UlraSPARC II 450 Mhz Solaris
P2-266 laptop Compaq Armada 7800 Intel Pentium 2 266 Mhz Windows 98
S-233 settop GCT-AllWell STB3036N Nat. Semi. Geode GX1 233 Mhz Linux

7 Experimental Results

In this section we describe several experiments aimed at establishing practicality of
our approach and verifying it experimentally. First we compare our memory-bound
function performance to that of the CPU-intensive HashCash function [18] on a variety
of computer architectures. We confirm that the memory-bound function performance is
significantly more platform-independent. We also measure the solution-to-verification
time ratio of our function. Then we run simulations showing how the number of cache
misses during the execution of our memory-bound function depends on the cache size
and the cache replacement strategy. We observe that even if an adversary knows future
accesses, this does not help much unless the cache size is close to the size of T . Finally,
we study how the running time depends on the size of the big array T .

Table 2. Memory hierarchy.

machine L2 cache L2 line memory
P4-3060 256 KB 128 bytes 4 GB
P4-2000 256 KB 128 bytes 512 MB
P3-1200 256 KB 64 bytes 512 MB
P3-1000 256 KB 64 bytes 512 MB

P3-933 256 KB 64 bytes 512 MB
Mac-1000 256 KB 64 bytes 512 MB
SUN-900 8 MB 64 bytes 8 Gb
SUN-450 8 MB 64 bytes 1 Gb

P2-266 512 KB 32 bytes 96 MB
S-233 16 KB 16 bytes 128 MB

7.1 Different Architectures

We conducted tests on a variety of platforms, summarized in Table 1. These platforms
vary from the popular Pentium 3 and Pentium 4 systems and a Macintosh G4 to SUN
servers with large caches. We even tested our codes on a settop box, which is an example
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of a low-power device. The P2-266 laptop is an example of a “legacy” machine and is
representative of a low-end machine among those widely used for e-mail today (that
is, in 2003). Table 2 gives sizes of the relevant components of the memory hierarchy,
including L2 cache size, L2 cache line size, and memory size. With one exception, all
machines have two levels of cache and memory. The exception is the Macintosh, which
has a 2 MB off-chip L3 cache in addition to the 256 KB on-chip L2 cache.

Table 3. Program timings. Times are averages over 20 runs, measured in units of the smallest
average. For HashCash, the smallest average is 4.44 sec.; for MBound, it is 9.15 sec.%.

machine HashCash MBound
name time time sol./ver.

P4-3060 1.00 1.01 2.32 E4
P4-2000 1.91 1.33 1.65 E4
P3-1200 2.21 1.00 2.55 E4
P3-1000 2.67 1.06 2.48 E4

Mac-1000 1.86 1.96 2.61 E4
P3-933 2.15 1.06 2.51 E4

SUN-900 1.82 2.24 2.50 E4
SUN-450 5.33 2.94 2.02 E4
P2-266 10.17 2.67 1.84 E4
S-233 43.20 4.62 1.50 E4

7.2 Memory- vs. CPU-Bound

The motivation behind memory-bound functions is that their performance is less de-
pendent on processor speed than is the case for CPU-bound functions. Our first set of
experiments compares an implementation of our memory-bound function, MBound, to
our implementation of HashCash [18]. HachCash repeatedly appends a trial number to
the message and hashes the resulting string, until the output ends in a certain number
zero bits (22 in our experiments). For MBound, with its slower iteration time, we set the
required number of zero bits to 15.

Table 3 gives running times for HashCash and MBound, normalized by the fastest
machine time. Note that HashCash times are closely correlated with processor speed.
Running times for MBound show less variation. The difference between the P2-266
laptop and the fastest machine used in our tests for HashCash is a factor of 10.17, while
the difference for MBound is only a factor of 2.67. The HashCash vs. MBound gap is
even larger for the S-233 settop box.11

Modern Pentium-based machines perform well in memory-bound computations. The
Macintosh does not do so well; we believe that this is due to its poor handling of the
translation lookahead buffer (TLB) misses. SUN servers do poorly in spite of their large

11 Note that S-233 is a special-purpose device and code produced by the C compiler may be poorly
optimized of the processor. This may be one of the reasons why this machine was so slow in
our tests.



On Memory-Bound Functions for Fighting Spam 441

caches. This is due to their poor handling of TLB misses and the penalty for their ability
of handle large memories.

8 Freeing the Receiver from Accessing T

Since the spam-protected receiver will sometimes act also as an e-mail sender, he will
have access to the array T . However, we would like receiving mail not to have to involve
accessing T at all. For example, one might wish to be able to receive mail on a cell
phone. In this section we explore the possibility that the sender adds some information
to its message that will permit the receiver to efficiently verify the proof of effort with
no accesses to T . Of course, the conceptually simplest method for freeing R from
accessing T is for the creator of T to sign all the elements of T (more precisely, the
signature is on the pair (c, T [c]), to disallow permuting the table). However, this requires
too much storage at the sender, even using the signature scheme yielding the shortest
signatures [8].

Compressed RSA Signatures. Here we use properties of the RSA scheme previously
exploited in the literature [13,12]. Let (N, e) be the public key of an RSA signature
scheme chosen by the creator of T 12. Let F be a function mapping pairs (c, T [c]) into
Z∗

N , that is, a mapping from 32 + 22 = 54-bit strings into Z∗
N . In our analysis we

will model F as a random oracle. For all 1 ≤ c ≤ |T | let vc = F (c, T [c]) and let
wc = v

1/e
c mod N . Thus, vc is a hash of the pair (c, T [c]) and wc is a signature on the

string vc.
The sender’s protocol contains, in addition to T , the public modulus N , the descrip-

tion of F , and the wc’s. The receiver’s protocol uses only the description of F and the
public key (N, e), together with a description of the sender’s path exploration algorithm
(minus the array T itself).

Let the sender’s successful path be the sequence c1, c2, . . . c� of locations in T . The
proof of effort contains two parts:

1. T [c1], T [c2], . . . , T [c�], (a total of about 4 KB), and
2. w =

∏�
i=1 wci

mod N (about 1 KB).

Note that there is no need to include the indices c1, . . . , c� in the first part, as these are
implicit from the algorithm. Similarly, there is no need to send the vc’s, since these are
implicit from F and the (ci, T [ci]) pairs. Let t1, . . . , t� be the first part of the proof, and
w the second part (each ti is supposed to be T [ci], but the verifier cannot yet be certain
this is the case). The proof is checked as follows.

1. Compute v′
c1

, v′
c2

, . . . v′
c�

, where v′
ci

= F (ci, ti).
2. Check whether we = (

∏�
i=1 vci) mod N.

The security of the scheme rests on the fact that it is possible to translate a forged
signature on

(c1, T [c1]), . . . (c�, T [c�])
12 The signing key d is a valuable secret!
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into an inversion of the RSA function on a specific instance. This is summarized as
follows:

Theorem 2. If F is a random oracle, then any adversary attempting to produce a set of
claimed values

T [c1], T [c2], . . . T [c�]

that is false yet acceptable to the receiver can be translated into an adversary for breaking
RSA with the same run time and probability of success (to preserve probability of success
we need that e be a prime larger than �).

Although transmission costs are low, the drawback of the compressed RSA scheme
is again the additional storage requirements for the sender: each wc is at least 1, 000 bits
(note, however, that these extra values are not needed until after a successful path has
been found). This extra storage requirement might discourage a user from embracing
the scheme. We address this next.

Storage-Optimized Compressed RSA. We optimize storage with the following storage /
communication / computation tradeoff: Think of T as an a× b matrix where a · b = |T |;
the amount of extra communication will be a elements of T . The amount of extra storage
required by the sender will be b signatures.

At a high level, given a path using values T [c1], T [c2], . . . , T [c�], values in the same
row of T will be verified together as in the compressed RSA scheme. The communication
costs will therefore be at most a elements, one per row of T . However, as we will see
below, there is no need to store the wc’s explicitly. Instead, we can get away with storing
a relatively small number of signatures (one per column), from which it will be possible
to efficiently reconstruct the wc values as needed.

Instead of a single exponent e, both sending and receiving programs will contain a
(common) list of primes e1, e2, . . . ea. For 1 ≤ i ≤ a, ei is used for verifying elements of
row i of the table. Although we don’t need to store the wc values explicitly, for elements
vc appearing in row i we define wc = v

1/ei
c mod N .

The compressed RSA scheme is applied to the entries in each row independently. It
only remains to describe how the needed wc values are constructed on the fly.

The b “signatures”, one per column, used in the sending program are computed by
the creator as follows. For each column 1 ≤ j ≤ b, the value for column j is uj =∏a

i=1 wcji
mod N . Here, cji

is the index of the element T [i, j], when T is viewed as a
matrix rather than as an array (that is, assuming row-major order, cji = (i−1)a+j−1).
Thus, vcji

= T [(i− 1)a + j− 1] and wcji
= (vcji

)1/ei . As in Batch RSA [13], one can
efficiently extract any wcji

from uj using a few multiplications and exponentiations.

Set a = 16. The number of data bits in a column is 24 · 25 = 29. The number of
“signature bits” is 210 per column. Thus storage requirement just more than doubles,
rather than increasing by a factor of 5-10, at the cost of sending 16 elements of Z∗

N (i.e.,
2 KB).
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9 Concluding Remarks

We have continued the discussion, initiated in [3], of using memory-bound rather than
CPU-bound pricing functions for computational spam fighting. We considered and ana-
lyzed several potential approaches. Using insights gained in the analyses, we proposed a
different approach based on truly random, incompressible, functions, and obtained both
a rigorous analysis and experimental results supporting our approach.

From a theoretical perspective, however, the work is not complete. First, we have
the usual open question that arises whenever random oracles are employed: can a proof
of security (in our case, a lower bound on the average number of cache misses in a
path) be obtained without recourse to random oracles? Second, much more unusually,
can we prove security without cryptographic assumptions? Note that we did not make
cryptographic assumptions in our analysis.

One of the more interesting challenges suggested by this work is to apply results
from complexity theory in order to be able to make rigorous statements about proposed
schemes. One of the more promising directions in recent years is the work on lower
bounds for branching program and the RAM model by Ajtai s [4,5] and Beame et al [7].
It is not clear how to directly apply such results.

At first blush egalitarianism seems like a wonderful property in a pricing function.
However, on reflection it may not be so desirable. Since the approach is an economic
one it may be counterproductive to design functions that can be computed just as quickly
on extremely cheap processors as on supercomputers – after all, we are trying to force
the spammers to expend resources, and it is the volume of mail sent by the spammers
that should make their lives intolerable while the total computational effort expended
by ordinary senders remains benign. So perhaps less egalitarian is better, and users
with weak or slow machines, including PDAs and cell phones, could subscribe to a
service that does the necessary computation on their behalf. In any case, small-memory
machines cannot be supported, since the large caches are so very large, so in any real
implementation of computational spam fighting some kind of computation service must
be made available.
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