Managing Trust in Peer-to-Peer Systems Using
Reputation-Based Techniques

Beng Chin Ooi Chu Yee Liau Kian-Lee Tan

Department of Computer Science
National University of Singapore
3 Scinece Drive 2, Singapore 117543

Abstract. In this paper, we examine the issue of managing trust in peer-
to-peer systems. In particular, we focus on reputation-based schemes. We
look at some design considerations in implementing distributed reputation-
based systems, namely storage, integrity, metrics and changing of iden-
tity. We provide a survey of related work on the storage and integrity
issues, and present our solution to address these issues.

1 Introduction

The social impact of reputation on an individual or group is long known. Re-
search has shown that reputation plays a vital role in the decision of initiating
an interaction and the pricing of services. For example, [1] has shown that the
rating in eBay’s [2] feedback system does encourage transactions and in some
occasions making the item sold by a highly rated seller to be higher in price.

In electronic marketplaces, the reputation that a user has is the result of ag-
gregating all the impressions of the other users that interacted with the user in
the past. A reputation system is an effective way to facilitate the trust in a P2P
system. It collects and aggregates the feedback of participants’ past behaviors,
which is known as reputation, and publishes the reputations so that everyone
can view it freely. The reputation informs the participant about other’s ability
and disposition, and helps the participant to decide who to trust. Furthermore,
reputation system also encourages participant to be more trustworthy and dis-
courages those who are not from participating.

Existing reputation systems are those implemented in online store and auc-
tion site, such as eBay [2] and Amazon [3]. In eBay, after buying a collectible
in an auction, the buyer can go back to the site and rate the seller for prompt
shipping and whether the physical item actually matched the description in the
auction. The rating given by the buyer is recorded into the seller’s reputation
by the website. When the subsequent buyer wishes to make a purchase from the
seller, he can refer to seller’s reputation before he makes any decision. If the
reputation shows that the previous buyers were mostly well treated, then the
seller is honest and worth dealing with. With reputation schemes in place sellers
are highly motivated to offer the best possible service to every single buyer.

Existing work on peer-to-peer applications focuses on routing and discovery
[4,5], data exchange [6] and caching [7]. Trust has gained lesser attention despite

its importance. In this paper, we will examine the issue of managing trust in
peer-to-peer systems that are based on reputation. We will look at some design
considerations in implementing distributed reputation-based systems, namely
storage, integrity, metrics and changing of identity. We provide a survey of related
work on the storage and integrity issues, and present our initial effort to address
these issues.

The rest of this paper is organized as follows. In the next section, we discuss
the design considerations for distributed reputation-based systems. Section 3
surveys existing reputation-based systems in terms of their storage and integrity
issues. In Section 4, we present our solution to these two issues. Finally, we
conclude in Section 5.

2 Design Considerations

Although peer-to-peer systems have been extensively studied in the past few
years, the research on peer-to-peer reputation has been relatively small in num-
ber. Here, we provides an overview on the study of various peer-to-peer reputa-
tion systems. To begin with, we start with discussion of the design considerations
of reputation system for peer-to-peer.

1. Storage of the reputation information. The reputation has to be stored in
a distributed manner, but with high availability, especially in P2P systems
where peers can appear offline from time to time. Additionally, the reputa-
tion should be retrieved efficiently since it is used frequently.

2. Integrity of the reputation information. The integrity of the reputation in-
formation will dictate the usefulness of a reputation system. While in a cen-
tralized design, the integrity issue can be easily addressed, it is much more
challenging in a decentralized environment.

3. Reputation metrics. Reputation metrics provide the representation of a user’s
reputation. The complexity of the calculation of reputation metric will un-
dermine the performance of the whole system.

4. Changing of identity. In a peer-to-peer system, due to its decentralized na-
ture, changing of identity is extremely easy and usually zero-cost. This is
slightly different as compared to real-world where shifting of identity is usu-
ally more complicated, which often involve government or authority. A good
reputation system should prevent any incentive of changing identity.

3 Survey of Existing Peer-to-Peer Repuation-based
Systems

This section briefly reviews some of the existing P2P reputation systems, fo-
cusing particularly on the storage and integrity issues. We start by giving an
overview of the reputation systems.

3.1 Overview

Kevin A. Burton designed the OpenPrivacy Distributed Reputation System [8]
on P2P, which is derived from the distributed trust model. It proposed the con-
cept of reputation network, which is composed by identities (representing nodes)
and evaluation certificates (representing edges). Therefore, the trustworthiness
of the identities can be estimated from a visible sub-graph of the reputation
network.

P2PREP [9] is a reputation sharing protocol proposed for Gnutella, where
each peer keeps track and shares with others the reputation of their peers. Rep-
utation sharing is based on a distributed polling protocol. Service requesters can
assess the reliability by polling peers.

Karl Aberer and Zoran Despotovic [10] proposed a trust managing system
on the P2P system P-Grid [11] (Managing trust). It integrates the trust man-
agement and data management schemes to build a full-fledged P2P architecture
for information systems. The reputations in this system are expressed as com-
plaints; the more complaints a peer gets, the less trustworthy it could be. This
system assumes peers in the network to be honest normally. After each transac-
tion, and only if there is dissatisfaction, a peer will file a complaint about the
unhappy experience. To evaluate the reputation of a peer involves searching for
complaints about the peer.

Dietrich Fahrenholtz and Winfried Lamersdof [12] introduced a distributed
reputation management system (RMS). In RMS, reputation information is kept
by its owner, and public key cryptography is used to solve the integrity and
non-repudiation issues. During each transaction, a portal acts as a trusted third
party to resolve the possible disputation during the reputation update.

Kamvar et. al [13] proposed a reputation management system, EigenRep, for
P2P file sharing systems such as Gnutella to combat the spread of inauthentic
file. In their system, each peer is given a global reputation that reflects the
experiences of other peers with it.

3.2 Storage of Reputation Information

OpenPrivacy In OpenPrivacy, the reputation information is stored in a cer-
tificate. The system is similar in concept to web of trust [14]. A peer certifies
another peer through the use of certificate. Every certificate stores the value of
the target’s reputation and the confidence of the certificate creator. To prevent
tampering, each certificate is digitally signed with the private key of the certifi-
cate creator. These certificates are stored at the certificate creator as well as the
certification target.

P2PRep In P2PRep, every peer in the system stores their interaction experi-
ence with other peers (based on pseudonym). This reputation records are being
updated every time an interaction takes place. These reputation records can be
used by other peers to make decision when initializing an interaction. In this
case, before a peer consumes a service, the peer polls other peers about their

knowledge of the service provider. At the end of the interaction, the service con-
sumer updates the reputation of the provider and at the same time updates the
credibility of the peers that addressed opinion on the provider.

Managing Trust Managing Trust stores the complaints about a peers in the
P-Grid [11]. The underlying idea of the P-Grid approach is to create a virtual
binary search structure with replication that is distributed over the peers and
supports efficient search. The construction and the search/update operations can
be performed without any central control or global knowledge.

RMS RMS also stores the reputation information in a certificate. However,
RMS is different from OpenPrivacy in the implementation of the reputation
certificate. In RMS, there exists a trusted third party to record the transaction
history for the subscribers. The transaction history that the trusted party stored
is used by others to check the correctness of the certificate presented by a peer.

EigenRep In EigenRep, two types of value, local and global, are being stored in
the systems. The local value is stored in every peer and the global value, which
is derived from multiple local values, are being handled by random peers in a
distributed hash table (DHT) such as CAN [15] or Chord [4].

Discussion All of the aforementioned reputation systems use decentralized stor-
age for storing the reputation information. This is very important as centralized
storage for reputation information will limit the scalability of the P2P reputation
system in the long term and affect the performance for retrieving the reputation
information.

Efficient retrieval of reputation information minimizes the communication
overhead. For instance, to retrieve reputation for a peer in RMS or OpenPrivacy,
we need to issue only a query message to the peer since the certificate stores all
the reputation information of the peer. In FigenRep and Managing Trust, the
cost of retrieving reputation information is proportional to retrieving information
from DHT system and P-Grid respectively. However, the cost for P2PRep to
retrieve reputation information is proportional to the O(N) for the network with
N peers.

3.3 Integrity of Reputation Information

OpenPrivacy Integrity of the reputation information stored in OpenPrivacy is
preserved through the use of cryptography means. Every certificate is digitally
signed by the private key of the certificate creator. A peer needs the public key
of the certificate creator in order to verify the validity of the certificate and
the information stored within. If the content of the certificate is tampered, the
verification of the certificate will fail.

P2PRep The integrity of the reputation information is also being protected
with cryptography means. Unlike OpenPrivacy, the reputation is only being
encrypted and signed for the purpose of transmission. Since the reputation in-
formation is being stored at the rating peer and not the target peer, there is
very minimal risk that the target peer is able to change the reputation informa-
tion. However, the risk do exist when the reputation information traveled from
the sender to the requestor. Therefore the protocol defined in P2PRep provides
integrity (and confidentiality when needed). Before the reputation information
is transferred, it is being signed with the private key of the sender so that the
information will be intact while being transmitted.

Managing Trust In Managing Trust, the integrity of the complaints depend
on the behavior of peers in the network. In order to overcome this problem, the
system assumes the probability of the peers in the P-Grid storage system that
are malicious is 7. This value cannot be greater than a certain maximum, 7,44
Its storage infrastructure is configured in such a way that r replicas must satisfy
the condition 7] . < €, where 7] is the average probability of r replicas and

max max
€ the acceptable tolerance.

RMS In RMS, the integrity is preserved through the signature of the trusted
third party. The trusted third party could be implemented as a centralized server
or multiple servers. If it is implemented across multiple servers, there must be
trust between the servers.

EigenRep The integrity of the reputation information in FEigenRep also de-
pends on the trustworthiness of the peers that calculate and store the global
reputation value. However, the system reduces the possibility of malicious acts
through random selection of peers that calculate the global values and redun-
dancy in global value.

Discussion It seems that one of the most challenging issues of decentralized
reputation management system is the integrity of the reputation information. On
one hand, cryptography techniques that preserved the integrity of the reputation
information seems effective, it suffers from the overhead of verification. The
number of public keys needed to verify the reputation depend on the number
of certificates to be verified and for a large number of certificates, the cost of
retrieving the public keys can be very high. On the other hand, the integrity of
information on systems such as Managing Trust and EigenRep depends on the
storage infrastructure.

4 QOur Solution

We propose a P2P reputation scheme that aims at providing efficient retrieval of
reputation information and providing integrity of the information. In our scheme,

the reputation is maintained by the owner. This greatly simplifies the problem of
storing reputation information. In addition, the retrieval of the reputation infor-
mation can be done efficiently without any additional communication cost. By
having the owner to store the reputation information, there is the risk of infor-
mation integrity. To protect the integrity of the reputation, we have introduced
the notion of reputation certificate we termed RCert. At the same time we have
proposed protocols to facilitate the update of the reputation information.

4.1 Components

Public Key Infrastructure (PKI) PKI [16] is employed to provide secu-
rity properties which include confidentiality, integrity, authentication and non-
repudiation. All these are achieved through the use of symmetric and asymmetric
cryptography as well as digital signatures. We have omitted the confidentiality
requirement in our proposed scheme as our goal is not to provide communication
Secrecy among peers.

Entities There are two entities in the system. A peer that provides services
(service provider) and a peer that consumes services (service consumer). In P2P
system, a peer can act as a service provider as well as service consumer. This is
because in P2P there is no true distinction between server and client. Entities
in the network has a pair of public and private keys that represent its identity.
At the same time, the pair of keys is used in the digital signature process. We
assume there exists a mechanism that allows a peer to be located and contacted
given its identity. This can be achieved through the use of P2P systems such as
[4], that provide efficient lookup mechanisms.

Roles There are two different roles a peer plays. After a peer has finished
consuming a service provided by a peer, it takes up the role of a rater. The
peer that provides the services will be termed ratee. The rater is responsible for
evaluating the ratee based on the experience of the interaction with ratee. We
shall defer the protocol used in the rating process to section 4.2.

Reputation Certificates (RCert) RCert consists of two components: header
and RCertUnit. The information is updated by the service consumer each time
after a transaction has taken place. Every update is appended to the end of
RCert and is digitally signed by the ratee to prevent the owner from changing
the information. Figure 1 depicts the format of RCert.

RCert header gives information about its owner, such as owner’s identity
and owner’s public key. This information binds the RCert to its owner. Besides,
the header also includes information about RCert such as RCert’s current ID
and previous ID if this certificate is not the first created by the owner. With the
ID information, this allows the owner to create a new RCert but still provides
a pointer to previous RCert owned by the owner. When an RCert grows too

RCert

Rcert Reert
Heder nit1 unit2

Header
Owner ID | RCert Num

Owner Public Key

Reert Reert
UnitN-1 UnitN

RCert Unit

Time Stamp | Counter

Previous RCert Num

Rating

Other information ...

Rater ID

Signature of Rater

Fig. 1. Format of the RCert

big, the owner can create a new RCert and provides the reference to the old
RCert in the header. The old RCert can be stored locally in the system and
will only be sent to service requester which requested it. RCertUnit contains
the following entries:

— TimeStamp - issued by the owner right before a transaction is started. It is
digitally signed by the issuer and is used as a proof of transaction.

— Rating - this is the comment given by a peer that had the transaction with
the owner. It records the transaction experience of the rater with the owner.

— RaterID - this is the identity of the peer that created this rating (RCertUnit).

— Signature - the signature is created by the rater, using its private key, on
the entire RCert including the header for the integrity of the RCert.

4.2 The Protocol - RCertPX

The RCertPX protocol involves ten steps and is shown in figure 2. Assuming
a peer needs certain service from other peers. It first uses resource discovery
mechanism such as those mentioned in [17, 18] to locate service provider (step
1). All the peers that have the resources needed by the requesting peer send
their replies together with their Reputation certificates (RCert) (step 2). Upon
receiving the RCert, the requester needs to verify the validity of the RCert (step
3). This is done by checking the last RCert Unit in the RCert by contacting the
rater. If the rater returns a Last-TimeStamp that has not been revoked, the
RCert is valid (step 4). A Last-TimeStamp consists of three elements:

— TimeStamp issued by service provider
— Status of the TimeStamp (valid/revoked)
— RevokedPeer - identity of the party authorized the revoked

The Last-TimeStamp provides the validity of the RCert currently used by an
RCert owner. In the event where the last rater is not available (eg. offline),

Previous Raters
(Last-TimeStamp Cert Holders)

1. Request

2. RCert ~ §
_ 5. Acknowledgement §
- AS

Provider 6. TimeStamp Consumer
(Ratee)] o (Rater)
7. Transaction

8. Update of RCert

Fig. 2. RCertP Protocol

the requester can try to contact the preceding raters until there is one that
is available. In this case, the verification is done by checking on the Last-
TimeStamp in the following way. The TimeStamp information in the Last-
TimeStamp should match those on the RCertUnit created by the rater and since
the Last-TimeStamp has been revoked, the RevokedPeer in the Last-TimeStamp
must match the next rater specified in the RCert. This verification mechanism
provides more information about the transaction history of the RCert’s owner
and refrains a peer from using any of its old RCert.

After evaluating all the RCert, the requesting peer makes decision on which
peer to choose as service provider and sends an acknowledgement to the provider
(step 5). The acknowledgment is digitally signed with the requester’s private key
and it shall be used as a proof of transaction request.

This is followed by the sending of TimeStamp from the provider to the re-
quester (step 6). The TimeStamp is signed by the provider and in this protocol
it contains the time value on the provider machine and the transaction counter.
The requester will then verify the time and signature on the timestamp by us-
ing the public key of provider. We do not assume there exists a synchronized
time between requester and provider. However, there should be a way for the
requester to check the correctness of the time (e.g., the time should not be too
different from the time in requester system). The counter incorporated reflects
the latest information about the transaction sequence. For instance, if there have
been 20 transaction so far, the counter information in the TtmeStamp should
reflect 21 as its value.

Peers then start the transaction (step 7). Upon completion of the transac-
tion, the service requester starts to rate its service provider. The rater (service
requester) updates the RCert sent to it in step 2 by adding the timestamp from

step 6, followed by the rating based on the transaction experience. The rater
also added its ID. The rater completes the updates by hashing the content of
the certificate and digitally signs the hash with its private key. In addition, the
rater will perform two extra steps.

1. The rater needs to create and store the Last — TimeStamp and make it
available to others when needed.

2. If the rater is not the first one to rate the service provider, it needs to contact
the previous rater to ’revoke’ the piece of Last — TimeStamp store.

Next, the rater sends the updated certificate to the ratee (step 8). The rater
then issues a request to the preceding rater to revoke the timestamp stored there
by sending the latest timestamp sent to it by the ratee. To verify the request,
the preceding rater checks the timestamp.

— The time in timestamp must be more current than the one currently stored.

— The counter in the timestamp must be the next number to the one currently
stored.

— The timestamp must indeed sign by the ratee.

Once the preceding rater is convinced that the timestamp sends to it is cor-
rect, it revokes the timestamp information stored locally by creating a status
'revoke’ and place a digital signature on the revoked timestamp (step 9). Upon
receiving the acknowledgement that the preceding rater has revoked the times-
tamp on its side, the current rater sends the updated reputation certificate to
the ratee. The ratee should use the updated certificate for its next transaction.
Finally, the provider notifies the previous rater that it can remove its Last-
TimeStamp Certificate.

4.3 Analysis and Discussion

RCertPX provides the assurance that if an RCert is presented and the signature
is verified to be valid, it means that the content in the RCert has not been
changed by the owner. This is achieved through the use of digital signature on
the entire RCert. In addition, Last-TimeStamp used in the protocol provides
information about the validity of RCert. With the Last-TimeStamp, a requester
can verify the validity of the RCert by contacting previous rater. If the Last-
TimeStamp has not been revoked, it indicates that the RCert is up to date;
otherwise, the RCert is an old one, and might not be valid. This prevents the
provider from discarding the unsatisfied rating by reusing its old RCert.

Three parties are evolved in this protocol. They are the ratee, the current
rater and one of the the previous raters. In the following discussion, we show
that if anyone of them is malicious, the correctness of the RCert will not get
tampered.

In the case where ratee turns malicious, it will be able to send a blank RCert
to the user. Therefore, a blank RCert should be regarded as having very low
correctness. A malicious ratee will not be able to reuse its old RCert. This is

because the Last-TimeStamp introduced provides the mechanism to prevent this
from happening. When a ratee is using back the old RCert, during verification
of the RCert, its act will be exposed.

On the other hand, if the current rater acts maliciously, it can either refuse
to give a rating or give an invalid signature on the RCert. However, this will not
cause any problem at all. When the rater refuse to give any rating, the ratee
can present the acknowledgement sent by the rater during transaction confirmed
(step 5 of RCertPX) that the rater has indeed requested for the transaction.
In the event where rater purposefully gives an invalid signature on the RCert,
the ratee can present the acknowledgement to the previous rater to request
arbitration. Then the previous rater can require the current rater to present his
update again. If the current rater refuse to give the update, or present an invalid
one, the previous rater can cancel the revocation on its Last-TimeStamp. If the
current rater present a valid update, the previous rater will send it to the ratee.

When the previous rater acts maliciously, it can:

1. refuse to present the Last-TimeStamp
2. give a revoked Last-TimeStamp even if it has not been revoked

For case 1, if the current rater cannot get the Last-TimeStamp, it cannot
verify the validity of RCert. The same thing happens when the previous rater is
off-line for the moment. This is very common in the P2P networks. Our amend-
ment to this problem is to use a group of previous raters rather a single previous
rater. Each previous rater keeps a count number on the Last- TimeStamp, whose
initial value is the total number of previous raters. In each revocation of Last-
TimeStamp, the count number is reduced by 1. When the count number reaches
0, the Last- TimeStamp is revoked completely, and the rater leaves the previous
rater group automatically. Therefore, if the number of previous raters is N, the
last IV raters are all capable of verifying the validity of RCert. When the last
previous rater refuses to present the Last-TimeStamp, the current rater can
refer to the second last previous rater. If there are enough previous raters, there
is always a previous rater that can do the verification.

For case 2, to prevent the previous rater from giving a forged revoked Last-
TimeStamp, we require it to present a certificate by the revoker as well. If it
cannot show any evidence of the revocation, the current rater can regard the
Last-TimeStamp as a fresh one.

5 Conclusion

In this paper, we have look at how trust can be managed using reputation-based
systems. Besides looking at existing solution, we have also presented our solutions
to address the storage and integrity issues. In particular, we have proposed the
notion of RCert and the RCertPX protocol. Although RCertPX can prevent
tampering of the RCert, it cannot prevent malicious participants collude to
distort the reputation information. For example, if the ratee and current rater
collude, they might succeed to discard the latest ratings of the RCert. However,

with our mechanism, it is harder for the rater to achieve this as it will need to
collude with NV previous ratees at the same time. We are currently looking at
how to address this collusion issue.

References

1.
2.

3.
4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara. Reputation systems.
In Communications of the ACM, 2000.

eBay. ebay home page. http://www.ebay.com.

Amazon. Amazon home page. http://www.amazon.com.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for internet applications. In Proceedings of
the 2001 ACM SIGCOMM Conference, pages 149-160, 2001.

A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In Pro-
ceedings of the 22nd International Conference on Distributed Computing Systems,
pages 23-30, Vlenna, Austria, July 2002.

W. S. Ng, B. C. Ooi, K. L. Tan, and A. Zhou. PeerDB: A p2p-based system for
distributed data sharing. In Proceedings of the 19th International Conference on
Data Engineering, Bangalore, India, March 2003.

P. Kalnis, W.S. Ng, B.C. Ooi, D. Papadias, and K.L. Tan. An adaptive peer-to-peer
network for distributed caching of olap results. In ACM SIGMOD 2002, 2002.

K. A. Burton. Design of the openprivacy distributed reputation system.
http://www.peerfear.org/papers/openprivacy-reputation.pdf, May 2002.

. F. Cornelli, E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarati.

Choosing reputable servents in a p2p network. In Proceedings of the eleventh
international conference on World Wide Web, 2002.

K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer information system.
In Proceedings of the tenth international conference on Information and knowledge
management, 2002.

K. Aberer. P-grid: A self-organizing access structure for p2p information systems.
In Proc. of COOPIS, 2001.

D. Fahrenholtz and W. Lamersdorf. Transactional security for a distributed repu-
tation management system. 2002.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. Eigenrep: Repuation man-
agement in p2p networks. In Proceedings of the twelfth international conference on
World Wide Web, May 2003.

P. Zimmermann. Pretty good privacy user’s guide, volume i and ii. Distributed
with the PGP software, 1993.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content
addressable network. In Proceedings of the 2001 ACM SIGCOMM Conference,
2001.

PKI. Public-key infrastructure. http://www.ietf.org/html.charters/pkix-
charter.html.

Gnutella. The gnutella protocol specification v0.4, june 2001.
http://www.clip2.com/GnutellaProtocol04.pdf.

I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A distributed anonymous
information storage and retrieval system. In Proc. of the ICSI Workshop on Design
Issues in Anonymity and Unobservability, 2000.

