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Abstract. In this paperwe introducea new algorithm for secondaryschool
timetabling,inspiredby theclassicalbipartitegraphedgecolouringalgorithmfor
basicclass-teachertimetabling. We give practicalmethodsfor generatinglarge
setsof meetingsthat canbe timetabledto run simultaneously, andfor building
actualtimetablesbasedon thesesets.We reportpromisingempiricalresultsfor
onereal-world instanceof theproblem.

1 Introduction
This paperis concernedwith the problemof constructingtimetablesfor secondary
schools,in whichgroupsof studentsmeetwith teachersin roomsat timeschosensothat
nostudentgroup,teacher, or roomattendstwo or moremeetingssimultaneously.

Onefundamentalrequirementseparatessecondaryschooltimetablingfrom univer-
sity timetabling: every studentis requiredto be in classduringevery teachingperiod.
This makesit infeasiblefor every studentto have an individual timetable;instead,the
studentsareplacedin groups,andit is thesegroupsthataretimetabled,not individual
students.

In secondaryschoolsknowntotheauthors,theprincipaltechniqueusedfor offering
studentssomechoiceis theelective. Supposethatthereare180studentsin oneyear(age
cohort),enoughto form six separateclassesof 30 studentseach.Late in theprevious
yearthestudentswouldbeoffereda list of subjectareas(e.g.French,German,Biology,
History, Economics,Business)andrequiredto selectexactly one. Dependingon their
responses,theschoolmanagementdecideshow many classesof eachtypetooffer. These
classesthenrunsimultaneouslythefollowing year.

Electivesgive rise to meetingscontainingmany resources.Our exampleelective
wouldcontainonestudentgroup,six teachers,andsix rooms,all constrainedto beused
atthesamesetof times.A student’sweekisfilled completely,with amixtureof compul-
sorysubjectsandelectives.ForMathematicsthestudentsaretypicallygroupedbyability,
andthisrequiresall theMathematicsclassesfor agivenyearto runsimultaneously, cre-
atingsomethingsimilar to anelectiveexceptthatall theclasseswithin it areMathemat-
ics. For theothercompulsorysubjectsthegroupsof studentswithin ayearmayoftenbe
timetabledindependently.

It isnotpossibleto preassignteachersto largeelectivemeetings,sincetheresulting
timetablingproblemwould be hopelesslyover-constrained.Only a few teacherslots
(typically in themostseniorclasses)arepreassigned;therestareassignedaspartof the



timetablingprocess,aftertimeshave beenassigned.Naturally, this teacherassignment
phasemustassignEnglishteacherstoEnglishclasses,EconomicsteacherstoEconomics
classes,etc.,soeachteacherslotmustrecordthecategoryof teacherit needs.Thesecat-
egoriesor teacher types arenotdisjoint: someteachersteachseveralsubjects,othersare
qualifiedto teachjunior subjectsbut notsenior,andsoon. Roomsmustbeassignedtoo,
andthey alsohavecategories:Sciencelaboratories,Musicstudios,ordinaryclassrooms,
andsoon.

Awayfromelectivesthemeetingsmaybemuchsmaller,thenaturalminimumbeing
a meetingcontainingthreeresources:onepreassignedstudentgroup,oneteacher, and
oneroom. Manualhigh schooltimetablingis usuallyaccomplishedby timetablingthe
largemeetingsfirst, thenfitting thesmallonesaroundthem.

Althoughsoft constraintsdoexist in thisproblem,concernedwith theevenspread
of classesthrough the week,not overloadingany teacheron any one day, etc., the
problemis dominatedby the basichard constraintsalreadydescribed:finding times
andqualifiedteacherswhich avoid clashesandthereforealsokeepeverystudentgroup
occupiedfor everytimeof theweek.

Earlier work on this problem [2, 4] hasbeensuccessfulin assigningtimes to
meetingsin sucha waythat,at eachtime,resourcesaresufficientto fill all theresource
slotsof meetingsscheduledfor thattime. Thiswouldbeacompletesolutionexceptfor
oneproblem.

The problem is the teacher constancy requirement, which statesthat, when a
meetingcontainsmultiple times,any teacherassignedto it mustattendfor all of those
times. We do not want,say, an Englishteacherslot to befilled by Smith for the first
two times,Jonesfor thenext three,andRobinsonfor the last time. Violationsof this
requirement,known assplit assignments, have oftenbeenunacceptablyfrequentwhen
solvingtheproblemusingthecitedearliermethods.Theproblemdoesnot arisewith
studentgroupslots,sincethey arepreassigned,andis usuallyconsideredunimportant
for roomslots,exceptwhentimesareadjacent.

If everymeetingcontainedthesamenumberof times,sayk, thenit wouldbeeasy
toachieveteacherconstancy. Replacethek timeslotsin eachmeetingwith justonetime
slot,solve theresultingproblem,thenduplicateeachmeetingk-fold. This is equivalent
to themethod,oftenusedin North Americanuniversities,of definingcertainpatterns
of timesin advance(e.g.Mondays9-10plusWednesdays9-10plusFridays9-10)and
requiringall meetingsto chooseonepatternratherthana setof times. Unfortunately,
in Australiansecondaryschools(andelsewhere)thenumberof timesin eachmeeting
dependsontheimportanceof thesubjectmatter. EnglishandMathematicseachrequire
6 timeslots;othersubjectsmayhave6,5,4,3,2,or 1timesloteach.The‘time patterns’
approachcannotbeapplied.

It is desirableto assigntimesto meetingsin sucha way that pairsof meetings
eitheroverlapcompletelyin timeor notatall. Wesaythattimetableswith thisproperty
have good time coherence [4]. Good time coherencewill minimize the numberof
pairsof clashingmeetings,andshouldminimize the forceswhich pushteachersinto
split assignments.

In thispaperwepresentanew algorithmfor constructingsecondaryschooltimeta-
bles. Inspiredby theclassicaledgecolouringalgorithmfor class-teachertimetabling,
but designedtohandlethegeneralproblem,thisnew algorithmtriestoscheduleasmany



meetingsaspossibleinto thefirst timein theweek,thenasmany of theremainingmeet-
ingsaspossibleinto thesecond,andsoon. Thisapproachseemsto becomparablewith
earlierwork in itsability to find suitabletimesfor all timeslots,but,unlikeearlierwork,
offersmuchbetterprospectsfor makinghighly time coherenttimetables,asSection2
will explain.

In addition to proposinga new methodof constructingtimetables,this paper
containsan initial empiricalstudywhich shows that the new methodis promisingin
practice.As thereaderwill find,thereareseveralpointswheredifferentmeanscouldbe
usedto achievethesameends,andweareonly at thebeginningof thetaskof exploring
thesealternatives.

Section2 introducesthe new algorithm,andSection3 explainshow we cantest
whethera set of meetingscan run simultaneously, beforeassigningresourcesto the
meetings.Sections4 and 5 explore the two main phasesof the algorithm in detail.
Section6presentsourresultssofar,andSection7containsourconclusionsandplansfor
furtherwork. A moredetailedexpositionof ourwork appearsin [1].

2 Generalizing the classical edge colouring algorithm
Our new algorithmis inspiredby the classicaledgecolouringalgorithmfor bipartite
graphs,attributedto König [9], andapparentlyfirst appliedto class-teachertimetabling
by Csima[6] (seealso[5, 7, 10]). Webegin with abrief recapitulationof thatalgorithm,
thenproceedto its generalization.

Theedgecolouringalgorithmapplieswheneachmeetingcontainsonepreassigned
teacher, onepreassignedstudentgroup,and any numberof time slots. Timesare to
be assignedto theseslotsso that no teacheror studentgrouphasa clash;this is the
only constraint.

Build a bipartitegraphby creatingoneleft-handnodefor eachteacher, oneright-
handnodefor eachstudentgroup,andoneedgefor eachtime slot. Eachtime slot lies
in ameetingcontainingoneteacherandonestudentgroup,andthecorrespondingedge
connectstheverticescorrespondingto thesetwo resources.For example,thegraph

Abel C1

Bell C2

Cox C3

correspondsto threeteachers(Abel, Bell, andCox) teachingthreestudentgroups(C1,
C2,andC3). Abel takesC1twice,andCoxtakesC3twice.

An edge colouring is an assignmentof colours,or equivalently integers1, 2, 3,
… to the edgesso that no two edgesadjacentto any vertex have the samecolour. If
we interpretthesecoloursastimes,thencolouringthe edgescorrespondsto finding a
timetable,andtheruleprohibitingtwoedgeswith thesamecolourfromtouchingany one
vertex isequivalentto thetimetablingrequirementthatnoresourceberequiredtoattend
two meetingsat thesametime.

Thereisanobviouslowerboundonthenumberof coloursneededtosolvethisprob-



lem: themaximumvertex degree.Edgecolouringtheoryprovesthatthisboundcanal-
waysbeachieved,byapolynomialtimealgorithmbasedonrepeatedlyfindingmaximum
matchings.For example,hereis ourexamplegraphwith amaximummatchingin bold:

Abel C1

Bell C2

Cox C3

Theseedgesareassignedthe first colour, which correspondswith assigningthe first
availabletime to thecorrespondingtime slots,thendeleted.Becausetheedgesform a
matching,no two of themareadjacent,sono teacheror studentgroupcanhavea clash
at this time. A new matchingis foundandthesecondcolourassignedto its edges,and
soon until no edgesareleft. For minimality it turnsout to benecessaryto restrictthe
matchingalgorithmat eachstepto theverticesof maximumdegreeandtheedgesand
verticesadjacentto them.

Edgecolouringisnotusedin practicaltimetablingbecauseit modelstoorestrictive
aversionof theproblem.In practice,meetingsmayhavemany morethantworesources,
andthe resourcesarenot necessarilypreassigned.Conversely, someof the time slots
may be preassigned.Thesegeneralizationsmake the problem NP-complete[3, 7].
Nevertheless,if weinterprettheedgecolouringalgorithmin timetablingtermsweobtain
aninterestingideafor analgorithmfor thegeneralproblem:

Timetableasmanymeetingsaspossibleinto thefirst timeof theweek,concen-
trating on thosemeetingsthat are hardestto timetable. Deletetheassigned
timeslots,deleteanymeetingsthat nowhaveno timeslots,andrepeaton the
secondtimeof theweek,thenthethird,andsoon.

Thisis thealgorithmwestudyin thispaper.
To seewhy this algorithm is likely to deliver the time-coherencepromisedin

Section1,considerthesetof meetingschosenduringthefirststeptooccupy thefirst time
of theweek. If all of thesemeetingscontainmorethanonetimeslot,thisexactsameset
of meetingsmaybere-usedfor thesecondtime. In generalwecannotexpectthatall of
themeetingschosenwill haveexactlythesamenumberof timeslots,but byencouraging
thealgorithmto choosesetsof meetingswith asimilarnumberof timeslots,andtaking
careoverwhatto dowith leftoverfragmentsof longermeetings,it shouldbepossibleto
produceaverytime-coherenttimetable.

Clearly, thesuccessof this algorithmwill partly dependon whetherlargesetsof
meetingsableto run simultaneouslycanbe found. We have pursuedan approachin
whichall suchsetsarecomputedin aninitial phase,andthisis thesubjectof Sections3
and4. After that,a secondphaseselectsa combinationof setsfrom thefirst phasethat
togethercoverall themeetings.Thisselectionphaseis thesubjectof Section5.



3 Testing sets of meetings for compatibility
Ourfirst taskis tofind anefficienttestwhichcantell uswhetheror notasetof meetings
S is compatible, thatis,whetheror not its meetingscanrunsimultaneously.

Meetingscontain time slots and resourceslots, which may be unconstrained,
somewhatconstrained,or completelyconstrained(i.e.preassigned).

Apart from a few preassignments,time slotsin schooltimetablingproblemsare
effectivelyunconstrained.Thereisoftenasoftconstraintthatthetimesof ameetingbe
spreadthroughtheweekin somedesirablepattern,but thisdoesnotaffectany meeting’s
ability to runatany particulartime.

Werestructurethemeetingsof S toensurethateachmeetingeithercontainsexactly
onepreassignedtimeslot,or elseit containsoneor moreunconstrainedtimeslots. We
dothisby repeatedlyfindingany preassignedtimeslot s which is not theonly timeslot
in its meetingm, creatinga new meetingcontainings asits only timeslotandcopiesof
all theresourceslotsof m, anddeletings from m. Wethenmergemeetingswhosetime
slotscontainthesamepreassignedtime;thereisnoneedto distinguishmeetingsthatare
constrainedto run simultaneously. Ignoringresourceconstraintsfor themoment,a set
of suchrestructuredmeetingsis compatibleif no two partsof whatwasoriginally one
meetingareinvolved,andthemeetings’timeslotsdonot includepreassignmentsto two
differenttimes. (Wedonotcurrentlyhaveacompleteimplementationof thispartof our
test,but thenumberof preassignedtimesin our datais sosmallthat it doesnot matter
for presentpurposes.)

Resourceconstraintsare the main problem. We needto determinewhetherthe
supplyof resourcesissufficienttofill all theresourceslotsof thesetof meetingsS. This
problemhasbeensolvedbefore[2]; webriefly recapitulatethatsolutionhere.

We assumethat all resourcesareavailable,unlessthe setof meetingscontainsa
preassignedtime(therecanbeatmostone),in whichcaseweleaveoutresourcesknown
to beunavailableat thattime.

In practicewe alwaysfind thateachresourceslot is constrainedindependentlyof
theothersto befilled by anelementof somefixedsubsetof theavailableresources:it
may requirean Englishteacher, or a Sciencelaboratory, andsoon. Preassignmentis
includedin thismodel: thefixedsubsetcontainsjustoneelement.

Build a bipartitegraphwhoseleft nodesareall the resourceslots in the set of
meetingsS,andwhoserightnodesareall theavailableresources.Connecteachslotnode
toeveryresourceabletofill thatslot(thesemayform anarbitrarysubsetof theavailable
resources).The meetingsare compatibleif a matchingexists which touchesevery
resourceslot,for thismatchingrepresentsanassignmentof resourcesto all theslots.

For example,supposewe are testingthreemeetingsfor compatibility: English,
History, and Geography. Consideringteachersalone,the bipartitegraphmight look
likethis:

English Abel

History Bell

Geography Cox



Thereareenoughteachers,thereis a qualified teacherfor every slot, but thereis no
matchingandthesemeetingsarenotcompatible.

Althoughour testfor compatibilityis reasonablyefficientasdescribed,wewill be
calling it thousandsof times,sowe have implementedsomeoptimizations.We check
that no two slotsarepreassignedwith the sameresource,and that for every defined
category (e.g.Englishteacher, Sciencelaboratory)thereareat leastasmany qualified
resourcesasresourceslots. Only if themeetingspassthesequick testsdo we take the
timeto build thebipartitegraphandcarryout thefull test.

It is also important for efficiency that we can take a known compatibleset of
meetingsfor whichamatchinghasbeencreatedandstored,aswell asthetotalsneeded
to implementourquicktests,andefficientlytestwhetheroneextrameetingcanbeadded
withoutlosingcompatibility. Thequicktestsjustaddtothetotalsthey keep;thestandard
bipartitealgorithmcanbuild on theexisting matching,doingonly therelatively small
amountof work neededto addin nodescorrespondingto the resourceslotsfrom the
extra meeting. We updatethematchingaswe addthe slots,makingfailed matchings
terminatefasterandleaving lesstoundo. Deletionof theextrameeting’snodesafterthe
test,if required,is alsoefficient.

4 Generating compatible sets of meetings
A compatiblesetof meetingscanbetimetabledat any timeduringtheweek,exceptin
therarecaseswhereit containsapreassignedtime. Becauseof this,wedecidedto try to
exhaustively generateall compatiblesetsof meetingsin aninitial phase,reasoningthat
wecouldselectfrom thiscollectionoverandoveragainto build thetimetable.

Findinglargecompatiblesetsof meetingsisanNP-hardproblemsimilartofinding
independentsetsin agraph.However,unlikeindependentsets,asetof meetingscanbe
pairwisecompatibleyetnot compatibleoverall.

Ouralgorithmfor generatingall compatiblesetsof meetingsisadynamicprogram-
mingalgorithmbasedonthematroidrecurrence

Every subset of a compatible set of meetings is compatible.

We generateall compatiblesetsof meetingsof size(numberof meetings)1, thenall
compatiblesetsof meetingsof size2, etc. Our dynamicprogrammingtableholdsthe
setof all setsof compatiblemeetingsof sizei, structuredasa tree:

Sets stored Tree-structured table

{m1, m2, m3}
{m1, m2, m5}
{m1, m3, m5}
{m2, m3, m5}
{m2, m3, m6}

m3

m3

m5

m5
m2

m2

m5

m5

m3

m3
m1

m1

m5

m5

m6

m6
m3

m3

m2

m2

Whenextendinga set{mj1
, mj2

, … , mji
} to a largerset{mj1

, mj2
, … , mji

, mji+1
}, by our



recurrencewe only needto test for compatibility thosemeetingsmji+1
for which all

i-elementsubsetsof {mj1
, mj2

, … , mji
, mji+1

} arein the table(i.e.arecompatible),and

thetreestructurehelpsto find thesetof all suchmji+1
efficiently. Whenever a new set

is added,wedeleteall its propersubsets,ensuringthatonly maximalcompatiblesetsof
meetingsarein thetableat theend. See[1] for moredetails.

Despitecarefuloptimizationof spaceandtime,wehavefoundthatin practicethere
aretoomany maximalsetsof compatiblemeetingsfor ustobeabletocomputethemall,
sowe have beenforcedto leave out meetingswith threeor fewer resourceslots. Like
manualtimetablers,weplantopackthesesmallmeetingsaroundthelargeonesin afinal
phase(Section6).

5 Selecting compatible sets of meetings
At theendof thephasejustdescribed,wehaveatablecontainingall maximalcompatible
setsof meetings,excludingthesmallmeetingswhichwehadto leaveout. If thereareT
timesin theweek,wenow needto selectT of thesesets,ensuringthateachmeetingm
appearsin theselectedsetsasmany timesastherearetimeslotsin m. Repeatedselection
of thesamesetis allowed,andindeedpreferredsinceit leadsto timecoherence.

Thisisastandardsetcoveringproblemandmany methodsareavailablefor solving
it. Weuseatreesearchwith agreedyheuristic[8] for selectingthesetof meetingsto try
next. Welimit thebranchingfactoratdeeplevelsin thetree,anduseforwardchecksto
prunefutile subtrees.

Our greedyheuristicis to prefersetsof meetingswith largernumbersof resource
slots. Thenumberof meetingsin thesetis irrelevantat this stage:what mattersis to
utilize asmany resourcesaspossible.

Two optimizationswell known in setcoveringareimplemented.If a meetingm
appearsin only oneset,that set is selectedimmediately. And if every setcontaining
meetingm1 alsocontainsm2, we make surethatany setwe selectfor coveringm2 also
coversm1, sincewe must cover m1 eventuallyand at that time we will definitely be
coveringm2 aswell, by assumption.

Whenwe selecta set,we reduceby onethe numberof time slotsof eachof its
meetingsthatremainto beassigned.Whenthisnumberreaches0 for somemeetingm,
wedeletem from all remainingcompatiblesetsof meetings,andif thiscausesany setS
to becomea propersubsetof another, wedeleteS. Of course,if webacktrackwehave
to undothesechanges.Theseoperationsareexpensiveanddatastructuresto optimize
themarerequired,but they payoff in reducingtheamountof datahandledat thedeeper
levelsof the treewheremost time is spent,and in permittingforward checks,which
wouldotherwisenotbebasedoncurrentinformation.

Somevaluableforwardchecksareimplemented.If thereareM meetingsremaining
to be timetabledandT timesremainingto beused,thenoneof the remainingsetsof
meetingsmustcontainat least M/ T  meetings– if not, we backtrackimmediately.
Similarly, if the remainingresourceslotsof a particulartype (e.g.Sciencelaboratory
slots)totalS times’worthof thattypeof slot,andthereareT timesremainingtobeused,
thenoneof theremainingsetsof meetingsmustcontainat least S/ T  of thoseslots.



6 Results
We have testedour new algorithmon BGHS98,an instanceof the secondaryschool
timetablingproblemtaken without simplificationfrom a schoolin Sydney, Australia.
BGHS98contains40 times,150 resources(30 studentgroups,56 teachers,and 64
rooms),and208meetings.Thenumberof timeslotspermeetingvariesbetween1and
6,averagingjustunder3. Onaverage,weneedtoschedule15.4meetingsintoeachtime
slot,andthemeetingsin eachtime slot mustcontain102.6resourceson average.This
is considerablylessthanthe150resourcestotal,but somepartsof theresourceloadare
very tight, notablythestudentgroups(which mustattendat every time)andthescarce
Sciencelaboratories(whoseutilizationmustbevirtually 100%).

Our testswererunonstandardhardware. Whenweomittedmeetingswith threeor
fewer resourceslots,only 57of the208meetingsremained,but thesecontained75%of
theresourceslots. Findingall compatiblesetsof meetingsamongthe57largemeetings
took only a few seconds,althoughaddingjust a few of the omittedmeetingscaused
the programto fail to terminate(not surprisingly, sincethesesmallmeetingsscarcely
constraineachotherandsocombinein exponentiallymany ways). Findinga cover for
the57meetingsalsotook just a few seconds.All thepartsof our algorithmdescribed
in Section5contributedto thisefficiency, in thesensethatleavingany oneoutproduced
nousefulresultin any reasonabletime. For example,without backtrackingour greedy
heuristicwith forward checkingandoptimizationsproduceda timetablerequiring42
times,two morethanthenumberof timesavailable.

Assignmentof the remainingsmallmeetingsin a final phasewasnot aseasyas
wehadhopedit wouldbe. Many methodsareof coursepossibleat thisstage.Ourfirst
attempt,asimpleheuristicassignment,wasunsuccessful,andasubsequenthill-climber
madealmostno difference. So we tried meta-matching[2] and this assignedtimes
to all but five meetings.The leftoverswereSciencemeetingsunableto find Science
laboratoriesat thelimited timesthattheirstudentgroupresourceswereavailable.

7 Conclusion
Wehavepresentedanew algorithmfor constructingsecondaryschooltimetables,based
ontheclassicaledgecolouringalgorithmfor class-teachertimetabling.

Oursuccessin timetablingall but fivesmallmeetingsin a few secondsonstandard
hardwareis verypromising.However, this is work in progressandthereis still a lot of
work to do.

Weneedto domorework on theassignmentof smallmeetings.A moreelaborate
final phase,with a backtrackingelementfor example,might be sufficient. If not, we
will needto integratethesmallermeetingsinto themainassignmentphase,perhapsby
greedilyaugmentingtheselectedcompatiblesetswith compatiblesmallmeetings.This
would allow thesmallermeetingsto influencetheforwardcheckingandbacktracking,
andprovideanaturalwayto obtaintimecoherenceamongthesmallmeetings.

Thenwill comethetaskof evaluatingoursolutionsfor timecoherence,andtuning
ouralgorithmto enhanceit. Wemayneedto encouragetheselectionof compatiblesets
of meetingswith similar numbersof time slots. Finally, we will needto try out some
resourceassignmentalgorithmsandverify that improved time coherencereally does
leadto fewersplit assignments,asweexpect.
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