
ar
X

iv
:c

s/
03

06
03

6v
1

 [
cs

.A
I]

 7
 J

un
 2

00
3

Technical Report IDSIA-09-03

Sequence Prediction based

on Monotone Complexity∗

Marcus Hutter

IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland

marcus@idsia.ch http://www.idsia.ch/∼marcus

6 June 2003

Abstract

This paper studies sequence prediction based on the monotone Kolmogorov
complexity Km=−logm, i.e. based on universal deterministic/one-part MDL.
m is extremely close to Solomonoff’s prior M , the latter being an excellent
predictor in deterministic as well as probabilistic environments, where perfor-
mance is measured in terms of convergence of posteriors or losses. Despite this
closeness to M , it is difficult to assess the prediction quality of m, since little is
known about the closeness of their posteriors, which are the important quanti-
ties for prediction. We show that for deterministic computable environments,
the “posterior” and losses of m converge, but rapid convergence could only
be shown on-sequence; the off-sequence behavior is unclear. In probabilistic
environments, neither the posterior nor the losses converge, in general.

Keywords

Sequence prediction; Algorithmic Information Theory; Solomonoff’s prior;
Monotone Kolmogorov Complexity; Minimal Description Length; Conver-
gence; Self-Optimizingness.

∗This work was supported by SNF grant 2000-61847.00 to Jürgen Schmidhuber.

1

http://arxiv.org/abs/cs/0306036v1
http://www.idsia.ch/$^__sim !$marcus

2 Marcus Hutter, Technical Report IDSIA-09-03

1 Introduction

Complexity based sequence prediction. In this work we study the performance
of Occam’s razor based sequence predictors. Given a data sequence x1, x2, ..., xn−1

we want to predict (certain characteristics) of the next data item xn. Every xt is an
element of some domain X , for instance weather data or stock-market data at time
t, or the tth digit of π. Occam’s razor [LV97], appropriately interpreted, tells us to
search for the simplest explanation (model) of our data x1,...,xn−1 and to use this
model for predicting xn. Simplicity, or more precisely, effective complexity can be
measured by the length of the shortest program computing sequence x :=x1...xn−1.
This length is called the algorithmic information content of x, which we denote by
K̃(x). K̃ stands for one of the many variants of “Kolmogorov” complexity (plain,
prefix, monotone, ...) or for −log k̃(x) of universal distributions/measures k̃(x). For
simplicity we only consider binary alphabet X ={0,1} in this work.

The most well-studied complexity regarding its predictive properties is KM(x)=
−logM(x), where M(x) is Solomonoff’s universal prior [Sol64, Sol78]. Solomonoff
has shown that the posterior M(xt|x1...xt−1) rapidly converges to the true data
generating distribution. In [Hut01b, Hut02] it has been shown that M is also an
excellent predictor from a decision-theoretic point of view, where the goal is to
minimize loss. In any case, for prediction, the posterior M(xt|x1...xt−1), rather than
the prior M(x1:t), is the more important quantity.

Most complexities K̃ coincide within an additive logarithmic term, which implies
that their “priors” k̃=2−K̃ are close within polynomial accuracy. Some of them are
extremely close to each other. Many papers deal with the proximity of various
complexity measures [Lev73, Gác83, ...]. Closeness of two complexity measures is
regarded as indication that the quality of their prediction is similarly good [LV97,
p.334]. On the other hand, besides M , little is really known about the closeness of
“posteriors”, relevant for prediction.

Aim and conclusion. The main aim of this work is to study the predictive prop-
erties of complexity measures, other than KM . The monotone complexity Km is,
in a sense, closest to Solomonoff’s complexity KM . While KM is defined via a mix-
ture of infinitely many programs, the conceptually simpler Km approximates KM
by the contribution of the single shortest program. This is also closer to the spirit
of Occam’s razor. Km is a universal deterministic/one-part version of the popu-
lar Minimal Description Length (MDL) principle. We mainly concentrate on Km
because it has a direct interpretation as a universal deterministic/one-part MDL
predictor, and it is closest to the excellent performing KM , so we expect predictions
based on other K̃ not to be better.

The main conclusion we will draw is that closeness of priors does neither neces-
sarily imply closeness of posteriors, nor good performance from a decision-theoretic
perspective. It is far from obvious, whether Km is a good predictor in general, and
indeed we show that Km can fail (with probability strictly greater than zero) in the

Predictions based on Kolmogorov Complexity 3

presence of noise, as opposed to KM . We do not suggest that Km fails for sequences
occurring in practice. It is not implausible that (from a practical point of view) mi-
nor extra (apart from complexity) assumptions on the environment or loss function
are sufficient to prove good performance of Km. Some complexity measures like K,
fail completely for prediction.

Contents. Section 2 introduces notation and describes how prediction performance
is measured in terms of convergence of posteriors or losses. Section 3 summa-
rizes known predictive properties of Solomonoff’s prior M . Section 4 introduces
the monotone complexity Km and the prefix complexity K and describes how they
and other complexity measures can be used for prediction. In Section 4 we enumer-
ate and relate eight important properties, which general predictive functions may
posses or not: proximity to M , universality, monotonicity, being a semimeasure, the
chain rule, enumerability, convergence, and self-optimizingness. Some later needed
normalization issues are also discussed. Section 6 contains our main results. Mono-
tone complexity Km is analyzed quantitatively w.r.t. the eight predictive properties.
Qualitatively, for deterministic, computable environments, the posterior converges
and is self-optimizing, but rapid convergence could only be shown on-sequence; the
(for prediction equally important) off-sequence behavior is unclear. In probabilistic
environments, m neither converges, nor is it self-optimizing, in general. The proofs
are presented in Section 7. Section 8 contains an outlook and a list of open questions.

2 Notation and Setup

Strings and natural numbers. We write X ∗ for the set of finite strings over
binary alphabet X ={0,1}, and X∞ for the set of infinity sequences. We use letters
i,t,n for natural numbers, x,y,z for finite strings, ǫ for the empty string, l(x) for
the length of string x, and ω = x1:∞ for infinite sequences. We write xy for the
concatenation of string x with y. For a string of length n we write x1x2...xn with
xt∈X and further abbreviate x1:n :=x1x2...xn−1xn and x<n :=x1...xn−1. For a given
sequence x1:∞ we say that xt is on-sequence and x̄t 6=xt is off-sequence. x′

t may be
on- or off-sequence.

Prefix sets/codes. String x is called a (proper) prefix of y if there is a z(6=ǫ) such
that xz = y. We write x∗= y in this case, where ∗ is a wildcard for a string, and
similarly for infinite sequences. A set of strings is called prefix-free if no element is a
proper prefix of another. A prefix-free set P is also called a prefix-code. Prefix-codes
have the important property of satisfying Kraft’s inequality

∑
x∈P2

−l(x)≤1.

Asymptotic notation. We abbreviate limt→∞[f(t)−g(t)]=0 by f(t)
t→∞
−→ g(t) and

say f converges to g, without implying that limt→∞g(t) itself exists. We write

f(x)
×
≤g(x) for f(x)=O(g(x)) and f(x)

+
≤g(x) for f(x)≤g(x)+O(1). Corresponding

equalities can be defined similarly. They hold if the corresponding inequalities hold

4 Marcus Hutter, Technical Report IDSIA-09-03

in both directions.
∑∞

t=1a
2
t <∞ implies at

t→∞
−→ 0. We say that at converges fast or

rapidly to zero if
∑∞

t=1a
2
t ≤ c, where c is a constant of reasonable size; c= 100 is

reasonable, maybe even c=230, but c=2500 is not.1 The number of times for which
at deviates from 0 by more than ε is finite and bounded by c/ε2; no statement is
possible for which t these deviations occur. The cardinality of a set S is denoted by
|S| or #S.

(Semi)measures. We call ρ :X ∗→ [0,1] a (semi)measure iff
∑

xn∈Xρ(x1:n)
(<)
= ρ(x<n)

and ρ(ǫ)
(<)
= 1. ρ(x) is interpreted as the ρ-probability of sampling a sequence which

starts with x. The conditional probability (posterior)

ρ(xt|x<t) :=
ρ(x1:t)

ρ(x<t)
(1)

is the ρ-probability that a string x1...xt−1 is followed by (continued with) xt. We
call ρ deterministic if ∃ω :ρ(ω1:n)=1 ∀n. In this case we identify ρ with ω.

Convergent predictors. We assume that µ is “true”2 sequence generating mea-
sure, also called environment. If we know the generating process µ, and given past
data x<t we can predict the probability µ(xt|x<t) of the next data item xt. Usually
we do not know µ, but estimate it from x<t. Let ρ(xt|x<t) be an estimated prob-
ability3 of xt, given x<t. Closeness of ρ(xt|x<t) to µ(xt|x<t) is expected to lead to
“good” predictions:

Consider, for instance, a weather data sequence x1:n with xt=1 meaning rain and
xt=0 meaning sun at day t. Given x<t the probability of rain tomorrow is µ(1|x<t).
A weather forecaster may announce the probability of rain to be yt :=ρ(1|x<t), which
should be close to the true probability µ(1|x<t). To aim for

ρ(x′
t|x<t)

(fast)
−→ µ(x′

t|x<t) for t → ∞ (2)

seems reasonable. A sequence of random variables zt = zt(ω) (like zt = ρ(xt|x<t)−
µ(xt|x<t)) is said to converge to zero with µ-probability 1 (w.p.1) if the set {ω :

zt(ω)
t→∞
−→ 0} has µ-measure 1. zt is said to converge to zero in mean sum (i.m.s)

if
∑∞

t=1E[z
2
t]≤ c <∞, where E denotes µ-expectation. Convergence i.m.s. implies

convergence w.p.1 (rapid if c is of reasonable size).
Depending on the interpretation, a ρ satisfying (2) could be called consistent

or self-tuning [KV86]. One problem with using (2) as performance measure is that
closeness cannot be computed, since µ is unknown. Another disadvantage is that (2)
does not take into account the value of correct predictions or the severity of wrong
predictions.

Self-optimizing predictors. More practical and flexible is a decision-theoretic
approach, where performance is measured w.r.t. the true outcome sequence x1:n

1Environments of interest have reasonable complexity K, but 2K is not of reasonable size.
2Also called objective or aleatory probability or chance.
3Also called subjective or belief or epistemic probability.

Predictions based on Kolmogorov Complexity 5

by means of a loss function, for instance ℓxtyt := (xt−yt)
2, which does not involve

µ. More generally, let ℓxtyt ∈ [0,1]⊂ IR be the received loss when performing some
prediction/decision/action yt∈Y and xt∈X is the tth symbol of the sequence. Let
yΛt ∈Y be the prediction of a (causal) prediction scheme Λ. The true probability of
the next symbol being xt, given x<t, is µ(xt|x<t). The µ-expected loss (given x<t)
when Λ predicts the tth symbol is

lΛt (x<t) :=
∑

xt

µ(xt|x<t)ℓxtyΛt
.

The goal is to minimize the µ-expected loss. More generally, we define the Λρ

sequence prediction scheme

y
Λρ

t := argmin
yt∈Y

∑

xt

ρ(xt|x<t)ℓxtyt , (3)

which minimizes the ρ-expected loss. If µ is known, Λµ is obviously the best pre-

diction scheme in the sense of achieving minimal expected loss (l
Λµ

t ≤ lΛt for all Λ).
An important special case is the error-loss ℓxy=1−δxy with Y=X . In this case Λρ

predicts the yt which maximizes ρ(yt|x<t), and
∑

tE[l
Λρ

t] is the expected number of

prediction errors (where y
Λρ

t 6=xt). The natural decision-theoretic counterpart of (2)
is to aim for

l
Λρ

t (x<t)
(fast)
−→ l

Λµ

t (x<t) for t → ∞ (4)

what is called (without the fast supplement) self-optimizingness in control-theory
[KV86].

3 Predictive Properties of M =2
−KM

We define a prefix Turing machine T as a Turing machine with binary unidirectional
input and output tapes, and some bidirectional work tapes. We say T halts on input
p with output x and write “T (p)=x halts” if p is to the left of the input head and x
is to the left of the output head after T halts. The set of p on which T halts forms
a prefix-code. We call such codes p self-delimiting programs. We write T (p) = x∗
if T outputs a string starting with x; T need not to halt in this case. p is called
minimal if T (q) 6= x∗ for all proper prefixes of p. The set of all prefix Turing-
machines {T1,T2,...} can be effectively enumerated. There exists a universal prefix
Turing machine U which can simulate every Ti. A function is called computable
if there is a Turing machine, which computes it. A function is called enumerable
if it can be approximated from below. Let Mmsr

comp be the set of all computable
measures, Msemi

enum the set of all enumerable semimeasures, and Mdet be the set of
all deterministic measures (=̂X∞).4

4Msemi
enum is enumerable, but Mmsr

comp is not, and Mdet is uncountable.

6 Marcus Hutter, Technical Report IDSIA-09-03

Levin [ZL70, LV97] has shown the existence of an enumerable universal semimea-

sure M (M
×
≥ν ∀ν∈Msemi

enum). An explicit expression due to Solomonoff [Sol78] is

M(x) :=
∑

p:U(p)=x∗

2−l(p), KM(x) := − logM(x). (5)

The sum is over all (possibly non-halting) minimal programs p which output a string
starting with x. This definition is equivalent to the probability that U outputs a
string starting with x if provided with fair coin flips on the input tape. M can
be used to characterize randomness of individual sequences: A sequence x1:∞ is
(Martin-Löf) µ-random, iff ∃c :M(x1:n)≤ c ·µ(x1:n)∀n. For later comparison, we
summarize the (excellent) predictive properties of M [Sol78, Hut01a, Hut02] (the
numbering will become clearer later):

Theorem 1 (Properties of M=2−KM) Solomonoff’s prior M defined in (5) is a
(i) universal, (v) enumerable, (ii) monotone, (iii) semimeasure, which (vi) converges
to µ i.m.s., and (vii) is self-optimizing i.m.s. More quantitatively:

(vi)
∑∞

t=1E[
∑

x′
t
(M(x′

t|x<t)−µ(x′
t|x<t))

2]
+
≤ ln2·K(µ), which implies

M(x′
t|x<t)

t→∞
−→ µ(x′

t|x<t) i.m.s. for µ∈Mmsr
comp.

(vii)
∑∞

t=1E[(l
ΛM
t −l

Λµ

t)2]
+
≤ 2ln2·K(µ), which implies

lΛM
t

t→∞
−→ l

Λµ

t i.m.s. for µ∈Mmsr
comp,

where K(µ) is the length of the shortest program computing function µ.

4 Alternatives to Solomonoff’s Prior M

The goal of this work is to investigate whether some other quantities which are closely
related to M also lead to good predictors. The prefix Kolmogorov complexity K is
closely related to KM (K(x)=KM(x)+O(log l(x))). K(x) is defined as the length
of the shortest halting program on U with output x:

K(x) := min{l(p) : U(p) = x halts}, k(x) := 2−K(x). (6)

In Section 8 we briefly discuss that K completely fails for predictive purposes. More
promising is to approximate M(x)=

∑
p:U(p)=x∗2

−l(p) by the dominant contribution
in the sum, which is given by

m(x) := 2−Km(x) with Km(x) := min
p
{l(p) : U(p) = x∗}. (7)

Km is called monotone complexity and has been shown to be very close to KM
[Lev73, Gác83] (see also Theorem 5(o)). It is natural to call a sequence x1:∞ com-
putable if Km(x1:∞)<∞. KM , Km, and K are ordered in the following way:

0 ≤ K(x|l(x))
+
≤ KM(x) ≤ Km(x) ≤ K(x)

+
≤ l(x) + 2 log l(x). (8)

Predictions based on Kolmogorov Complexity 7

There are many complexity measures (prefix, Solomonoff, monotone, plain, process,
extension, ...) which we generically denote by K̃ ∈ {K,KM,Km,...} and their as-

sociated “predictive functions” k̃(x) := 2−K̃(x) ∈ {k,M,m,...}. This work is mainly
devoted to the study of m.

Note that k̃ is generally not a semimeasure, so we have to clarify what it means
to predict using k̃. One popular approach which is at the heart of the (one-part)
MDL principle is to predict the y which minimizes K̃(xy) (maximizes k̃(xy)), where
x are past given data: yMDL

t :=argminytK̃(x<tyt).
For complexity measures K̃, the conditional version K̃|(x|y) is often defined5 as

K̃(x), but where the underlying Turing machine U has additionally access to y. The

definition k̃|(x|y) :=2−K̃|(x|y) for the conditional predictive function k̃ seems natural,

but has the disadvantage that the crucial the chain rule (1) is violated. For K̃=K
and K̃=Km and most other versions of K̃, the chain rule is still satisfied approx-
imately (to logarithmic accuracy), but this is not sufficient to prove convergence
(2) or self-optimizingness (4). Therefore, we define k̃(xt|x<t):= k̃(x1:t)/k̃(x<t) in the
following, analogously to semimeasures ρ (like M). A potential disadvantage of this
definition is that k̃(xt|x<t) is not enumerable, whereas k̃|(xt|x<t) and k̃(x1:t) are.

We can now embed MDL predictions minimizing K̃ into our general framework:
MDL coincides with the Λk̃ predictor for the error-loss:

y
Λ
k̃

t = argmax
yt

k̃(yt|x<t) = argmax
yt

k̃(x<tyt) = argmin
yt

K̃(x<tyt) = yMDL
t (9)

In the first equality we inserted ℓxy = 1−δxy into (3). In the second equality we
used the chain rule (1). In both steps we dropped some in argmax ineffective addi-

tive/multiplicative terms independent of yt. In the third equality we used k̃=2−K̃ .
The last equality formalizes the one-part MDL principle: given x<t predict the yt∈X
which leads to the shortest code p. Hence, validity of (4) tells us something about
the validity of the MDL principle. (2) and (4) address what (good) predictionmeans.

5 General Predictive Functions

We have seen that there are predictors (actually the major one studied in this work)
Λρ, but where ρ(xt|x<t) is not (immediately) a semimeasure. Nothing prevents
us from replacing ρ in (3) by an arbitrary function b| : X

∗ → [0,∞), written as
b|(xt|x<t). We also define general functions b :X ∗ → [0,∞), written as b(x1:n) and

b(xt|x<t) :=
b(x1:t)
b(x<t)

, which may not coincide with b|(xt|x<t). Most terminology for
semimeasure ρ can and will be carried over to the case of general predictive functions
b and b|, but one has to be careful which properties and interpretations still hold:

Definition 2 (Properties of predictive functions) We call functions b,b| :
X ∗ → [0,∞) (conditional) predictive functions. They may possess some of the fol-
lowing properties:

5Usually written without index |.

8 Marcus Hutter, Technical Report IDSIA-09-03

o) Proximity: b(x) is “close” to the universal prior M(x)

i) Universality: b
×
≥M, i.e. ∀ν∈M∃c>0:b(x)≥c·ν(x)∀x.

ii) Monotonicity: b(x1:t)≤b(x<t) ∀t,x1:t

iii) Semimeasure:
∑

xt
b(x1:t)≤b(x<t) and b(ǫ)≤1

iv) Chain rule: b(x1:t)=b.(xt|x<t)b(x<t)

v) Enumerability: b is lower semi-computable

vi) Convergence: b.(x′
t|x<t)

t→∞
−→µ(x′

t|x<t) ∀µ∈M,x′
t∈X i.m.s. or w.p.1

vii) Self-optimizingness: lΛb.
t

t→∞
−→ l

Λµ

t i.m.s. or w.p.1

where b. refers to b or b|

The importance of the properties (i)−(iv) stems from the fact that they together
imply convergence (vi) and self-optimizingness (vii). Regarding proximity (o) we
left open what we mean by “close”. We also did not specify M but have in mind
all computable measures Mmsr

comp or enumerable semimeasures Msemi
enum, possibly re-

stricted to deterministic environments Mdet.

Theorem 3 (Predictive relations)

a) (iii)⇒ (ii): A semimeasure is monotone.

b) (i),(iii),(iv)⇒ (vi): The posterior b. as defined by the chain rule (iv) of a
universal semimeasure b converges to µ i.m.s. for all µ∈M.

c) (i),(iii),(v)⇒ (o): Every w.r.t. Msemi
enum universal enumerable semimeasure co-

incides with M within a multiplicative constant.

d) (vi) ⇒ (vii): Posterior convergence i.m.s./w.p.1 implies self-optimizingness
i.m.s./w.p.1.

Proof sketch. (a) follows trivially from dropping the sum in (ii), (b) and (c) are

Solomonoff’s major results [Sol78, LV97, Hut01a], (d) follows from 0≤ lΛb.
t −l

Λµ

t ≤∑
x′
t
|b.(x′

t|x<t)−µ(x′
t|x<t)|, since ℓ∈ [0,1] [Hut02, Th.4(ii)]. ✷

We will see that (i),(iii),(iv) are crucial for proving (vi),(vii).

Normalization. Let us consider a scaled b version bnorm(xt|x<t) :=c(x<t)b(xt|x<t),
where c > 0 is independent of xt. Such a scaling does not affect the prediction
scheme Λb (3), i.e. y

Λb
t =y

Λbnorm
t , which implies l

Λbnorm
t =lΛb

t . Convergence b(x′
t|x<t)→

µ(x′
t|x<t) implies

∑
x′
t
b(x′

t|x<t)→ 1 if µ is a measure, hence also bnorm(x
′
t|x<t)→

µ(x′
t|x<t) for6 c(x<t) := [

∑
x′
t
b(x′

t|x<t)]
−1. Speed of convergence may be affected by

normalization, either positively or negatively. Assuming the chain rule (1) for bnorm
we get

bnorm(x1:n) =
n∏

t=1

b(x1:t)∑
xt
b(x1:t)

= d(x<n)b(x1:n), d(x<n) :=
1

b(ǫ)

n∏

t=1

b(x<t)∑
xt
b(x1:t)

6Arbitrarily we define bnorm(xt|x<t)=
1

|X | if
∑

x′

t

b(x′
t|x<t)=0.

Predictions based on Kolmogorov Complexity 9

Whatever b we start with, bnorm is a measure, i.e. (iii) is satisfied with equality.
Convergence and self-optimizingness proofs are now eligible for bnorm, provided uni-
versality (i) can be proven for bnorm. If b is a semimeasure, then d ≥ 1, hence

Mnorm ≥M
×
≥Msemi

enum is universal and converges (vi) with same bound (Theorem
1(vi)) as for M . On the other hand d(x<n) may be unbounded for b=k and b=m,
so normalization does not help us in these cases for proving (vi). Normalization
transforms a universal non-semimeasure into a measure, which may no longer be
universal.

6 Predictive Properties of m=2
−Km

We can now state which predictive properties of m hold, and which not. In order not
to overload the reader, we first summarize the qualitative predictive properties of m
in Corollary 4, and subsequently present detailed quantitative results in Theorem 5,
followed by an item-by-item explanation and discussion. The proofs are deferred to
the next section.

Corollary 4 (Properties of m=2−Km) For b=m=2−Km, where Km is the mono-
tone Kolmogorov complexity (7), the following properties of Definition 2 are satis-
fied/violated: (o) For every µ∈Mmsr

comp and every µ-random sequence x1:∞, m(x1:n)
equals M(x1:n) within a multiplicative constant. m is (i) universal (w.r.t. M =
Mmsr

comp), (ii) monotone, and (v) enumerable, but is ¬(iii) not a semimeasure. m
satisfies (iv) the chain rule by definition for m.=m, but for m.=m| the chain rule
is only satisfied to logarithmic order. For m.=m, m (vi) converges and (vii) is self-
optimizing for deterministic µ∈Mmsr

comp∩Mdet, but in general not for probabilistic
µ∈Mmsr

comp\Mdet.

The lesson to learn is that although m is very close to M in the sense of (o) and m
dominates all computable measures µ, predictions based on m may nevertheless fail
(cf. Theorem 1).

Theorem 5 (Detailed properties of m=2−Km) For b = m = 2−Km, where
Km(x) := minp{l(p) : U(p) = x∗} is the monotone Kolmogorov complexity, the fol-
lowing properties of Definition 2 are satisfied / violated:

(o) ∀µ∈Mmsr
comp ∀µ-random ω ∃cω : Km(ω1:n)≤KM(ω1:n)+cω ∀n, [Lev73]

KM(x)≤Km(x)≤KM(x)+2 logKm(x)+O(1) ∀x. [ZL70, Th.3.4]

¬(o) ∀c : Km(x)−KM(x)≥c for infinitely many x. [Gác83]

(i) Km(x)
+
≤−log µ(x)+K(µ) if µ∈Mmsr

comp, [LV97, Th.4.5.4]

m
×
≥Mmsr

comp, but m 6
×
≥Msemi

enum (unlike M
×
≥Msemi

enum).

(ii) Km(xy)≥Km(x)∈IN 0, 0<m(xy)≤m(x)∈2−IN0 ≤1.

10 Marcus Hutter, Technical Report IDSIA-09-03

¬(iii) If x1:∞ is computable, then
∑

xt
m(x1:t) 6≤m(x<t) for almost all t,

If Km(x1:t)=o(t), then
∑

xt
m(x1:t) 6≤m(x<t) for most t.

(iv) 0<m(x|y) := m(yx)
m(y)

≤1.

¬(iv) if m|(x|y) :=2−minp{l(p):U(p,y)=x∗}, then ∃x,y :m(yx) 6=m|(x|y)·m(y),
Km(yx)=Km|(x|y)+Km(y)±O(log l(xy)).

(v) m is enumerable, i.e. lower semi-computable.

(vi)
∑n

t=1|1−m(xt|x<t)|≤
1
2
Km(x1:n), m(xt|x<t)

fast
−→1 for comp. x1:∞,

Indeed, m(xt|x<t) 6=1 at most Km(x1:∞) times,
∑n

t=1m(x̄t|x<t)≤2Km(x1:n), m(x̄t|x<t)
slow?
−→ 0 for computable x1:∞.

¬(vi) ∃µ∈Mmsr
comp\Mdet : m(norm)(xt|x<t) 6→µ(xt|x<t) ∀x1:∞

(vii) lΛm
t (x<t)

slow?
−→ lΛω

t :=argminytℓxtyt if ω≡x1:∞ is computable.

Λm=Λmnorm
, i.e. yΛm

t =y
Λmnorm
t and lΛm

t = l
Λmnorm
t .

¬(vii) ∀|Y|>2 ∃ℓ,µ : lΛm
t /l

Λµ

t =c>1 ∀t (c= 6
5
−ε possible).

∀ non-degenerate ℓ ∃U,µ : lΛm
t /l

Λµ

t 6
t→∞
−→1 with high probability.

Explanation and discussion. (o) The first line shows that m is close to M within

a multiplicative constant for nearly all strings in a very strong sense. supn
M(ω1:n)
m(ω1:n)

≤

2cω is finite for every ω which is random (in the sense of Martin-Löf) w.r.t. any
computable µ, but note that the constant cω depends on ω. Levin falsely conjectured
the result to be true for all ω, but could only prove it to hold within logarithmic
accuracy (second line).

¬(o) A later result by Gács, indeed, implies that Km−KM is unbounded (for
infinite alphabet it can even increase logarithmically).

(i) The first line can be interpreted as a “continuous” coding theorem for Km
and recursive µ. It implies (by exponentiation) that m dominates all computable
measures (second line). Unlike M it does not dominate all enumerable semimea-
sures. Dominance is a key feature for good predictors. From a practical point of
view the assumption that the true generating distribution µ is a proper measure
and computable seems not to be restrictive. The problem will be that m is not a
semimeasure.

(ii) The monotonicity property is obvious from the definition of Km and is the
origin of calling Km monotone complexity.

¬(iii) shows and quantifies how the crucial semimeasure property is violated for
m in an essential way, where almost all n means “all but finitely many,” and most n
means “all but an asymptotically vanishing fraction.”.

(iv) the chain rule can be satisfied by definition. With such a definition, m(x|y) is
strictly positive like M(x|y), but not necessarily strictly less than 1, unlike M(x|y).
Nevertheless it is bounded by 1 due to monotonicity of m, unlike for k.

Predictions based on Kolmogorov Complexity 11

¬(iv) If a conditional monotone complexity Km|=−logm| is defined similarly to
the conditional Kolmogorov complexity K|, then the chain rule is only valid within
logarithmic accuracy.

(v) m shares the obvious enumerability property with M .

(vi) (first line) shows that the on-sequence predictive properties of m for deter-
ministic computable environments are excellent. The predicted m-probability7 of
xt given x<t converges rapidly to 1 for reasonably simple/complex x1:∞. A similar
result holds for M . The stronger result (second line), that m(xt|x<t) deviates from
1 at most Km(x1:∞) times, does not hold for M . Note that perfect on-sequence
prediction could trivially be achieved by always predicting 1 (b.≡ 1). Since we do
not know the true outcome xt in advance, we need to predict m(x′

t|x<t) well for all
x′
t ∈X . m(|) also converges off-sequence for x̄t 6= xt (to zero as it should be), but

the bound (third line) is much weaker than the on-sequence bound (first line), so

rapid convergence cannot be concluded, unlike for M , where M(xt|x<t)
fast
−→1 implies

M(x̄t|x<t)
fast
−→0, since

∑
x′
t
M(x′

t|x<t)≤1. Consider an environment x1:∞ describable
in 500 bits, then bound (vi) line 2 does not exclude m(x̄t|x<t) from being 1 (maxi-
mally wrong) for all t=1..2500; with asymptotic convergence being of pure academic
interest.

¬(vi) The situation is provably worse in the probabilistic case. There are com-
putable measures µ for which neither m(xt|x<t) nor mnorm(xt|x<t) converge to
µ(xt|x<t) for any x1:∞.

(vii) Since (vi) implies (vii) by continuity, we have convergence of the instan-
taneous losses for computable environments x1:∞, but since we do not know the
speed of convergence off-sequence, we do not know how fast the losses converge to
optimum.

¬(vii) Non-convergence ¬(vi) does not necessarily imply that Λm is not self-
optimizing, since different predictive functions can lead to the same predictor Λ.
But it turns out that Λm is not self-optimizing even in Bernoulli environments µ
for particular losses ℓ (first line). A similar result holds for any non-degenerate loss
function (especially for the error-loss, cf. (9)), for specific choices of the universal
Turing-machine U (second line). Loss ℓ is defined to be non-degenerate iff

⋂
x∈X{ỹ :

ℓxỹ=minyℓxy}={}. Assume the contrary that a single action ỹ is optimal for every
outcome x, i.e. that (argminy can be chosen such that) argminyℓxy = ỹ ∀x. This

implies y
Λρ

t = ỹ ∀ρ, which implies lΛm
t /l

Λµ

t ≡1. So the non-degeneracy assumption is
necessary (and sufficient).

7We say “probability” just for convenience, not forgetting that m(·|x<t) is not a proper
(semi)probability distribution.

12 Marcus Hutter, Technical Report IDSIA-09-03

7 Proof of Theorem 5

(o) The first two properties are due to Levin and are proven in [Lev73] and [ZL70,
Th.3.4], respectively. The third property is an easy corollary from Gács result
[Gác83], which says that if g is some monotone co-enumerable function for which

Km(x)−KM(x) ≤ g(l(x)) holds for all x, then g(n) must be
+
≥ K(n). Assume

Km(x)−KM(x)≥ log l(x) only for finitely many x only. Then there exists a c such

that Km(x)−KM(x)≤ log l(x)+c for all x. Gács’ theorem now implies log n+c
+
≥

K(n) ∀n, which is wrong due to Kraft’s inequality
∑

n2
−K(n)≤1.

(i) The first line is proven in [LV97, Th.4.5.4]. Exponentiating this result gives

m(x)≥ cµµ(x) ∀x,µ∈Mmsr
comp, i.e. m

×
≥Mmsr

comp. Exponentiation of ¬(o) gives m(x)≤

M(x)/l(x), which implies m(x) 6
×
≥M(x)∈Msemi

enum, i.e. m 6
×
≥Msemi

enum.

(ii) is obvious from the definition of Km and m.

¬(iii) Simple violation of the semimeasure property can be inferred indirectly from
(i),(iv),¬(vi) and Theorem 3b. To prove ¬(iii) we first note thatKm(x)<∞ for all fi-
nite strings x∈X ∗, which impliesm(x1:n)>0. Hence, whenever Km(x1:n)=Km(x<n),
we have

∑
xn
m(x1:n)>m(x1:n) =m(x<n), a violation of the semimeasure property.

¬(iii) now follows from #{t ≤ n :
∑

xt
m(x1:t) ≤ m(x<t)} ≤ #{t ≤ n : Km(x1:t) 6=

Km(x<t)} ≤
∑n

t=1Km(x1:t)−Km(x<t) = Km(x1:n), where we exploited (ii) in the
last inequality.

(iv) immediate from (ii).

¬(iv) (first line) follows from the fact that equality does not even hold within

an additive constant, i.e. Km(yx) 6
+
=Km(x|y)+Km(y). The proof of the latter is

similar to the one for K (see [LV97]). ¬(iv) (second line) follows within log from
Km=K+O(log) and K(yx)=K(x|y)+K(y)+O(log) [LV97].

(v) immediate from definition.

(vi) #{t ≤ n : m(xt|x<t) 6= 1} ≤
∑n

t=12|1−m(xt|x<t)| ≤ −
∑n

t=1logm(xt|x<t) =
−logm(x1:n)=Km(x1:n)<∞. In the first inequality we used m :=m(xt|x<t)∈2−IN0,
hence 1≤ 2|1−m| for m 6= 1. In the second inequality we used 1−m≤−1

2
logm,

valid for m∈ [0,1
2
]∪{1}. In the first equality we used (the log of) the chain rule n

times. For computable x1:∞ we have
∑∞

t=1|1−m(xt|x<t)| ≤
1
2
Km(x1:∞)<∞, which

implies m(xt|x<t)→0 (fast if Km(x1:∞) is of reasonable size). This shows the first
two lines of (vi). The last line is shown as follows: Fix a sequence x1:∞ and de-
fine Q := {x<tx̄t : t∈ IN, x̄t 6= xt}. Q is a prefix-free set of finite strings. For any
such Q and any semimeasure µ, one can show that

∑
x∈Qµ(x)≤ 1.8 Since M is a

8This follows from 1≥µ(A∪B)≥µ(A)+µ(B) if A∩B={}, Γx∩Γy={} if x not prefix of y and
y not prefix of x, where Γx :={ω :ω1:l(x)=x}, hence

∑
x∈Qµ(Γx)≤µ(

⋃
x∈QΓx)≤1, and noting that

µ(x) is actually an abbreviation for µ(Γx).

Predictions based on Kolmogorov Complexity 13

semimeasure lower bounded by m we get

n∑

t=1

m(x<tx̄t) ≤
∞∑

t=1

m(x<tx̄t) =
∑

x∈Q

m(x) ≤
∑

x∈Q

M(x) ≤ 1.

With this, and using monotonicity of m we get

n∑

t=1

m(x̄t|x<t) =
n∑

t=1

m(x<tx̄t)

m(x<t)
≤

n∑

t=1

m(x<tx̄t)

m(x1:n)
≤

1

m(x1:n)
= 2Km(x1:n)

Finally, for an infinite sum to be finite, its elements must converge to zero.

¬(vi) follows from the non-denseness of the range ofm(norm): We choose µ(1|x<t)=
3
8
,

hence µ(0|x<t) =
5
8
. Since m(xt|x<t) ∈ 2−IN0 = {1,1

2
,1
4
,1
8
,...}, we have |m(xt|x<t)−

µ(xt|x<t)|≥
1
8
∀t, ∀x1:∞. Similarly for

mnorm(xt|x<t) = m(xt|x<t)
m(0|x<t)+m(1|x<t)

∈ { 2−n

2−n+2−m : n,m∈IN 0} =

= { 1
1+2z

: z∈ZZ} = 1
1+2ZZ

= {..., 1
9
, 1
5
, 1
3
, 1
2
, 2
3
, 4
5
, 8
9
, ...}

we choose µ(1|x<t)=1−µ(0|x<t)=
5
12
, which implies |mnorm(xt|x<t)−µ(xt|x<t)|≥

1
12

∀t, ∀x1:∞.

(vii) The first line follows from (vi) and Theorem 3d. That normalization does not

affect the predictor, follows from the definition of y
Λρ

t (3) and the fact that argmin()
is not affected by scaling its argument.

¬(vii) Non-convergence of m does not necessarily imply non-convergence of the
losses. For instance, for Y = {0,1}, and ω′

t := 1/0 for µ(1|x<t)
>
<
γ := ℓ01−ℓ00

ℓ01−ℓ00+ℓ10−ℓ11
,

one can show that y
Λµ

t = y
Λω′

t , hence convergence of m(xt|x<t) to 0/1 and not to
µ(xt|x<t) could nevertheless lead to correct predictions.

Consider now y ∈ Y = {0,1,2}. To prove the first line of ¬(vii) we de-

fine a loss function such that y
Λµ

t 6= y
Λρ

t for any ρ with same range as mnorm

and for some µ. The loss function ℓx0 = x, ℓx1 = 3
8
, ℓx2 = 2

3
(1−x), and

µ := µ(1|x<t) = 2
5

will do. The ρ-expected loss under action y is lyρ :=
∑1

xt=0ρ(xt|x<t)ℓxty; l0ρ = ρ, l1ρ =
3
8
, l2ρ =

2
3
(1−ρ) with ρ := ρ(1|x<t) (see Figure).

✲
ρ

1✻
lyρ

1
♣♣ q q q

1
5

q

1
3

q

1
2

q

2
3

q

4
5

q q♣♣�
�
�
�
�
�
�

ℓ00=0

1=ℓ10

l0ρ

ℓ01= 3/8 3/8=ℓ11
l1ρ

◗
◗

◗
◗

◗
◗◗ℓ02= 2/3

0=ℓ12
l2ρ

1/3

2/5

2
5

Since l0µ= l2µ=
2
5
> 3

8
= l1µ, we have y

Λµ

t =1 and l
Λµ

t = l1µ=
3
8
.

For ρ≤ 1
3
, we have l0ρ < l1ρ < l2ρ, hence y

Λρ

t =0 and l
Λρ

t =

l0µ=
2
5
. For ρ≥ 1

2
, we have l2ρ <l1ρ<l0ρ, hence y

Λρ

t =2 and

l
Λρ

t = l2µ=
2
5
. Since mnorm 6∈ (1

3
,1
2
), Λmnorm

predicts 0 or 2,

hence lΛm
t = l0/2µ = 2

5
. Since Λmnorm

=Λm, this shows that

lΛm
t /l

Λµ

t = 16
15
>1. The constant 16

15
can be enlarged to 6

5
−ε

by setting ℓx1=
1
3
+ε instead of 3

8
.

For Y = {0,...,|Y|−1}, |Y| > 3, we extend the loss
function by defining ℓxy =1 ∀y≥ 3, ensuring that actions y≥ 2 are never favored.

14 Marcus Hutter, Technical Report IDSIA-09-03

With this extension, the analysis of the |Y|= 3 case applies, which finally shows

¬(vii). In general, a non-dense range of ρ(xt|x<t) implies l
Λρ

t 6→l
Λµ

t , provided |Y|≥3.
We now construct a monotone universal Turing machine U satisfying ¬(vii)

(second line). In case where ambiguities in the choice of y in argminyℓxy matter we
consider the set of solutions {argminyℓxy}:={ỹ :ℓxỹ=minyℓxy}6={}. We define a one-
to-one (onto A) decoding function d :{0,1}s→A with A={0s+1}∪1{0,1}s\1{0s}⊂
X s+1 as d(01:s) = 01:s+1 and d(x1:s) = 1x1:s for x1:s 6= 01:s with a large s ∈ IN to
be determined later. We extend d to d : ({0,1}s)∗ → A∗ by defining d(z1...zk) =
d(z1)...d(zk) for zi∈{0,1}s and define the inverse coding function c :A→{0,1}s and
its extension c :A∗→ ({0,1}s)∗ by c= d−1. Roughly, U is defined as U(1p1:sn01:s)=
d(p1:sn)01:s+1. More precisely, if the first bit of the binary input tape of U contains
1, U decodes the successive blocks of size s, but always withholds the output until
a block 01:s appears. U is obviously monotone. Universality will be guaranteed by
defining U(0p) appropriately, but for the moment we set U(0p)=ǫ. It is easy to see
that for x∈A∗ we have

Km(x0) = Km(x01:s+1) = l(c(x)) + s+ 1 and
Km(x1) = Km(x1z01:s+1) = l(c(x)) + 2s+ 1,

(10)

where z is any string of length s. Hence, mnorm(0|x) = [1 + 2−s]−1 s→∞
−→

1 and mnorm(1|x) = [1 + 2s]−1 s→∞
−→ 0. For t− 1 ∈ (s+1)IN we get lytm :=∑

xt
mnorm(xt|x<t)ℓxtyt

s→∞
−→ ℓ0yt . This implies

yΛm

t ∈ {argmin
yt

lytm} ⊆ {argmin
y

ℓ0y} for sufficiently large finite s. (11)

We now define µ(z)= |A|−1=2−s for z∈A and µ(z)=0 for z∈X s+1\A, extend it to
µ(z1...zk) :=µ(z1)·...·µ(zk) for zi∈X s+1, and finally extend it uniquely to a measure
on X ∗ by µ(x<t):=

∑
xt:n

µ(x1:n) for IN∋t≤n∈(s+1)IN . For x∈A∗ we have µ(0|x)=
µ(0) = µ(01:s+1) = 2−s s→∞

−→ 0 and µ(1|x) = µ(1) =
∑

y∈X sµ(1y) =
∑

z∈A\{0s+1}µ(z) =

(2s−1)·2−s=1−2−s s→∞
−→1. For t−1∈(s+1)IN we get lytµ :=

∑
xt
µ(xt|x<t)ℓxtyt

s→∞
−→ ℓ1yt .

This implies

y
Λµ

t ∈ {argmin
yt

lytµ } ⊆ {argmin
y

ℓ1y} for sufficiently large finite s. (12)

By definition, ℓ is non-degenerate iff {argminyℓ0y}∩{argminyℓ1y}= {}. This, to-

gether with (11) and (12) implies yΛm
t 6= y

Λµ

t , which implies lΛm
t 6= l

Λµ

t (otherwise

the choice yΛm
t = y

Λµ

t would have been possible), which implies lΛm
t /l

Λµ

t = c > 1 for
t−1∈(s+1)IN , i.e. for infinitely many t.

What remains to do is to extend U to a universal Turing machine. We extend
U by defining U(0zp)=U ′(p) for any z∈{0,1}3s, where U ′ is some universal Turing
machine. Clearly, U is now universal. We have to show that this extension does
not spoil the preceding consideration, i.e. that the shortest code of x has sufficiently
often the form 1p and sufficiently seldom the form 0p. Above, µ has been chosen in
such a way that c(x) is a Shannon-Fano code for µ-distributed strings, i.e. c(x) is

Predictions based on Kolmogorov Complexity 15

with high µ-probability a shortest code of x. More precisely, l(c(x))≤KmT (x)+s
with µ-probability at least 1−2−s, where KmT is the monotone complexity w.r.t.
any decoder T , especially T =U ′. This implies minp{l(0p) :U(0p) = x∗}=3s+1+
KmU ′(x)≥ 3s+1+l(c(x))−s> l(c(x))+s+1≥minp{l(1p) :U(1p) = x∗}, where the
first ≥ holds with high probability (1−2−s). This shows that the expressions (10)
for Km are with high probability not affected by the extension of U . Altogether this

shows lΛm
t /l

Λµ

t 6
t→∞
−→1 with high probability. ✷

8 Outlook and Open Problems

Speed of off-sequence convergence of m for computable environments.
The probably most interesting open question is how fast m(x̄t|x<t) converges to
zero in the deterministic case.

Non-self-optimizingness for general U and ℓ. Another open problem is whether
for every non-degenerate loss-function, self-optimizingness of Λm can be violated.
We have shown that this is the case for particular choices of the universal Turing
machine U . If Λm were self-optimizing for some U and general loss, this would be
an unusual situation in Algorithmic Information Theory, where properties typically
hold for all or no U . So we expect Λm not to be self-optimizing for general loss and
U (particular µ of course). A first step may be to try to prove that for all U there
exists a computable sequence x1:∞ such that KU(x<tx̄t)<KU(x<txt) for infinitely
many t (which shows ¬(vii) for K and error-loss), and then try to generalize to
probabilistic µ, Km, and general loss functions.

Other complexity measures. This work analyzed the predictive properties of
the monotone complexity Km. This choice was motivated by the fact that m is
the MDL approximation of the sum M , and Km is very close to KM . We ex-
pect all other (reasonable) alternative complexity measure to perform worse than
Km. But we should be careful with precipitative conclusions, since closeness of
unconditional predictive functions not necessarily implies good prediction perfor-
mance, so distantness may not necessarily imply poor performance. What is easy
to see is that K(x) (and K(x|l(x))) are completely unsuitable for prediction, since

K(x0)
+
=K(x1) (and K(x0|l(x0))

+
=K(x1|l(x1))), which implies that the predictive

functions do not even converge for deterministic computable environments. Note
that the larger a semimeasures, the more distributions it dominates, the better its
predictive properties. This simple rule does not hold for non-semimeasures. Al-
though M predicts better than m predicts better than k in accordance with (8),

2−K(x|l(x))
×
≥M(x) is a bad predictor disaccording with (8). Besides the discussed

prefix Kolmogorov complexity K, monotone complexity Km, and Solomonoff’s uni-
versal prior M=2−KM , one may investigate the predictive properties of the histori-
cally first plain Kolmogorov complexity C, Schnorr’s process complexity, Chaitin’s
complexity Kc, Cover’s extension semimeasure Mc, Loveland’s uniform complex-

16 Marcus Hutter, Technical Report IDSIA-09-03

ity, Schmidhuber’s cumulative KE and general KG complexity and corresponding
measures, Vovk’s predictive complexity KP , Schmidhuber’s speed prior S, Levin
complexity Kt, and several others [LV97, VW98, Sch00]. Many properties and rela-
tions are known for the unconditional versions, but little relevant for prediction of
the conditional versions is known.

Two-part MDL. We have approximated M(x) :=
∑

p:U(p)=x∗2
−l(p) by its dominant

contribution m(x)=2−Km(x), which we have interpreted as deterministic or one-part
universal MDL. There is another representation of M due to Levin [ZL70] as a mix-
ture over semi-measures: M(x)=

∑
ν∈Msemi

enum
2−K(ν)ν(x) with dominant contribution

m2(x) = 2−Km2(x) and universal two-part MDL Km2(x) :=minν∈Msemi
enum

{−log ν(x)+
K(ν)}. MDL “lives” from the validity of this approximation. K(ν) is the complexity
of the probabilistic model ν, and −log ν(x) is the (Shannon-Fano) description length
of data x in model ν. MDL usually refers to two-part MDL, and not to one-part
MDL. A natural question is to ask about the predictive properties of m2, similarly
to m. m2 is even closer to M than m is (m2

×
=M), but is also not a semi-measure.

Drawing the analogy to m further, we conjecture slow posterior convergence m2→µ
w.p.1 for computable probabilistic environments µ. In [BC91], MDL has been shown
to converge for computable i.i.d. environments.

More abstract proofs showing that violation of some of the criteria (i)−(iv)
necessarily lead to violation of (vi) or (vii) may deal with a number of complexity
measures simultaneously. For instance, we have seen that any non-dense posterior
set {k̃(xt|x<t)} implies non-convergence and non-self-optimizingness; the particular
structure of m did not matter.

Extra conditions. Non-convergence or non-self-optimizingness of m do not neces-
sarily mean that m fails in practice. Often one knows more than that the environ-
ment is (probabilistically) computable, or the environment possess certain additional
properties, even if unknown. So one should find sufficient and/or necessary extra
conditions on µ under which m converges / Λm self-optimizes rapidly. The results
of this work have shown that for m-based prediction one has to make extra as-
sumptions (as compared to M). It would be interesting to characterize the class of
environments for which universal MDL alias m is a good predictive approximation
to M . Deterministic computable environments were such a class, but a rather small
one, and convergence is possibly slow.

References

[BC91] A. R. Barron and T. M. Cover. Minimum complexity density estimation. IEEE
Transactions on Information Theory, 37:1034–1054, 1991.

[Gác83] P. Gács. On the relation between descriptional complexity and algorithmic
probability. Theoretical Computer Science, 22:71–93, 1983.

Predictions based on Kolmogorov Complexity 17

[Hut01a] M. Hutter. Convergence and error bounds of universal prediction for general
alphabet. Proceedings of the 12th Eurpean Conference on Machine Learning
(ECML-2001), pages 239–250, 2001.

[Hut01b] M. Hutter. New error bounds for Solomonoff prediction. Journal of Computer
and System Sciences, 62(4):653–667, 2001.

[Hut02] M. Hutter. Convergence and loss bounds for Bayesian sequence predic-
tion. Technical Report IDSIA-09-01, IDSIA, Manno(Lugano), CH, 2002.
http://arxiv.org/abs/cs.LG/0301014.

[KV86] P. R. Kumar and P. P. Varaiya. Stochastic Systems: Estimation, Identification,
and Adaptive Control. Prentice Hall, Englewood Cliffs, NJ, 1986.

[Lev73] L. A. Levin. On the notion of a random sequence. Soviet Math. Dokl.,
14(5):1413–1416, 1973.

[LV97] M. Li and P. M. B. Vitányi. An introduction to Kolmogorov complexity and its
applications. Springer, 2nd edition, 1997.

[Sch00] J. Schmidhuber. Algorithmic theories of everything. Report IDSIA-20-00,
quant-ph/0011122, IDSIA, Manno (Lugano), Switzerland, 2000.

[Sol64] R. J. Solomonoff. A formal theory of inductive inference: Part 1 and 2. Inform.
Control, 7:1–22, 224–254, 1964.

[Sol78] R. J. Solomonoff. Complexity-based induction systems: comparisons and con-
vergence theorems. IEEE Trans. Inform. Theory, IT-24:422–432, 1978.

[VW98] V. G. Vovk and C. Watkins. Universal portfolio selection. In Proceedings of the
11th Annual Conference on Computational Learning Theory (COLT-98), pages
12–23, New York, 1998. ACM Press.

[ZL70] A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the devel-
opment of the concepts of information and randomness by means of the theory
of algorithms. Russian Mathematical Surveys, 25(6):83–124, 1970.

http://arxiv.org/abs/cs.LG/0301014
http://arxiv.org/abs/quant-ph/0011122

	Introduction
	Notation and Setup
	Predictive Properties of M=2-K-3muM
	Alternatives to Solomonoff's Prior M
	General Predictive Functions
	Predictive Properties of m=2-K-3mum
	Proof of Theorem ??
	Outlook and Open Problems

