
Lower and Upper Bounds on Obtaining History
Independence

Niv Buchbinder and Erez Petrank�

Computer Science Department, Technion, Haifa, Israel,
{nivb,erez}@cs.technion.ac.il

Abstract. History independent data structures, presented by Miccian-
cio, are data structures that possess a strong security property: even if an
intruder manages to get a copy of the data structure, the memory layout
of the structure yields no additional information on the data structure
beyond its content. In particular, the history of operations applied on
the structure is not visible in its memory layout. Naor and Teague pro-
posed a stronger notion of history independence in which the intruder
may break into the system several times without being noticed and still
obtain no additional information from reading the memory layout of the
data structure.
An open question posed by Naor and Teague is whether these two
notions are equally hard to obtain. In this paper we provide a separation
between the two requirements for comparison based algorithms. We
show very strong lower bounds for obtaining the stronger notion of
history independence for a large class of data structures, including,
for example, the heap and the queue abstract data structures. We
also provide complementary upper bounds showing that the heap
abstract data structure may be made weakly history independent in the
comparison based model without incurring any additional (asymptotic)
cost on any of its operations. (A similar result is easy for the queue.)
Thus, we obtain the first separation between the two notions of history
independence. The gap we obtain is exponential: some operations
may be executed in logarithmic time (or even in constant time) with
the weaker definition, but require linear time with the stronger definition.

Keywords: History independent data-structures, Lower bounds, Pri-
vacy, The heap data-structure, The queue data-structure.

1 Introduction

1.1 History Independent Data Structures

Data structures tend to store unnecessary additional information as a side effect
of their implementation. Though this information cannot be retrieved via the
’legitimate’ interface of the data structure, it can sometimes be easily retrieved
by inspecting the actual memory representation of the data structure. Consider,
� This research was supported by the E. AND J. BISHOP RESEARCH FUND.

D. Boneh (Ed.): CRYPTO 2003, LNCS 2729, pp. 445–462, 2003.
c© International Association for Cryptologic Research 2003

446 N. Buchbinder and E. Petrank

for example, a simple linked list used to store a wedding guest-list. Using the
simple implementation, when a new invitee is added to the list, an appropriate
record is appended at the end of the list. It can be then rather discomforting
if the bride’s “best friend” inspects the wedding list, just to discover that she
was the last one to be added. History independent data structures, presented by
Micciancio [8], are meant to solve such headaches exactly. In general, if privacy is
an issue, then if some piece of information cannot be retrieved via the ’legitimate’
interface of a system, then it should not be retrievable even when there is full
access to the system. Informally, a data structure is called History independent if
it yields no information about the sequence of operations that have been applied
on it.

An abstract data structure is defined by a list of operations. Any operation
returns a result and the specification defines the results of sequence of operations.
We say that two sequences S1, S2 of operations yield the same content if for any
suffix T , the results returned by T operations on the data structure created by
S1 and on the data structure created by S2 are the same. For the heap data
structure the content of the data structure is the set of values stored inside it.

We assume that in some point an adversary gains control over the data struc-
ture. The adversary then tries to retrieve some information about the sequence
of operations applied on the data structure. The data structure is called History
independent if the adversary cannot retrieve any more information about the
sequence other than the information obtainable from the content itself.

Naor and Teague [10] strengthen this definition by allowing the adversary to
gain control more than once without being noted. In this case, one must demand
for any two sequences of operations and two lists of ’stop’ points in which the
adversary gain control of the data structure, if in all ’stop’ points, the content
of the data structure is the same (in both sequences), then the adversary cannot
gain information about the sequence of operations applied on the data structure
other than the information yielded by the content of the data structure in those
’stop’ points. For more formal definition of History independent data structure
see section 3.

An open question posed by Naor and Teague is whether the stronger notion
is harder to obtain than the weaker notion. Namely, is there a data structure
that has a weakly history independent implementation with some complexity of
operations, yet any implementation of this data structure that provides strong
history independence has a higher complexity.

1.2 The Heap

The heap is a fundamental data structure taught in basic computer science
courses and employed by various algorithms, most notably, sorting. As an ab-
stract structure, it implements four operations: build-heap, insert, remove-max
and increase-key. The basic implementations require a worst case time of O(n)

Lower and Upper Bounds on Obtaining History Independence 447

for the build-heap operation (on n input values), and O(log n) for the other three
operations1. The standard heap is sometimes called binary heap.

The heap is a useful data structure and is used in several important algo-
rithms. It is the heart of the Heap-Sort algorithm suggested by Williams [12].
Other applications of heap use it as a priority queue. Most notable among them
are some of the basic graph algorithms: Prim’s algorithm for finding Minimum
Spanning Tree [11] and Dijkstra’s algorithm for finding Single-Source Shortest
Paths [4].

1.3 This Work

In this paper we answer the open question of Naor and Teague in the affirmative
for the comparison based computation model. We start by providing strong and
general lower bounds for obtaining strong history independence. These lower
bounds are strong in the sense that some operations are shown to require linear
time. They are general in the sense that they apply to a large class of data
structures, including, for example, the heap and the queue data structures. The
strength of these lower bounds implies that strong data independence is either
very expensive to obtain, or must be implemented with algorithms that are not
comparison based.

To establish the complexity separation, we also provide an implementation of
a weakly history independent heap. A weakly history independent queue is easy
to construct and an adequate construction appears in [10]. Our result on the
heap is interesting in its own sake and constitutes a second contribution of this
paper. Our weakly history independent implementation of the heap requires no
asymptotic penalty on the complexity of the operations of the heap. The worst
case complexity of the build-heap operation is O(n). The worst case complexity
of the increase-key operation is O(log n). The expected time complexity of the
operations insert and extract-max is O(log n), where expectation is taken over
all possible random choices made by the implementation in a single operation.
This construction turned out to be non-trivial and it requires an understanding
of how uniformly chosen random heaps behave. To the best of our knowledge a
similar study has not appeared before.

The construction of the heap and the simple implementation of the queue are
within the comparison based model. Thus, we get a time complexity separation
between the weak and the strong notions of history independent data structure.
Our results for the heap and the queue appear in table 1. The lower bound
for the queue is satisfied for either the insert-first or the remove-last operations.
The upper bounds throughout this paper assume that operations on keys and
pointers may be done in constant time. If we use a more prudent approach and
consider the bit complexity of each comparison, our results are not substantially
affected. The lower bound on the queue was posed as an open question by Naor
and Teague.
1 The more advanced Fibonacci heaps obtain better amortized complexity and seem

difficult to be made History independent. We do not study Fibonacci heaps in this
paper.

448 N. Buchbinder and E. Petrank

Table 1. Lower and upper bounds for the heap and the queue

Operation Weak History Strong History
Independence Independence

heap:insert O(log n) Ω(n)
heap:increase-key O(log n) Ω(n)
heap:extract-max O(log n) No lower bound
heap:build-heap O(n) Ω(n log n)
queue: max {insert-first, remove-last} O(1) Ω(n)

1.4 Related Work

History independent data structures were first introduced by Micciancio [8] in
the context of incremental cryptography. Micciancio has shown how to obtain an
efficient History independent 2-3 tree. In [10] Naor and Teague have shown how
to implement a History independent hash table. They have also shown how to
obtain a history independent memory allocation. Naor and Teague note that all
known implementations of strongly independent data structures are canonical.
Namely, for each possible content there is only one possible memory layout. A
proof that this must be the case has been shown recently by [5] (and indepen-
dently proven by us). Andersson and Ottmann showed lower and upper bounds
on the implementation of unique dictionaries [1]. However, they considered a
data structure to be unique if for each content there is only one possible repre-
senting graph (with bounded degree) which is a weaker demand than canonical.
Thus, they also obtained weaker lower bounds for the operations of a dictionary.

There is a large body of literature trying to make data structures persis-
tent, i.e. to make it possible to reconstruct previous states of the data structure
from the current one [6]. Our goal is exactly the opposite, that no information
whatsoever can be deduced about the past.

There is considerable research on protecting memories. Oblivious RAM [9]
makes the address pattern of a program independent on the actual sequence. it
incurs a cost of poly log n. However, it does not provide history independence
since it assumes that the CPU stores some secret information; this is an inap-
propriate model for cases where the adversary gains complete control.

1.5 Organization

In section 2 we provide some notations to be used in the paper. In section 3 we
review the definitions of History independent data structures. In section 4 we
present the first lower bounds for strongly history independence data structures.
As a corollary we state lower bounds on some operations of the heap and queue
data structures. In section 5 we review basic operations of the heap. In Section
5.1 we present some basic properties of randomized heaps. In section 6 we show
how to obtain a weak history independent implementation of the heap data
structure with no asymptotic penalty on the complexity of the operations.

Lower and Upper Bounds on Obtaining History Independence 449

2 Preliminaries

Let us set the notation for discussing events and probability distributions. If
S is a probability distribution then x ∈ S denotes the operation of selecting
an element at random according to S. When the same notation is used with
a set S, it means that x is chosen uniformly at random among the elements
of the set S. The notation Pr [R1; R2; . . . ; Rk : E] refers to the probability of
event E after the random processes R1, . . . , Rk are performed in order. Similarly,
E [R1; R2; . . . ; Rk : v] denotes the expected value of v after the random processes
R1, . . . , Rk are performed in order.

3 History Independent Data Structures

In this section we present the definitions of History independent data structures.
An implementation of a data structure maps the sequence of operations to a
memory representation (i.e an assignment to the content of the memory). The
goal of a history independent implementation is to make this assignment depend
only on the content of the data structure and not on the path that led to this
content. (See also a motivation discussion in section 1.1 above).

An abstract data structure is defined by a list of operations. We say that
two sequences S1 and S2 of operations on an abstract data structure yield the
same content if for all suffixes T , the results returned by T when the prefix is
S1, are the same as the results returned when the prefix is S2. For the heap data
structure, its content is the set of values stored inside it.

Definition 1. A data structure implementation is history independent if any
two sequences S1 and S2 that yield the same content induce the same distribution
on the memory representation.

This definition [8] assumes that the data structure is compromised once. The idea
is that, when compromised, it “looks the same” no matter which sequence led
to the current content. After the structure is compromised, the user is expected
to note the event (e.g., his laptop was stolen) and the structure must be re-
randomized.

A stronger definition is suggested by Naor and Teague [10] for the case that
the data structure may be compromised several times without any action being
taken after each compromise. Here, we demand that the memory layout looks
the same at several points, denoted stop points no matter which sequences led
to the contents at these points. Namely, if at � stop points (break points) of
sequence σ the content of the data structure is C1, C2, . . . , C�, then no matter
which sequences led to these contents, the memory layout joint distribution at
these points must depend only on the contents C1, C2, . . . , C�. The formalization
follows.

Definition 2. Let S1 and S2 be sequences of operations and let P1 =
{i11, i

1
2, . . . i

1
l } and P2 = {i21, i

2
2, . . . i

2
l } be two list of points such that for all

450 N. Buchbinder and E. Petrank

b ∈ {1, 2} and 1 ≤ j ≤ l we have that 1 ≤ ibj ≤ |Sb| and the content of data
structure following the i1j prefix of S1 and the i2j prefix of S2 are identical. A
data structure implementation is strongly history independent if for any such se-
quences the distributions of the memory representations at the points of P1 and
the corresponding points of P2 are identical.

It is not hard to check that the standard implementation of operations on
heaps is not History independent even according to definition 1.

4 Lower Bounds for Strong History Independent Data
Structures

In this section we provide lower bounds on strong history independent data
structures in the comparison based model. Naor and Teague noted that all im-
plementations of strong history independent data structure were canonical. In
a canonical implementation, for each given content, there is only one possible
memory layout. It turns out that this observation may be generalized. Namely,
all implementations of (well-behaved) data structure that are strongly indepen-
dent, are also canonical. This was recently proven in [5] (and independently by
us). See section 4.1 below for more details. For completeness, we include the
proof in [2].

We use the above equivalence to prove lower bounds for canonical data struc-
tures. In subsection 4.2 below, we provide lower bounds on the complexity of
operations applied on a canonical data structures in the comparison based model.
We may then conclude that these lower bounds hold for strongly history inde-
pendent data structures in the comparison based model.

4.1 Strong History Independence Implies Canonical Representation

Canonical representation is implied by strongly history independent data struc-
tures for well-behaved data structures. We start by defining well-behaved data
structures, via the content graph of the structure. Let C be some possible con-
tent of an abstract data-structure. For each abstract data-structure we define its
content graph to be a graph with a vertex for each possible content C of the data
structure. There is a directed edge from a content C1 to a content C2 if there
is an operation OP with some parameters that can be applied on C1 to yields
the content C2. Notice that this graph may contain an infinite number of nodes
when the elements in the data-structure are not bounded. It is also possible that
some vertices have an unbounded degree. We say that a content C is reachable
there is a sequence of operations that may applied on the empty content and
yield C. For our purposes only reachable nodes are interesting. In the sequel,
when we refer to the content graph we mean the graph induced by all reachable
nodes.

We say that an abstract data structure is well-behaved if its content graph is
strongly connected. That is, for each two possible contents Ci, Cj , there exists

Lower and Upper Bounds on Obtaining History Independence 451

a finite sequence of operations that when applied on Ci yields the content Cj .
We may now phrase the equivalence between the strong history independent
definition and canonical representations. This lemma appears in [5] and was
proven independently by us. For completeness, we include the proof in the full
version [2]

Lemma 1. Any strongly history independent implementation of a well-behaved
data-structure is canonical, i.e., there is only one possible memory representation
for each possible content.

4.2 Lower Bounds on Comparison Based Data Structure
Implementation

We now proceed to lower bounds on implementations of canonical data struc-
tures. Our lower bounds are proven in the comparison based model. A comparison
based algorithm may only compare keys and store them in memory. That is, the
keys are treated by the algorithm as ’black boxes’. In particular, the algorithm
may not look at the inner structure of the keys, or separate a key into its compo-
nents. Other then that the algorithm may, of-course, save additional data such
as pointers, counters etc. Most of the generic data-structure implementations
are comparison based. An important data structure that is implemented in a
non-comparison-based manner is hashing, in which the value of the key is run
through the hash function to determine an index. Indeed, for hashing, strongly
efficient history independent implementations (which are canonical) exist and
the algorithms are not comparison based [10]. Recall that we call an implemen-
tation of data structure canonical if there is only one memory representation for
each possible content.

We assume that a data structure may store a set of keys whose size is un-
bounded k1, k2, . . . , ki, We also assume that there exists a total order on the
keys. We start with a general lower bound that applies to many data structures
(lemma 2 below). In particular, this lower bound applies to the heap. We will
later prove a more specific lemma (see lemma 3 below) that is valid for the queue,
and another specific lemma (lemma 4 below) for the operation build-heap of the
heap.

In our first lemma, we consider data structures whose content is the set of
keys stored in it. This means that the set of keys in the data structure completely
determines its output on any sequence of (legitimate) operations applied on the
data structure. Examples of such data structures are: a heap, a tree, a hash
table, and many others. However, a queue does not satisfy this property since
the output of operations on the queue data structure depends on the order in
which the keys were inserted into the structure.

Lemma 2. Let k1, k2, . . . be an infinite set of keys with a total order between
them. Let D be an abstract data structure whose content is the set of keys stored
inside it. Let I be any implementation of D that is comparison based and canon-
ical Then the following operations on D

452 N. Buchbinder and E. Petrank

– insert(D, v)
– extract(D, v)
– increase-key(D, v1, v2) (i.e. change the value from v1 to v2)

require time complexity

1. Ω(n) in worst case,
2. Ω(n) amortized time.

Remark 1. Property (ii) implies property (i). We separate them for clarity of
the representation.

Proof. We start with the first part of the lemma (worst case lower bound) for the
insert operation. For any n ∈ N, let k1 < k2 < . . . < kn+1 < kn+2 be n + 2 keys.
Consider any sequence of insert operations inserting n of these keys to D. Since
the implementation I is comparison based, and the content of the data structure
is the set of keys stored inside it, the keys must be stored in the data structure.
Since the implementation I is canonical, then for any such set of keys, the keys
must be stored in D in the same addresses regardless of the order in which they
were inserted into the data structure. Furthermore, since I is comparison based,
then the address of each key does not depend on its value, but only on its order
within the n keys in the data structure. Denote by d1 the address used to store
the smallest key, by d2 the address used to store the second key, and so forth,
with dn being the memory address of the largest key (If there is more than one
address used to store a key choose one arbitrarily). By a similar argument, any
set of n + 1 keys must be stored in the memory according to their order. Let
these addresses be d′

1, d′
2, . . . d′

n+1. Next, we ask how many of these addresses
are different. Let ∆ be the number of indices for which di �= d′

i for 1 ≤ i ≤ n.
Now we present a challenge to the data structure which cannot be imple-

mented efficiently by I. Consider the following sequences of operations applied
on an empty data-structure: S = insert(k2), insert(k3) . . . insert(kn+1). After this
sequence of operations ki must be located in location di−1 in the memory. We
claim that at this state either insert(kn+2) or insert(k1) must move at least half
of the keys from their current location to a different location. This must take at
least n/2 = Ω(n) steps.

If ∆ > n/2 then we concentrate on insert(kn+2). This operation must put
kn+2 in address d′

n+1 and must move all keys ki (2 ≤ i ≤ n + 1) from location
di−1 to location d′

i−1. There are ∆ ≥ n/2 locations satisfying di−1 �= d′
i−1 and

we are done. Otherwise, if ∆ ≤ n/2 then we focus on insert(k1). This insert must
locate k1 in address d′

1 and move all keys ki, 2 ≤ i ≤ k + 1 from location di−1
to location d′

i. For any i satisfying di−1 = d′
i−1, it holds that di−1 �= d′

i (since d′
i

must be different from d′
i−1). The number of such cases is n − ∆ ≥ n/2. Thus,

for more than n/2 of the keys we have that di �= d′
i+1, thus the algorithm must

move them, and we are done.
To show the second part of the lemma for insert, we extend this example to

hold for an amortized analysis as well. We need to show that for any integer
� ∈ N, there exists a sequence of � operations that require time complexity

Lower and Upper Bounds on Obtaining History Independence 453

Ω(n · �). We will actually show a sequence of � operations each requiring Ω(n)
steps. We start with a data structure containing the keys l+1, l+2, . . . , l+n+1.
Now, we repeat the above trick � times. Since there are at least � keys smaller
than the smallest key in the structure, the adversary can choose in each step
between entering a key larger than all the others or smaller than all the keys in
the data structure.

The proof for the extract operation is similar. We start with inserting n + 1
keys to the structure and then extract either the largest or the smallest, de-
pending on ∆. Extracting the largest key cause a relocation of all keys for which
d′

i �= di. Extracting the smallest key moves all the keys for which di = d′
i. One of

them must be larger than n/2. The second part of the lemma may be achieved
by inserting n + � keys to the data structure, and then run � steps, each step
extracting the smallest or largest value, whichever causes relocations to more
than half the values.

Finally, we look at increase-key. Consider an increase-key operation that in-
creases the smallest key to a value larger than all the keys in the structure. Since
the implementation is canonical this operation should move the smallest key to
the address dn and shift all other keys from di to di−1. Thus, n relocations are
due and a lower bound of n steps is obtained. To show the second part of the
lemma for increase-key we may repeat the same operation � times for any � ∈ N.

We remark that the above lemma is tight (up to constant factors). We can
implement a canonical data structure that keeps the keys in two arrays. The
n/2 smaller keys are sorted bottom up at the first array and the other n/2 keys
are sorted from top to bottom in the other array. Using this implementation,
inserting or extracting a key will always move at most half of the keys.

We now move to showing a lower bound on a canonical implementation of
the queue data structure. Note that lemma 2 does not hold for the queue data
structure since its content is not only the set of values inside it. Recall that a
queue has two operations: insert-first and remove-last.

Lemma 3. In any comparison based canonical implementation of a queue either
insert-first or remove-last work in Ω(n) worst time complexity. The amortized
complexity of the two operations is also Ω(n).

Proof. Let k1 < k2 < . . . < kn+1 be n + 1 keys. Consider the following two
sequences of operations applied both on an empty queue: S1 = insert-first(k1),
insert-first(k2) . . . insert-first(kn) and S2 = insert-first(k2), insert-first(k3) . . . insert-
first(kn+1). Since the implementation is comparison based it must store the keys
in the memory layout in order to be able to restore them. Also, since the imple-
mentation is comparison based, it cannot distinguish between the two sequences
and as the implementation is also canonical the location of each key in the mem-
ory depends only on its order in the sequence. Thus, the address (possibly more
than one address) of k1 in the memory layout after running the first sequence
must be the same as the address used to store k2 in the second sequence. In
general, the address used to store ki in the first sequence is the same as the
address used to store the key ki+1 in the second sequence. This means that after

454 N. Buchbinder and E. Petrank

running sequence S1, each of the keys k2, k3, . . . , kn must reside in a different
location than its location after running S2.

Consider now two more operations applied after S1: insert-first(kn+1), remove-
last (i.e., remove k1). The content of the data structure after these two operations
is the same as the content after running the sequence S2. Thus, their memory
representations must be the same. This means that n−1 keys (i.e k2, k3, . . . , kn)
must have changed their positions. Thus, either insert or remove-last operation
work in worst time complexity of Ω(n). This trick can be repeated l times show-
ing a series of insert and remove-last such that each pair must move Ω(n) keys
resulting in the lower bound on the amortized complexity.

Last, we prove a lower bound on the build-heap operation in a comparison
based implementation of the heap.
Lemma 4. For any comparison based canonical implementation of a heap the
operation build-heap must perform Ω(n log n) operations.

Proof. Similarly to sorting, we can view the operation of build-heap in terms
of a decision tree. Note that the input may contain any possible permutation
on the values k1, . . . , kn but the output is unique: it is the canonical heap with
k1, . . . , kn. The algorithm may be modified to behave in the following manner:
first, run all required comparisons between the keys (the comparisons can be
done adaptively), and then, based on the information obtained, rearrange the
input values to form the canonical heap. We show a lower bound on the number
of comparisons. Each comparison of keys separates the possible inputs to two
subsets: those that agree and those that disagree with the comparison made.
By the end of the comparisons, each of the n! possible inputs must be distin-
guishable from the other inputs. Otherwise, the algorithm will perform the same
rearrangement on two different inputs, resulting in two different heaps. Thinking
of the comparisons as a decision tree, we note that the tree must contain at least
n! leaves, each representing a set with a single possible input. This means that
the height of the decision tree must be Ω(log(n!)) = Ω(n log n) and we are done.

4.3 Translating the Lower Bounds to Strong History Independence

We can now translate the results of section 4.2 and state the following lemmas:

Lemma 5. Let D be a well behaved data structure for which its content is the
values stored inside it. Let I be any implementation of D which is comparison
based and strongly history independent. Then the following operations on D

– insert(D, v)
– extract(D, v)
– increase-key(D, v1, v2) (i.e. change the value from v1 to v2)

require time complexity

1. Ω(n) in worst case,
2. Ω(n) amortized time.

Lower and Upper Bounds on Obtaining History Independence 455

Proof. The lemma follows directly from lemma 2 and 1.

Corollary 1. For any strongly history independent comparison based implemen-
tation of the heap data structure, the operations insert and increase-key work in
Ω(n) amortized time complexity. The time complexity of the build-heap operation
is Ω(n log n).

Proof. The lower bounds on insert and increase-key follow from lemma 5. This
is true since the content of the heap data structure is the keys stored inside it
and the heap abstract data structure is well behaved. The lower bound on the
build-heap operation follows directly from lemma 4 and 1.

Lemma 6. For any strong history independent comparison based implementa-
tion of the queue data structure the worst time complexity of either insert-first or
remove-last is Ω(n). Their amortized complexity is Ω(n).

Proof. The lemma follows directly from lemma 3 and 1.

5 The Heap

In this section we review the basics of the heap data structure and set up the
notation to be used in the rest of this paper. A good way to view the heap, which
we adopt for the rest of this paper, is as an almost full binary tree condensed to
the left. Namely, for heaps of 2� − 1 elements (for some integer �), the heap is a
full tree, and for sizes that are not a power of two, the lowest level is not full, and
all leaves are at the left side of the tree. Each node in the tree contains a value.
The important property of the heap-tree is that for each node i in the tree, its
children contain values that are smaller or equal to the value at the node i. This
property ensures that the maximal value in the heap is always at the root. Trees
of this structure that satisfy the above property are denoted well-formed heaps.
We denote by parent(i) the parent of a node i and by vi the content of node i.
In a tree that represents a heap, it holds that for each node except for the root:

vparent(i) ≥ vi

We will assume that the heap contains distinct elements, v1, v2, . . . , vn. Pre-
vious work (see [10]) justified using distinct values by adding some total ordering
to break ties. In general, the values in the heap are associated with some addi-
tional data and that additional data may be used to break ties. The nodes of
the heap will be numbered by the integers {1, 2, . . . , n}, where 1 is the root 2 is
the left child of the root 3 is the right child of the root etc. In general the left
child of node i is node 2i, and the right child is node number 2i + 1. We denote
the number of nodes in the heap H by size(H) and its height by height(H).

We will denote the rightmost leaf in the lowest level the last leaf. The position
next to the last leaf, where the next leaf would have been had there been another
value, is called the first vacant place. These terms are depicted in figure 1. Given

456 N. Buchbinder and E. Petrank

Heap Heigh

Path to the last leaf
(in bold)

Last leaf First Vacant place

Fig. 1. The height of this heap is 4. The path to the last leaf is drawn in bold. In this
example, the path to the first vacant place is the same except for the last edge.

a heap H and a node i in the heap, we use Hi to denote the sub-heap (or sub-
tree) containing the node i and all its descendants. Furthermore, the sub-heap
rooted by the left child of i is denoted Hi

L and the sub-heap rooted by the right
child is denoted Hi

R The standard implementation of a heap is described in [3].

5.1 Uniform Heaps and Basic Machinery

In this section we investigate some properties of randomized heaps and present
the basic machinery required for making heaps History independent. One of the
properties we prove in this section is that the following distributions are equal
on any given n distinct values v1, . . . , vn.

Distribution Ω1: Pick uniformly at random a heap among all possible heaps
with values v1, . . . , vn.

Distribution Ω2: Pick uniformly at random a permutation on the values
v1, . . . , vn. Place the values in an (almost) full tree according to their or-
der in the permutation. Invoke build-heap on the tree.

Note that the shape of a size n heap does not depend on the values contained
in the heap. It is always the (almost) full tree with n vertices. The distributions
above consider the placement of the n values in this tree.

In order to investigate the above distributions, we start by presenting a pro-
cedure that inverts the build-heap operation (see [3] and [2] for the definition of
build-heap). Since build-heap is a many-to-one function, the inverse of a given
heap is not unique. We would like to devise a randomized inverting procedure
build-heap−1(H) that gets a heap H of size n as input and outputs a uniformly
chosen inverse of H under the function build-heap. Such an inverse is a permu-
tation π of the values v1, . . . , vn satisfying build-heap(vπ(1), . . . , vπ(n)) = H. It
turns out that a good understanding of the procedure build-heap−1 is useful both
for analyzing History independent heaps and also for the actual construction of
its operations.

Recall that the procedure build-heap invokes the procedure heapify repeatedly
in a bottom-up order on all vertices in the heap. The inverse procedure build-
heap−1 invokes a randomized procedure heapify−1 on all vertices in the heap in
a top-bottom order, i.e., from the roots to the leaves. We begin by defining the

Lower and Upper Bounds on Obtaining History Independence 457

1

7

48 5

10

263

9 10

1

7

48

2

9

563

(a) (b)

Fig. 2. An example of invoking heapify−1(H, 10). Node number 10 is the node that
contains the value 2. In (b) we can see the output of invoking heapify−1 on the proper
heap in (a). The value 2 is put at the root, the path from the root to the father of 2 is
shifted down. Note that the two sub-trees in (b) are still well-formed heaps. Applying
Heapify on (b) will cause the value 2 at the root to float down back to its position in
the original H as in (a)

randomized procedure heapify−1. This procedure is a major player in most of
the constructions in this paper.

Recall that heapify gets a node and two well-formed heaps as sub-trees of this
node and it returns a unified well-formed heap by floating the value of the node
down always exchanging values with the larger child. The inverse procedure gets
a proper heap H. It returns a tree such that at the root node there is a random
value from the nodes in the heap and the two sub-trees of the root are well-
formed sub-heaps. The output tree satisfies the property that if we run heapify
on it, we get the heap H back. We make the random selection explicit and let
the procedure heapify−1 get as input both the input heap H and also the random
choice of an element to be placed at the root.

The operation of heapify−1 on input (H, i) is as follows. The value vi of the
node i in H is put in the root and the values in all the path from the root to
node i are shifted down so as to fill the vacant node i and make room for the
value v at the root. The resulting tree is returned as the output. Let us first
check that the result is fine syntactically, i.e., that the two sub-trees of the root
are well-formed heaps. We need to check that for any node, but the root, the
values of its children are smaller or equal to its own value. For all vertices that
are not on the shifted path this property is guaranteed by the fact that the tree
was a heap before the shift. Next, looking at the last (lower) node in the path,
the value that was shifted into node i is the value that was held in its parent.
This value is at least as large as v and thus at least as large as the values at the
children of node i. Finally, consider all other nodes on this path. One of their
children is a vertex of the path, and was their child before the shift and cannot
contain a larger value. The other child was a grandchild in the original heap and
cannot contain a smaller value as well.

Claim. Let n be an integer and H be any heap of size n, then for any 1 ≤ i ≤ n,

heapify
(
heapify−1(H, i)

)
= H.

Proof. Proof omitted (the proof appears in [2]).

458 N. Buchbinder and E. Petrank

procedure build-heap−1(H : Heap) : Tree
begin
1. if (size(H) = 1) then return(H)
2. Choose a node i uniformly at random among the nodes in the heap H.
3. H ← heapify−1(H, i)
4. Return TREE(root(H), build-heap−1(HL), build-heap−1(HR))
end

Fig. 3. The procedure build-heap−1(H)

An example of invoking heapify−1(H, i) is depicted in figure 2. The complexity
of heapify−1(H, i) is linear in the difference between the height of node i and the
height of the input heap (or sub-heap), since this is the length of the shifted
path. Namely, the complexity of heapify−1(H, i) is O(height(H) − height(i)).

Using heapify−1(H, i) we now describe the procedure build-heap−1(H), a ran-
domized algorithm for inverting the build-heap procedure. The output of the
algorithm is a permutation of the heap values in the same (almost) full binary
tree T underlying the given heap H. The procedure build-heap−1 is given in
Figure 3. In this procedure we denote by TREE(root, TL, TR) the tree obtained
by using node “root” as the root and assigning the tree TL as its left child and
the tree TR as its right child. The procedure build-heap−1 is recursive. It uses a
pre-order traversal in which the root is visited first (and heapify−1 is invoked)
and then the left and right sub-heaps are inverted by applying build-heap−1

recursively.

Claim. For any heap H and for any random choices of the procedure build-
heap−1,

build-heap
(
build-heap−1(H)

)
= H

Proof Sketch: The claim follows from the fact that for any i and a heap H,
heapify

(
heapify−1(H, i)

)
= H, and from the fact that the traversal order is

reversed. The heapify operations cancel one by one the heapify−1 operations
performed on H in the reversed order and the same heap H is built back from
the leaves to the root. ��

In what follows, it will sometimes be convenient to make an explicit notation
of the randomness used by build-heap−1. In each invocation of the (recursive)
procedure, a node is chosen uniformly in the current sub-heap. The procedure
build-heap−1 can be thought of as a traversal of the graph from top to bottom,
level by level, visiting the nodes of each level one by one and for each traversed
node i, the procedure chooses uniformly at random a node xi in the sub-heap
Hi and invokes heapify−1(Hi, xi). Thus, the random choices of this algorithm
include a list of n choices (x1, . . . , xn) such that for each node i in the heap,
1 ≤ i ≤ n, the chosen node xi is in its sub-tree. The xi’s are independent of
the actual values in the heap. They are randomized choices of locations in the
heap. Note, for example, that for any leaf i it must hold that xi = i since there
is only one node in the sub-heap Hi. The vector (x1, . . . , xn) is called proper if

Lower and Upper Bounds on Obtaining History Independence 459

for all i, i ≤ i ≤ n, it holds that xi is a node in the heap Hi. We will sometimes
let the procedure build-heap−1(H) get its random choices explicitly in the input
and use the notation build-heap−1(H, (x1, . . . , xn)).

We are now ready to prove some basic lemmas regarding random heaps with
n distinct values. In the following lemmas we denote by Π(n) the set of all
permutations on the values v1, v2 . . . , vn.

Lemma 7. Each permutation π ∈ Π(n) has one and only one heap H
and a proper vector Xn = (x1, . . . , xn) such that (vπ(1), . . . , vπ(n)) =
build-heap−1(H, Xn).

Proof. Proof omitted (the proof appears in [2]).

Corollary 2. If H is picked up uniformly among all possible heaps with the same
content then T = build-heap−1(H) is a uniform distribution over all π ∈ Π(n).

Proof. As shown, for any permutation π in support(H), i.e., a permutation
that satisfies build-heap(vπ(1), . . . , vπ(n)) = H, there is a unique random vec-
tor (x1, . . . , xn), that creates the permutation. Each random (proper) vector has
the same probability. Thus, π is chosen uniformly among all permutation in
support(H). Since H is chosen uniformly among all heaps the corollary follows.

Lemma 8. Let n be an integer and v1, . . . , vn be a set of n distinct values. Then,
for heap H that contains the values v1, . . . , vn it holds that:

Pr
[
π ∈ Π(n) : build-heap(vπ(1), vπ(2), . . . , vπ(n)) = H

]
= p(H)

Where p(H) is a function depending only on n (the size of H). Furthermore,
p(H) = N(H)/|Π(n)| where N(H) can be defined recursively as follows:

N(H) =
{

1 if size(H) = 1
size(H) · N(HL) · N(HR) otherwise

Proof. For any H the probability that build-heap(vπ(1), vπ(2), . . . , vπ(n)) = H
is the probability that the permutation π belongs to support(H). According
to lemma 7 the size of support(H) is the same for any possible heap H. This
follows from the fact that any random vector (x1, x2, . . . , xn) result in different
permutation in support(H) and each permutation in support(H) has a vector
that yield it. The size of support(H) is exactly the number of possible random
(proper) vectors. This number can be formulated recursively as N(H) depending
only on the size of the heap. The probability for each heap now follows.

Corollary 3. The following distributions Ω1 and Ω2 are equal.

Distribution Ω1: Pick uniformly at random a heap among all possible heaps
with values v1, . . . , vn.

Distribution Ω2: Pick uniformly at random permutation π ∈ Π(n) and invoke
build-heap(vπ(1), vπ(2), . . . , vπ(n)).

Proof. As shown in lemma 8, distribution Ω2 gives all heaps containing the
values v1, . . . , vn the same probability. By definition, this is also the case in Ω1.

460 N. Buchbinder and E. Petrank

6 Building and Maintaining History Independent Heap

In this section we present our main theorem and provide some overview of the
proof. The full proof appears in [2].

Theorem 1. There exists a History independent implementation of the heap
data structure with the following time complexity. The worst case complexity
of the build-heap operation is O(n). The worst case complexity of the increase-
key operation is O(log n). The expected time complexity of the operations insert
and extract-max is O(log n), where expectation is taken over all possible random
choices made by the implementation.

Our goal is to provide an implementation of the operations build-heap, insert,
extract-max, and increase-key that maintains history independence without in-
curring an extra cost on their (asymptotic) time complexity. We obtain history
independence by preserving the uniformity of the heap. When we create a heap,
we create a uniform heap among all heaps on the given values. Later, each op-
eration on the heap assumes that the input heap is uniform and the operation
maintains the property that the output heap is still uniform for the new content.
Thus, whatever series of operation is used to create the heap with the current
content, the output heap is a uniform heap with the given content. This means
that the memory layout is history independent and the set of operations make
the heap History independent. The rest of the proof describes the implementa-
tion for each of the 4 operations. In what follows, we try to highlight the main
issues. The full implementation with proof of history independence and time
complexity analysis is given in [2].

The operation build-heap. This is the simplest since time complexity O(n) is
allowed. Given n input values, we permute them uniformly at random and run
the (non-oblivious) build-heap. Using the basic machinery from section 5.1, this
can be shown to yield a uniformly chosen heap on the input values.

The operation increase-key. Here we extend the operation to allow both increas-
ing and decreasing the given value. This extension is useful when implementing
the other the operations. To increase a key the standard implementation turns
out to work well, i.e., it maintains the uniformity of the distribution on the
current heap. To decrease a key, it is enough to use heapify. We show that the
scenario is appropriate for the procedure heapify and that uniformity is preserved.

6.1 The Operation Extract-Max

We start with a naive implementation of extract-max which we call extract-
max-try-1. This implementation has complexity O(n). Of-course, this is not an
acceptable complexity for the extract-max operation but this first construction
will be later modified to make the real History independent extract-Max. The
procedure extract-max-try-1 goes as follows. We run build-heap−1 on the heap H

Lower and Upper Bounds on Obtaining History Independence 461

procedure extract-max-try-1(H: Heap) : Heap
begin
1. Choose uniformly at random a proper randomization vector (x1, . . . , xn+1)

for the procedure build-heap−1.
2. T = build-heap−1(H, (x1, x2, . . . , xn+1))
3. Let T ′ be the tree obtained by removing the last node with value vi from T .
4. H’ = build-heap(T ′)
5. if vi is the maximum then return (H ′). Otherwise:
6. Modify the value at the root to vi.
7. H ′′ = heapify(H, 1) (i.e. apply heapify on the root)
8. Return (H ′′)
end

Fig. 4. The procedure extract-max-try-1

to get a uniform permutation π on the n + 1 values. Next, we remove the value
at the last leaf vπ(n+1). After this step we get a uniformly chosen permutation
of the n values excluding the one we have removed. Next, we run build-heap on
the n values to get a uniformly chosen heap among the heaps without vπ(n+1).
If vπ(n+1) is the maximal value then we are done. Otherwise, we continue by re-
placing the value at the root (the maximum) with the value vπ(n+1) and running
heapify on the resulting tree to ”float” the value vπ(n+1) down and get a well-
formed heap. We will show that this process results in a uniformly chosen heap
without the maximum value. The pseudo code of the naive extract-max-try-1
appears in figure 4.

The time consuming lines of the procedure extract-max-try-1 are lines 2,3,
and 4 in which we un-build the heap, remove the last leaf and then build it back
again. The next step is to note that many of the steps executed are redundant.
In particular, build-heap−1 runs heapify−1 on each node of the heap from top
to bottom. Later, after removing the last node, build-heap runs heapify on each
node of the heap from bottom to top. These operations cancel each other except
for the removed leaf that causes a distortion in the reversed operation. We first
claim that it is enough to run heapify−1 and heapify on the nodes that belong
to the path from the root to the last leaf. Proving this requires some care, but
the outcome is a procedure with time complexity O(log2 n), since heapify−1 and
heapify both requires logarithmic time and we need to run them on O(log n)
nodes.

By now, we have an implementation of extract-max requiring worst case time
O(log2 n). Our last step is to check exactly how the heap is modified by each
of these heapify−1 and heapify invocations. It turns out that we may save more
operations by running these only on vertices “that affect the identity of the last
leaf”. Identifying these vertices require some technical work, but it turns out
that their number equals the height of the vertex that is moved to the last leaf
by build-heap−1. Analysis of the expected height of this vertex in our scenario
gives a constant number. Thus, on average, we only need to perform heapify−1

462 N. Buchbinder and E. Petrank

and heapify on a constant number of vertices and we are done with operation
extract-Max. The details and proofs appear in [2].

6.2 The Operation Insert

Here, again, we start by providing a procedure insert-try-1 implementing the
operation insert with complexity O(n). Again, this allows a construction of a
simple and useful implementation that will be improved later. We first choose
the location i, 1 ≤ i ≤ n + 1 to which we insert the new value a. (The choice
i = n + 1 means no insertion.) We put the value a in the node i and remember
the value vi that was replaced at node i. This may yield a tree which is not a
well-formed heap because the value a may not “fit” the node i. Hence, we apply
increase-key-oblivious on the location i with the new value a. After the new value
a is properly placed in the heap, we run build-heap−1. We will show that this
yields a uniform permutation of the values (v1, v2, . . . , vi−1, a, vi+1, . . . , vn). Now,
we add the value vi at the end of this ordering, getting a uniform permutation on
the n + 1 values v1, v2, . . . , vn, a. Running build-heap on this order of the values
yields a random heap on the n + 1 values.

Then, we scrutinize this simple procedure to identify all redundant steps.
Indeed, we are able to obtain a modified procedure that runs in expected time
O(log n) and outputs the same distribution as this simple procedure. The details
and proofs appear in [2].

References

1. A. Andersson, T. Ottmann. Faster Uniquely Represented Dictionaries. Proc. 32nd
IEEE Sympos. Foundations of Computer Science, pages 642–649, 1991

2. Niv Buchbinder, Erez Petrank. Lower and Upper Bounds on Obtaining History
Independence http://www.cs.technion.ac.il/∼erez/publications.html

3. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press and McGraw-Hill Book Company, 6th edition, 1992.

4. E.W.Dijkstra A note on two problems in connexion with graphs. Numerische Math-
ematik, 1:269–271, 1959

5. J.D. Hartline, E.S. Hong, A.E. Mohr, W.R. Pentney, and E.C. Rocke. Character-
izing History independent Data Structures. ISAAC 2002 pp. 229–240, 2002.

6. J.R.Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures
persistent. Journal of Computer and System Sciences, 38(1):86–124, 1989.

7. R.W. Floyd. Algorithm 245 (TREESORT). Communications of the ACM, 7, 1964.
8. D. Micciancio. Oblivious data structures: Applications to cryptography. In Proc.

29th ACM Symp. on Theory of computing, pages 456–464, 1997.
9. O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious

rams. Journal of the ACM, 43(3):431–473, 1996.
10. M.Naor and V.Teague. Anti-persistence: History Independent Data Structures.

Proc. 33rd ACM Symp. on Theory of Computing, 2001.
11. R.C.Prim. Shortest connection networks and some generalizations. Bell System

Technical Journal, 36:1389–1401, 1957
12. J.W.J Williams Algorithm 232 (HEAPSORT). Communication of the ACM, 7:347–

348, 1964

	Introduction
	History Independent Data Structures
	The Heap
	This Work
	Related Work
	Organization

	Preliminaries
	History Independent Data Structures
	Lower Bounds for Strong History Independent Data Structures
	Strong History Independence Implies Canonical Representation
	Lower Bounds on Comparison Based Data Structure Implementation
	Translating the Lower Bounds to Strong History Independence

	The Heap
	Uniform Heaps and Basic Machinery

	Building and Maintaining History Independent Heap
	The Operation {sf Extract-Max}
	The Operation {sf Insert}

