Skip to main content

Reducing Kernel Matrix Diagonal Dominance Using Semi-definite Programming

  • Conference paper
Learning Theory and Kernel Machines

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2777))

Abstract

Kernel-based learning methods revolve around the notion of a kernel or Gram matrix between data points. These square, symmetric, positive semi-definite matrices can informally be regarded as encoding pairwise similarity between all of the objects in a data-set. In this paper we propose an algorithm for manipulating the diagonal entries of a kernel matrix using semi-definite programming. Kernel matrix diagonal dominance reduction attempts to deal with the problem of learning with almost orthogonal features, a phenomenon commonplace in kernel matrices derived from string kernels or Gaussian kernels with small width parameter. We show how this task can be formulated as a semi-definite programming optimization problem that can be solved with readily available optimizers. Theoretically we provide an analysis using Rademacher based bounds to provide an alternative motivation for the 1-norm SVM motivated from kernel diagonal reduction. We assess the performance of the algorithm on standard data sets with encouraging results in terms of approximation and prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Schölkopf, B., Smola, A.: Learning With Kernels – Support Vector Machines, Regularization, Optimization and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  3. Herbrich, R.: Learning Kernel Classifiers. MIT Press, Cambridge (2002)

    Google Scholar 

  4. Kondor, R.I., Lafferty, J.: Diffusion Kernels on Graphs and Other Discrete Structures. In: Proceedings of Intenational Conference on Machine Learning (ICML 2002) (2002)

    Google Scholar 

  5. Lanckriet, G., Cristianini, N., Bartlett, P., El-Ghoui, L., Jordan, M.I.: Learning the Kernel Matrix using Semi-Definite Programming. In: International Conference on Machine Learning (ICML 2002) (2002)

    Google Scholar 

  6. Vanderberghe, L., Boyd, S.: Semidefinite programming. SIAM Review. A Publication of the Society for Industrial and Applied Mathematics, 49–95 (1996)

    Google Scholar 

  7. Saitoh, S.: Theory of Reproducing Kernels and its Applications. Longman Scientific & Technical (1988)

    Google Scholar 

  8. Todd, M.J.: Semidefinite Programming, Technical report: Cornell University (2000)

    Google Scholar 

  9. Haussler, D.: Convolutional Kernels on Discrete Structures. Technical Report: Computer Science Department, University of California at Santa Cruz (1999)

    Google Scholar 

  10. Watkins, C.: Dynamic Alignment Kernels. Advances in Large Margin Classifiers. MIT Press, Cambridge (2000)

    Google Scholar 

  11. Schölkopf, B., Weston, J., Eskin, E., Les lie, C., Noble, W.: A Kernel Approach for Learning from almost Orthogonal Patterns. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, p. 511. Springer, Heidelberg (2002)

    Google Scholar 

  12. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. JACM, 1115–1145 (1995)

    Google Scholar 

  13. Wolkowicz, H., Anjoz, M.F.: Semi-definite Programming for Discrete Optimisation and Matrix Completion Problems. Technical Report: University of Waterloo (2000)

    Google Scholar 

  14. Shawe-Taylor, J., Bartlett, P.L., Williamson, R.C., Anthony, M.: Structural Risk Minimization over Data-Dependent Hierarchies. IEEE Transactions on Information Theory (1998)

    Google Scholar 

  15. Shawe-Taylor, J., Cristianini, N.: Margin Distribution Bounds on Generalization. In: Fischer, P., Simon, H.U. (eds.) EuroCOLT 1999. LNCS (LNAI), vol. 1572, p. 263. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Kandola, J., Shawe-Taylor, J.: Spectral Clustering using Diagonally Reduced Gram Matrices. Submitted to Neural Information Processing Systems 16 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kandola, J., Graepel, T., Shawe-Taylor, J. (2003). Reducing Kernel Matrix Diagonal Dominance Using Semi-definite Programming. In: Schölkopf, B., Warmuth, M.K. (eds) Learning Theory and Kernel Machines. Lecture Notes in Computer Science(), vol 2777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45167-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45167-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40720-1

  • Online ISBN: 978-3-540-45167-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics