

SCENARIO-BASED GENERATION OF DIGITAL LIBRARY SERVICES

ROHIT KELAPURE

A Thesis Presented to the Faculty of
the Virginia Polytechnic Institute and State University

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE
in

Computer Science

Prof. Edward A. Fox – Chairman

Prof. John M. Carroll

Prof. Roger W. Ehrich

June 12, 2003

Blacksburg, Virginia

Keywords: Digital Libraries, 5S, 5SL, 5SLGen, Modeling, Code Generation

Copyright © 2003 Rohit Kelapure

SCENARIO-BASED GENERATION OF DIGITAL LIBRARY SERVICES

ROHIT KELAPURE

Committee Chairman: Dr. Edward A. Fox
Computer Science

(Abstract)

With the enormous amount of information being created digitally or converted to digital formats
and made available through Digital Libraries (DLs), there is a strong demand for building tailored
DL services to attend the preferences and needs of diverse targeted communities. However,
construction and adaptation of such services takes significant effort when not assisted by
methodologies, tools, and environments that support the complete life cycle of DL development,
including requirements gathering, conceptual modeling, rapid prototyping, and code
generation/reuse. With current systems, these activities are only partially supported, generally in
an uncorrelated way that may lead to inconsistencies and incompleteness. Moreover, such
existing approaches are not buttressed by comprehensive and formal foundations and theories. To
address these issues we describe the development, implementation, and deployment of a new
generic digital library generator yielding implementations of digital library services from models
of DL “societies” and “scenarios”. The distinct aspects of our solution are: 1) an approach based
on a formal, theoretical framework; 2) use of state-of-the-art database and software engineering
techniques such as domain-specific declarative languages, scenario-synthesis, and componentized
and model-driven architectures; 3) analysis centered on scenario-based design and DL societal
relationships; 4) automatic transformations and mappings from scenarios to workflow designs
and from these to Java implementations; and 5) special attention paid to issues of simplicity of
implementation, modularity, reusability, and extensibility. We demonstrate the feasibility of the
approach through a number of examples.

Thanks is given to the AmericanSouth.org project funded by the Mellon Foundation.

 iii

Acknowledgements

First, I would like to thank my advisor Dr. Fox for providing guidance, support and
encouragement. The opportunities and the resources provided by Dr. Fox have made me what I
am today.

I would like to thank my thesis committee members Dr. Carroll and Dr. Ehrich for their support
and willing ears.

I thank Marcos André Gonçalves for being an elder brother and making me see the light at the
end of the tunnel. The idea for this thesis was born out of a discussion with Marcos in August
2002. His suggestions, ideas, support, help, and constructive criticism have helped me
immeasurably.

I thank my parents whose unconditional love has made this effort possible. I thank my mother for
making sense of it all. I thank my father for providing guidance and support.

I thank Rao Shen, Aaron Krowne, and Ming Luo for providing help, clearing my doubts, and
being good friends. I will miss you.

I thank all the members of the Digital Library Research Laboratory. These members are my
extended family and have helped create a home away from home.

 iv

Table of Contents

1. Introduction ...1
1.1. Context ..1

1.1.1. What is a Digital Library? ..1
1.1.2. What are Digital Library (DL) Services? ..1
1.1.3. What are Scenarios? ...2
1.1.4. What is Meant By Scenario-Based Generation of DL Services?............................2

1.2. Motivation ...2
1.3. Approach ...4
1.4. Research Contributions ..5
1.5. Outline of the Thesis ..6
2. Review of Literature ..7
2.1. DL: Concepts...7

2.1.1. DL Definitions ...7
2.1.2. Defining the Digital Library – Where Does Service Fit In?7

2.1.2.1. DL Services..7
2.1.2.2. Categorization of DL Services ..8

2.1.3. DL: Examples ..8
2.1.3.1. CITIDEL..8
2.1.3.2. NDLTD OAI Based Union Catalog ..9

2.2. DL Architecture Efforts ...10
2.2.1. Componentized Architectures...10

2.2.1.1. Dienst System...10
2.2.1.2. Fedora ..10
2.2.1.3. OpenDLib ..10
2.2.1.4. Open Digital Libraries ..10
2.2.1.5. PhysNet..11

2.2.2. Monolithic Architectures ..11
2.2.2.1. MARIAN ...11
2.2.2.2. Greenstone ...12

2.3. Modeling of DLs..12
2.3.1. What is a Model? What is a Metamodel? What is a Meta-Metamodel?12
2.3.2. Formal Modeling of DLs..13
2.3.3. 5SL: A Domain-Specific Declarative Language for DLs.....................................14
2.3.4. The Unified Modeling Language ..14

2.3.4.1. What is the Relationship between UML and 5SL?14
2.4. Construction of DLs...15

2.4.1. MARIAN DL Generator...15
2.4.2. Greenstone Suite of Software ...15
2.4.3. 5SGraph: A Domain-Specific Visual Modeling Tool ..16
2.4.4. CASE Tools ...16
2.4.5. Other Related Tools ...17

2.5. Scenario-Based Requirements Analysis and Design ...17
2.5.1. Importance of Scenarios in Software Design...17
2.5.2. Scenario Research ..18

2.5.2.1. Need for Scenario-Synthesis ...19
2.5.2.2. Approaches to Scenario-Synthesis ..19

2.6. Underlying Technology and Standards ...21
3. The 5S Approach to the Generation of DLs ..23
3.1. 5S Metamodel for DLs...23

 v

3.2. 5SL Models for DLs ..24
3.2.1. Stream Model...24
3.2.2. Structures Model ..24
3.2.3. Spaces Model...25
3.2.4. Societies Model..25

3.2.4.1. 5SLSocieties Model: Terms and Concepts ..25
3.2.4.1.1 Name ...26
3.2.4.1.2 Attributes ...26
3.2.4.1.3 Operations..27
3.2.4.1.4 Type...27
3.2.4.1.5 Visibility ..28
3.2.4.1.6 Dependencies ...28
3.2.4.1.7 Associations ...28
3.2.4.1.8 Generalizations ..29

3.2.5. Scenarios Model...29
3.2.5.1. 5SLScenarios Model: Terms and Concepts ...30

3.2.5.1.1 Service ...31
3.2.5.1.2 Scenario ...31
3.2.5.1.3 Event..31
3.2.5.1.4 Message ...32
3.2.5.1.5 Action ..32

3.3. Modeling and Generation of DLs ...33
3.3.1. Process of Building a DL..33
3.3.2. 5S Approach VS. Software Development Paradigms ..34

4. The 5SLGen Digital Library Generator: Design and Architecture..............................36
4.1. 5SLGen: Design ..36
4.2. 5SLGen: Input ...38
4.3. 5SLGen: Output...38
4.4. 5SLGen: Architecture ..39

4.4.1. Societies-Converter ..40
4.4.2. Scenarios-Converter ...41

5. 5SLGen: Implementation...42
5.1. 5SLGen: Platform and Environment...42
5.2. 5SLGen: Implementation ...42

5.2.1. Societies-Converter: Implementation..43
5.2.1.1. 5SLSocieties to Java classes ...43
5.2.1.2. 5SLSocieties to XMI ..46

5.2.2. Component Pool Utilization ...47
5.2.3. Scenarios-Converter: Implementation...48

5.2.3.1. Scenario-Synthesis ...48
5.2.3.2. State Machine Compiler ...51

6. Case Studies..54
6.1. Composite DL Services..55

6.1.1. CITIDEL: Multi-Classification Browsing Service...55
6.1.1.1. Functionality ..55
6.1.1.2. Societies ...56
6.1.1.3. Scenarios ..57
6.1.1.4. Controller-Statechart ..58

6.1.2. CITIDEL: Profile Based Filtering Service ..60
6.1.2.1. Functionality ..60
6.1.2.2. Societies ...60

 vi

6.1.2.3. Scenarios ..61
6.1.2.4. Controller Statechart...62

6.1.3. CITIDEL: Relevance Feedback Search Service ..62
6.1.3.1. Functionality ..62
6.1.3.2. Societies ...62
6.1.3.3. Scenarios ..63
6.1.3.4. Controller-Statechart ..64

6.1.4. CITIDEL: Binder Service...65
6.1.4.1. Functionality ..65
6.1.4.2. Societies ...65
6.1.4.3. Scenarios ..65
6.1.4.4. Statechart ...66

6.2. DLs Implemented using 5SLGen ...67
6.2.1. Union Catalog ..67

6.2.1.1. Functionality ..67
6.2.1.2. Societies ...67
6.2.1.3. Scenarios ..67
6.2.1.4. Screenshot ..67

6.2.2. CITIDEL..68
6.2.2.1. Functionality ..68
6.2.2.2. Societies ...68
6.2.2.3. Scenarios ..69
6.2.2.4. Screenshot ..69

6.2.3. VIADUCT ...71
6.2.3.1. Functionality ..71
6.2.3.2. Societies ...71
6.2.3.3. Scenarios ..71
6.2.3.4. Screenshot ..72

6.3. Observations on the Modeling and the Generation of DLs ..72
7. Conclusions and Future Work...74
7.1. Conclusions ...74

7.1.1. Contributions of 5SLGen..74
7.2. Future Work ..74

7.2.1. Integration of 5SLGen with 5SGraph..74
7.2.2. Incorporating the uPortal Framework into the 5SFramework75
7.2.3. Improvements to the 5SFramework ..75

7.2.3.1. Scalability of the Generated DLs and DL Services75
7.2.3.2. Automated Construction of User-Interfaces ..75
7.2.3.3. Support for Transaction Scoping and Error handling75
7.2.3.4. Web Services..76

7.2.4. Model Validation ...76
7.2.5. Personalization of the 5S Approach for Generation of DLs76

Appendix A XML Schemas ..77
A.1. XML Schema for the 5SLSocieties model..77
A.2. XML Schema for the 5SLScenarios model...80
Appendix B. Synthesized Statechart for the CITIDEL...82
References ...84
Vita ...89

 vii

List of Figures

Figure 2.1 CITIDEL architecture from original proposal ...9
Figure 2.2 Architecture of the NDLTD Union Catalog ..10
Figure 2.3 Example networked architecture of an ODL ...11
Figure 2.4 User-Interface of 5SGraph..16
Figure 2.5 Challenges and approaches in scenario-based design ..18
Figure 3.1 Overview of 5S and DL formal definitions and compositions23
Figure 3.2 The 5SLSocieties schema tree view..26
Figure 3.3 The 5SLScenarios schema tree view...30
Figure 3.4 Overview of the architecture for DL modeling and generation33
Figure 3.5 5S approach vs. software development paradigms ..34
Figure 4.1 DL service composition model ..37
Figure 4.2 Classes of the 5SFramework in context to the MVC design pattern.....................39
Figure 4.3 Architecture of 5SLGen and the generated 5SFramework classes40
Figure 5.1 Workflow of the societies-converter (expanded part of Figure 4.3)42
Figure 5.2 5SLSocieties model imported into the Poseidon CASE tool using XMI47
Figure 5.3 Workflow of the scenarios-converter (expanded part of Figure 4.3)48
Figure 5.4 Sequence diagram for the search scenario of the Union Catalog DL....................49
Figure 5.5 Statechart for the search scenario of the Union Catalog DL.................................50
Figure 5.6 Statecharts for browse & search-similar scenarios of the Union Catalog DL50
Figure 5.7 Synthesized Statechart for the Union Catalog DL ...51
Figure 5.8 UML class diagram for the controller of the Union Catalog DL52
Figure 6.1 5SLSocieties model for the multi-classification browsing service56
Figure 6.2 Primary scenario of the multi-classification browsing service58
Figure 6.3 5SLSocieties model for the profile based filtering service...................................60
Figure 6.4 Primary scenario of the profile based filtering service...61
Figure 6.5 Statechart for the controller of the profile based filtering service.........................62
Figure 6.6 5SLSocieties model for the relevance feedback search service............................63
Figure 6.7 Primary scenario of the relevance feedback search service..................................63
Figure 6.8 5SLSocieties model for the binder service ..65
Figure 6.9 First primary scenario of the binder service ..66
Figure 6.10 Screenshot of the Union Catalog DL..68
Figure 6.11 Screenshot of the CITIDEL interface...70
Figure 6.12 Screenshot of the VIADUCT DL...72
Figure 7.1 Personalization in DLs ...76

 viii

List of Tables

Table 2.1 OMG metamodel architecture ..12
Table 2.2 Characterization of formal models in the DL domain..13
Table 4.1 5SLGen component functionality ...41
Table 5.1 Mapping of 5SLSocieties model elements to Java language constructs.43
Table 6.1 Statechart for the controller of the multi-classification browsing service.................59
Table 6.2 Statechart for the controller of the relevance feedback search service......................64
Table 6.3 Statechart for the controller of the binder service..66
Table 6.4 SMs and their roles in the CITIDEL implementation ..69
Table 6.5 Evaluation of the generated DLs...73

List of Examples

Example 3.1 Partial 5SL stream model instance for the NDLTD Union Catalog DL............24
Example 3.2 Partial 5SL structures model instance for a document25
Example 3.3 5SLSocieties instance showing name, visibility, and type of SM.....................26
Example 3.4 5SLSocieties instance for an attribute ...27
Example 3.5 5SLSocieties instance for an operation..27
Example 3.6 5SLSocieties instance for a dependency..28
Example 3.7 5SLSocieties instance for an association ...28
Example 3.8 5SLSocieties instance for a generalization ..29
Example 3.9 5SLScenarios instance for a service ..31
Example 3.10 5SLScenarios instance for a scenario ..31
Example 3.11 5SLScenarios instance for an event...32
Example 3.12 5SLScenarios instance for a message..32
Example 5.1 5SLSocieties model for the relevance feedback search SM45
Example 5.2 Generated Java code for the relevance feedback search SM46

 1

1. Introduction

1.1. Context

Before launching into a detailed analysis of the problem space, the context for the problem and
the solution is provided in sections 1.1.1, 1.1.2, 1.1.3 and 1.1.4.

1.1.1. What is a Digital Library?

The term "digital library" is the most recent in a long series of names for a concept that has been
discussed since the development of the first computer. Vannevar Bush, head of the US Office of
Scientific Research and Development during World War II, wrote about the “memex”, which
stimulated most of the early application of computers to information retrieval and anticipated the
idea of hypertext [1]. Licklider in his seminal work referred to his vision of a fully computer-
based library as a “library of the future” [2].

The D-Lib Working Group on Digital Library Metrics gave the definition of digital libraries as,
“The collection of services and the collection of information objects and their organization,
structure, and presentation that support users in dealing with information objects available
directly or indirectly via electronic/digital means” [3].

The Digital Library Federation defines digital libraries as “organizations that provide the
resources, including the specialized staff, to select, structure, offer intellectual access to, interpret,
distribute, preserve the integrity of, and ensure the persistence over time of collections of digital
works so that they are readily and economically available for use by a defined community or set
of communities” [4].

Each of these definitions attempts to model different facets of existing systems. Some definitions
attempt to place emphasis on the human aspects whereas other definitions try to fit DLs into
formal frameworks. For the purpose of this study we adopt the definition of digital libraries
provided by Fox who defines digital libraries as “complex data/information/knowledge systems
that help: satisfy the information needs of users (societies), provide information services
(scenarios), organize information in usable ways (structures), manage the location of information
(spaces), and communicate information with users and their agents (streams)” [5].

1.1.2. What are Digital Library (DL) Services?

A DL service is the fusion of computing, storage, and communication machinery coupled with
the software needed to reprise, emulate, and extend the services provided by conventional
libraries based on paper and other material means of collecting, storing, cataloging, finding, and
disseminating information [6]. The DL service exposes a specific functionality to its users to
fulfill the users’ information needs. The services exposed by a DL include: services to support
management of collections, services to provide replicated and reliable storage, services to aid in
query formulation and execution, services to assist in name resolution and location, and services
for access to the library items and the processing of the information contained in the items and
communication of information about the items. Basic DL services include services for indexing,
searching, browsing and cataloging digital resources.

 2

1.1.3. What are Scenarios?

Scenarios provide the means for capturing requirements specifications as well as a means of
communication between users and software developers. In the context of requirements and
software engineering, a scenario is a sequence of events that occur during one particular
execution of a system [7]. Scenarios describe an aspect of the external behavior of a system from
a users’ viewpoint. Scenarios are used in the analysis phases of software development to elicit,
capture, and document requirements. Scenarios take a user-centered view by default and keep the
design discussion focused on user activities [8, 9]. For these and other reasons, scenarios have
gathered widespread acceptance in the software and requirements engineering community.

1.1.4. What is Meant By Scenario-Based Generation of DL Services?

Scenario-based generation of DL services can be defined as modeling of DL services with a
scenario-based requirements analysis and design methodology so as to generate an
implementation for the services. We assume that each service can be modeled as a set of
overlapping scenarios. This assumption is motivated by the role played by scenarios in the
requirements elicitation process. The implementation of the DL services is generated semi-
automatically and is comprised of all the software components needed for a functional DL to
expose the modeled services. Scenario-based generation of DL services requires an approach for
generating code based on the requirements elicited in the form of user-level scenarios. The
implementation of DL services contains code for not only implementing the functionality of the
service but also coupling the services and exposing them to the users.

The title of this thesis is scenario-based generation of DL services rather than scenario-based
generation of DLs as we do not model and generate all components of a DL. Digital libraries
consist of a set of electronic resources and associated technical capabilities for creating,
searching, and using information. The content of digital libraries includes data, metadata that
describe various aspects of the data (e.g., representation, creator, owner, reproduction rights). We
do not model the data and the metadata stored in a DL. We are only concerned with services that
operate on the data rather than with storage, creation, archiving, and preservation. In the context
of this work, the generation of DL services means generation of a DL that exposes the services
without generating the content (data and metadata) stored in the DL.

1.2. Motivation

Digital Libraries are complex information systems, which integrate research and findings from
disciplines such as hypertext, information retrieval, multimedia services, database management,
and human computer interaction. Some of the well-known digital library related research areas
include classification, interoperability between heterogeneous collections, communication
protocols, search engines, crawlers, information visualization, usability, and human computer
interaction issues [10]. The broad and deep requirements of DLs demands models in order to
understand better the interaction among its components. Models are crucial to specify and
understand clearly and unambiguously the structure and behavior of complex information
systems.

While much attention has been paid to the study of making better digital libraries, little focus has
been put on simplifying the process of modeling and building DLs. The process of building a
digital library involves specification of the content to be stored; how that content is organized,
structured, described, and accessed; which services are offered by the library (e.g., searching,
browsing, personalizing, collaborating); and how patrons (and automated agents) ultimately use

 3

those services and interact with each other in the DL environment [7]. Thus, by their own nature,
DLs are complex and inter-disciplinary information systems making it difficult and expensive to
construct new DLs. This complexity of DLs coupled with the ad-hoc approaches taken by DL
designers, many of whom are either library technical staff with little or no formal training in
software engineering, or computer scientists who have little background in information science,
has resulted in the construction of DLs of arbitrary complexity that are difficult to maintain and
extend.

In domain-specific modeling, a design engineer describes a system by constructing a model using
the terminology and concepts from a specific domain. Analysis then can be performed on the
model, or the model can be synthesized into an implementation. To get to a situation of domain
modeling followed by fully automatic code generation, three things are required: a modeling tool
with support for the domain-specific modeling language, a code generator, and a domain-specific
component library. There is a lack of domain-specific languages, domain-specific prototyping
tools, and CASE environments for DLs. Current prototyping tools in this inter-disciplinary
domain are limited to database and web applications. They do not capture the specific
abstractions and notations for the domain at hand. They do not support specific DL patterns,
models, and methodologies.

There are few software toolkits available to build DLs. As a result, most DLs are custom-built
using homegrown architectures without making use of conceptual modeling, requirements
analysis, and methodological approaches. The general trend has been to develop tools to solve
small parts of the problem, whereas the root of the problem – the lack of specific DL patterns,
models, methodologies, formalisms, and languages – is almost completely ignored.

DLs are either built as monolithic, tightly integrated, and generally inflexible systems or by
assembling components. The lack of models and processes for constructing these systems results
in problems in interoperability and adaptability. For full-service, large-scale digital libraries to
develop and interoperate with others, a fair degree of standardization is required. Such standards
must rest on some agreed-upon framework and reference model, building upon careful definition
of requirements [10]. The process of requirements analysis helps the DL designer capture the
functional requirements of a software system through the creation of structural and behavioral
models represented by DL “societies” and “scenarios”. Scenarios are key artifacts in systems
engineering, but their management is poorly understood. Scenarios are a good communication
base with naive users and other non-technical people and support early validation of requirements
at a low abstraction level A scenario-based design approach to DL development is lacking in
current DL toolkits and prototyping tools. This also hampers the ability to tailor DL components
and behaviors to particular user communities.

Recent work on DLs has shown that they can be built by connecting small components that
communicate through a family of lightweight protocols, using XML as the data interchange
mechanism [11]. This work successfully attempts to provide a solution to the interoperability
problems facing DLs, however it still leaves certain questions unanswered such as:

� How are DLs built when components do not follow protocols?
� How are DLs built when services cannot be modeled as components?

 4

1.3. Approach

To address the issues raised above, we present the development, implementation, and deployment
of a new generic DL generator (5SLGen) yielding implementations of DL services from models
of DL “societies” and “scenarios”.

5SLGen is a DL generator that combines theory, language, and tools in a coherent and cohesive
way to allow automatic generation of tailored DL services. 5SLGen provides a framework for
building DL services that provides programmers with an infrastructure that supports a coherent
architectural model, allowing developers to concentrate on applying their expertise to the problem
domain. In the case of 5SLGen, the framework takes care of the common functionality that every
DL needs by reusing components, so that you can implement the services that are important and
specific to your DL. Focusing on the societies and the scenarios models of a DL, 5SLGen builds
on the Open Digital Libraries framework and the State and Model-View-Controller design
patterns to create an implementation for DL services [11-14].

Our objective is to cover the process of DL development, from requirements to analysis, analysis
to design, and design to implementation. We aim to generate “tailored” DL software satisfying
the particular requirements of specific DL societies. The basic idea is to develop models,
languages, and tools able to capture the rich set of DL requirements and properties of particular
settings and to automatically convert these “patterns” into different representations by properly
“compiling”, transforming, and mapping models in different levels and phases of the DL
development process. The assumption is that automatic transformations and mappings diminish
the risk of inconsistency and increase productivity. This view is supported by:

1. Having a model based approach that allows the DL designer to describe: 1) the kinds of

multimedia information the DL supports (Stream Model); 2) how that information is
structured and organized (Structural Model); 3) different logical and presentational properties
and operations of DL components (Spatial Model); 4) the behavior of the DL (Scenarios
Model); and 5) the different societies of actors and managers of services that act together to
carry out the DL behavior (Societal Model) [7]. These and other DL notions have been
organized and formalized into the 5S (Streams, Structures, Spaces, Societies, Scenarios)
formal framework [15]. This formal framework provides a foundation for the DL generator.

2. Using a domain-specific language based on 5S, 5SL, for declarative specification and
automatic generation of DLs [7]. Domain-specific languages enable applications to be
programmed with domain abstractions, thereby allowing compact, clear, and machine-
processable specifications to replace detailed and abstruse code [16].

3. Using scenario-based design for defining the behavior of a system. Scenarios keep design

discussion focused on the level of task organization that actors experience in their tasks [17].
In 5S, we envision scenarios as sequences of events that modify states of a computation in
order to accomplish some functional requirement. We use scenarios to describe the behavior
of DL services and societal interactions.

4. Implementing a code generator that allows a DL designer to provide a modeling specification

in terms of scenarios and societies. This generates implementations using precise
transformations/mappings. The generated DL makes use of well-defined components that
each carry out key DL functions interacting with one another using lightweight protocols. We
draw heavily upon work with the Open Archives Initiative Protocol for Metadata Harvesting

 5

(OAI-PMH [18]) and Open Digital Libraries [11].
We pay special attention to the issues of flexibility, extensibility, and reusability in the
implementation of DL services. The role of 5SLGen in providing these features is explained
below.

5SLGen exports models of 5SLSocieties and 5SLScenarios to other modeling languages such as
the Unified Modeling Language (UML). UML is the de facto industry standard object-oriented
modeling language [19]. UML consists of several sublanguages, which are suited to model
structural and behavioral aspects of a software system. It has immense support in the form of
graphic modeling and CASE tools, which provide for forward, reverse, and roundtrip
engineering. In order to leverage the advantages of both established modeling languages and
associated CASE tools, along with domain-specific component modeling, we map the domain
solution (5SLSocieties and 5SLScenarios models) to core UML models. This open interchange of
5SL DL models with other CASE tools provides flexibility in modeling DLs.

The services modeled and generated using 5SLGen expose a clean interface that can be easily
redeployed, while implementing other DLs. The set of 5SL models (5SLSocieties and
5SLScenarios models) generated during the course of this study can be reused as-is while
implementing services for new DLs. This ability to redeploy services and reuse 5SL models
supports our claim of reusability.

5SL models for DL services can be extended according to specific community needs. These
services can be implemented with specific components customized for particular societies.
Extensibility of 5SL models provides for extensibility of the implemented services.

Design of a domain-specific modeling language and the implementation of a model-driven code
generator based on a scenario-based design methodology constitute the main work in this thesis.
Activities two, three and four mentioned above are the focus of this thesis.

1.4. Research Contributions

This research makes the following contributions to the fields of DL modeling and architecture.

1. Designed an approach for semi-automatic generation of DL services using a component-
oriented, scenario-based software development design methodology.

2. Implemented a DL generator that generates DL services based on an analysis centered on

scenario-based design and DL societal relationships.

3. Used a formal theory to help design and generate high quality DLs.

4. Implemented a model-driven architectural approach to DL design and development.

5. Developed a set of 5SLSocieties and 5SLScenarios models for common DL services that
can be reused by other DLs.

6. Facilitated the exchange of DL models among different CASE tools.

 6

1.5. Outline of the Thesis

� Chapter 1 outlines the motivation, problem space, and scope of the research.

� Chapter 2 presents a survey of the relevant literature in the field of DL interoperability,

DL modeling, DL architectures, DL generation, scenario-based requirements analysis and
design, and CASE tools.

� Chapter 3 outlines the 5S methodology for generation of DLs.

� Chapter 4 elaborates on the design and architecture of 5SLGen.

� Chapter 5 covers the implementation of 5SLGen and provides a detailed explanation of

the steps involved in transforming 5SL scenarios and societies models to code.

� Chapter 6 presents an analysis of the services and the DLs generated using 5SLGen

followed by observations on the entire modeling and generation process.

� Chapter 7 presents conclusions and recommendations for future work.

 7

2. Review of Literature

This chapter provides information on the important concepts that relate to the work done. We
initially start with a discussion of DL concepts such as characteristics of DLs or categorizations
of services exposed by a DL, and provide examples of DLs running in a production environment.
This is followed by a comprehensive listing of DL architecture efforts. Thereafter the process of
modeling and construction of DLs is elaborated. The later half of the chapter focuses on software
engineering processes and methodologies, particularly scenario-based requirements analysis and
design. We conclude by elaborating briefly on the underlying technology and standards involved.

2.1. DL: Concepts

2.1.1. DL Definitions

We presented a number of definitions for DLs in section 1.1.1. Common to all those definitions
are certain fundamental elements. The Association of Research Libraries [20] sums up the
commonalties of these different definitions as follows:

� The digital library is not a single entity.

� The digital library requires technology to link the resources of many.

� The linkages between the many digital libraries and information services are transparent

to the end users.

� Universal access to digital libraries and information services is a goal.

� Digital library collections are not limited to document surrogates: they extend to digital

artifacts that cannot be represented or distributed in printed formats.

2.1.2. Defining the Digital Library – Where Does Service Fit In?

Most of the definitions of a DL have an emphasis on technology and information resources and a
noticeable lack of discussion of the service aspects of a DL. We attempt to bridge this
information gap by elaborating on the type of services offered by DLs and classifying the services
into categories. Such classification helps us build a vocabulary and reduce the inherent
complexity of the field by grouping similar concepts. The discussion on the types of services
offered has been drawn from Gary Marchionini’s treatise on the research and development of
DLs [21].

2.1.2.1. DL Services

A service is an entity that has a well-defined interface and behavior that can be referenced by
users. The range and depth of services that a library provides to its users is driven by its service
mission and policies. Policies determine usage, availability, quality, resource allocation and types
of services offered to the patrons of the DL. Libraries offer different types of reference and
referral services, instructional services, added value services, and promotional services. Reference
and referral services encompass services for ready reference, exhaustive search, and selective
dissemination of information. Instructional services include services for bibliographic instruction

 8

and database searching. Added value services incorporate services for bibliography preparation
and language translation. Promotional services include services that support freedom of
expression and literacy (each one teach one).

2.1.2.2. Categorization of DL Services

The services exposed by a DL are of two types: composite (information satisfaction services) and
elementary (infrastructure services).

Infrastructure services are elementary services. These services provide the basic infrastructure for
the DL. Examples include searching, collecting, indexing, rating, linking, and browsing services.
Infrastructure services do not rely on other services to fulfill their responsibilities while
information satisfaction services act like umbrella structures that bring together other services,
which collaborate to implement certain functionality.

Information satisfaction services are composite services. They are composed of other services
(elementary or composed) by reusing or extending them. Examples include multi-classification
browsing, relevance feedback search, reference and question answering, filtering, and selective
dissemination services. Infrastructure services may be used for creation, preservation,
transformation, or aggregation of data and metadata. Information satisfaction services then take a
representation of a user interest/need (e.g., a query, a browsing action by means of selecting some
navigation anchor, or a profile) and produce a number of different outputs. For example, a
searching service generates weighted sets of pairs (handle, weight) where the weight corresponds
with how well the digital object with that handle matches the query.

2.1.3. DL: Examples

We now consider examples of two popular DLs, viz., Computing and Information Technology
Interactive Digital Educational Library (CITIDEL) and NDLTD, that expose a wide range of both
elementary and composite services. The purpose of focusing on these DLs is twofold; first it
provides context for the work done as the services exposed by these DLs are later modeled using
5SLGen, and second it provides insight into some of the services offered by modern DLs.

2.1.3.1. CITIDEL

The CITIDEL is a comprehensive, pedagogically focused digital library in Computer Science
(CS) and Information Technology. It provides access to a number of collections from publishers,
corporate research efforts, volunteer initiatives, CS departments, educational initiatives, and
universities [22]. It is a composite collection of CS resources with services layered over the
aggregated collections. CITIDEL acquires content either through harvesting resources using the
OAI-PMH, manual discovery and input, and focused crawling of the web. The services offered
by CITIDEL include Searching, Filtering/Browsing, Review/Rankings, Annotation, Discussion,
Instruction, and Classification. The implementation of CITIDEL draws and builds on work done
with the MARIAN system for the DL core and the ODL framework for federation and
componentization [23]. The philosophies of ODL and CITIDEL mesh well. The communication
between CITIDEL and other harvesting DLs and among CITIDEL components mirrors the
communication that occurs among ODL components that constitute a DL. Figure 2.1 illustrates
both the collections and services that constitute the CITIDEL.

 9

Figure 2.1 CITIDEL architecture from original proposal

2.1.3.2. NDLTD OAI Based Union Catalog

The Networked Digital Library of Theses and Dissertations (NDLTD) OAI Based Union Catalog
(hereafter, the Union Catalog) is an experimental DL constituted from ODL components that
seeks to illustrate the benefits of the componentized approach to DLs [24]. The Union Catalog
harvests data from other source archives through OAI-PMH interfaces. The data is aggregated
into a central archive for use by local services. Search, Browse, and Recent high-level services
are provided using this data. Search indexes the data and exposes an OAI-like interface for
specifying keyword queries. Browse sorts the data and exposes a slightly different OAI-like
interface for accessing items by controlled vocabulary elements. Recent stores recent items and
upon request returns a random sample of those [12]. Figure 2.2 shows the architecture of the
Union Catalog system taken from [11]. All arrows represent data being accessed or transferred
through OAI or extended OAI interfaces, and all nodes labeled “OA” are Open Archives.

 10

Figure 2.2 Architecture of the NDLTD Union Catalog
2.2. DL Architecture Efforts

We categorize DL architectures into two types, viz., componentized and monolithic.

2.2.1. Componentized Architectures

Componentized architectures represent DLs as an open federation of distributed
services/components. Each component/service carries out a specific functionality and
communicates with other components using either open or proprietary protocols. A listing of such
efforts is provided below

2.2.1.1. Dienst System

The Dienst architecture specifies four core digital library services. User-interface services provide
a human-friendly gateway to the information obtained from other services. Repository services
store and provide access to documents, according to the Dienst document model, which provides
transparent access to documents stored in a distributed environment. Index services provide
search capabilities, accepting a query and returning a list of document identifiers that match the
query. Collection services define the components, services and documents of the digital library
collection, making it possible for user-interface services to interact with them [25]. The Dienst
architecture served as the technical foundation of the Networked Computer Science Technical
Research Library and was a leading influence on the development of the OAI protocol.

2.2.1.2. Fedora

The Fedora project implemented a multi-layered service structure that evolved from concepts
implemented in the Dienst repository architecture. Fedora was envisioned to be a part of a larger
open-architecture framework in which the functionality of a digital library was partitioned into a
set of services with well-defined interfaces. These core services included: repository services,
index services, collection services, naming services, and user-interface services. The well-defined
interfaces of these core services allow them to be combined with each other and other value-
added services to create usable instantiations of digital libraries [26].

2.2.1.3. OpenDLib

OpenDLib is a software toolkit that can be used to create a digital library by assembling a
federation of services that implement the DL functionality [27]. The set of services can be
extended to provide additional functionality. The federation of different services is governed by a
formal model. Dependent services communicate among one another via the OpenDLib Protocol
(OLP). The federation is managed by a manager service that is completely parametric with
respect to the type and number of managed services.

2.2.1.4. Open Digital Libraries

In developing the metadata harvesting protocol, the OAI provided a mechanism to separate data
providers from service providers. In this process, the OAI established best practices to support
their protocol, which are relevant to digital library design. These best practices implement some
of the ideas that were a part of the Kahn and Wilensky’s Repository Access Protocol. These ideas
have now been realized in OAI’s broadly-supported DL interoperability protocol [28].

 11

The Open Digital Library (ODL) project has exploited the conceptual framework provided by the
OAI protocol in order to form the base for a general-purpose inter-component interaction protocol
for digital libraries [12]. ODL defines popular services as self-contained components and defines
interfaces for these components to interact with upstream open archive (OA) data providers and
peer components, as well as downstream components. ODL assumes that all components are OA
data providers to exploit the simplicity of the OAI-PMH protocol. ODL components
communicate among themselves through the overlaid semantics of the OAI-PMH. A DL is made
up of a network of ODL components. Figure 2.3 taken from [11] from illustrates the architecture
of a simple DL built from a network of ODL components.

Figure 2.3 Example networked architecture of an ODL

2.2.1.5. PhysNet

The PhysNet portal is a one-stop portal providing a number of distributed services to physicists
and graduate students. The PhysNet portal uses the uPortal toolkit to build distributed,
componentized, and personalized DLs, using OAI and web services to enhance existing PhysNet
services. It builds on the work done in the ODL project, particularly modeling a DL as a network
of interconnected components with web services enabled.

2.2.2. Monolithic Architectures

Monolithic architectures represent DLs with tightly integrated components that lack the flexibility
to add or remove new functionalities at short notice. However, monolithic DLs are highly
customized and optimized for specific community needs and consequently offer better
performance as compared to similar componentized systems.

2.2.2.1. MARIAN

Multiple Access and Retrieval of Information with Annotations (MARIAN) is a DL system with
an extensible set of services including browsing, searching, retrieving, automatic collection
building, and uniform preservation over networked collections. MARIAN is a monolithic DL
with a layered architecture [29].

 12

2.2.2.2. Greenstone

The Greenstone DL software is an open-source system for the construction and presentation of
information collections. Greenstone allows the construction of complex DLs and tailoring of
many parts of DLs to specific domains and needs. However to achieve these goals Greenstone
utilizes heterogeneous machinery including Perl modules, proprietary markup languages and
macros, CORBA, Standard Template Library (STL) in C++, etc. [30] The customized DL
generated is a monolithic entity.

2.3. Modeling of DLs

2.3.1. What is a Model? What is a Metamodel? What is a Meta-Metamodel?

There are always three or more levels of abstraction for any modeling context. There is the model
itself (layer M1), there are instances of the model (layer M0), and there is a set of constructs/rules
for constructing the model (layer M2). In the context of DLs, the 5S theory serves as the
metamodel for defining models of DLs. Table 2.1 puts the 5S metamodel in context using OMG’s
four-layer metamodel architecture.

Table 2.1 OMG metamodel architecture

OMG Terms

Description Example

meta-metamodel (layer M3)

The infrastructure for
metamodeling architecture.

Defines the language for
specifying metamodels.

Specifies meta-metaclasses for

the UML metamodel

metamodel (layer M2)

An instance of a meta-
metamodel. Defines the language

for specifying a model.

Specifies metaclasses for the
UML and 5S metamodel

model (layer M1)

An instance of a metamodel.
Defines a language to describe an

information domain.

Specifies classes for the UML
and 5SL (societies, structures,

scenarios, spaces, streams)
models

user objects (layer M0)

An instance of a model. Defines a
specific information domain

User objects that are instances
of UML, 5SL user model

 13

2.3.2. Formal Modeling of DLs

Most of the disciplines that constitute the field of DLs have a foundation based on formal models.
However, modeling in the domain of DLs is still in its infancy. For instance, the
hypertext/hypermedia community has rich abstraction models and decompositions for
hypermedia systems. Examples include OOHDM and Web2000 [31, 32], or WebML [33]. The
database community also has the relational and object-oriented models. The field of IR has the
vector, Boolean, and probabilistic models. Table 2.2 summarizes the formal modeling efforts in
the DL domain and provides context for our work with the 5S formal framework.

Table 2.2 Characterization of formal models in the DL domain

Model Characteristics Drawbacks

Wang’s, “Hybrid system
approach for supporting
digital libraries” [34]

Abstract structure of a DL is defined as a
combination of a specific purpose database
and a user-friendly interface.

Formal data structure for linking an object-
oriented database with hypermedia to
support digital libraries.

Formalizes DLs in terms of the formal
language Z.

Does not describe many
characteristics of DLs
such as interoperability,
classification,
organization tools, etc.

Kalinichenko’s canonical
model for information
systems [35]

Compositional design of information
systems applied to semi structured data on
the Web.

The digital library is designed as a
composition of fragments of web sites.

Provides a partial solution
for interoperability in DLs

Castelli’s mathematical and
architectural model for the
modeling of digital contents
[36] and specifying the
services provided by a digital
library [27] respectively

Formalized the concepts of documents,
based on the notion of views and versions,
metadata formats and specifications, and a
first-order logic based language

Incomplete in its coverage
of all the concepts of the
DL domain

5S model for DLs [15]

Formal, theory-based approach to the
problems of defining, understanding,
modeling, building, personalizing, and
evaluating DLs.

Use of mathematically based formal
methods to develop a theoretical
framework for DLs.

A more complete description of the 5S
model can be found in section 3.1.

The abstractions of 5S
provide a formal
foundation to define,
relate, and unify concepts
-- among others, of digital
objects, metadata,
collections, and services
required to formalize and
elucidate DLs.

 14

2.3.3. 5SL: A Domain-Specific Declarative Language for DLs

5SL is a domain-specific, declarative language with a formal semantics used for conceptual
modeling of digital libraries [7]. The formal semantics is understood in terms of a translation of
language constructs into the 5S formal theory. 5SL models are instantiations of the 5S metamodel
for DLs. Hereafter the 5SL models for the societies and scenarios abstractions of the 5S
metamodel are referred to as 5SLSocieties model and 5SLScenarios model, respectively. 5SL has
been expanded upon in detail in section 3.1. We introduce 5SL here to put it in context with other
popular and standard modeling languages such as the UML.

2.3.4. The Unified Modeling Language

The Unified Modeling Language has been accepted as an industrial standard for visualizing,
specifying, constructing, and documenting the artifacts of a software-intensive system [37]. It
consists of several sublanguages, which are suited to model structural and behavioral aspects of a
software system. The discussion below on UML has been adapted from [38].

UML provides class and object diagrams, to model all structural aspects of a system on a type and
instance level, respectively. Objects are described by their attributes as well as by the signatures
of operations that may change the state of an object. Structural relationships can be described as
general associations or as weak or strong aggregation relationships between objects. Objects may
be specified as passive or active objects, the latter ones having their own, permanently active
thread of control.

UML offers five diagram types (use case diagrams, activity diagrams, Statechart diagrams,
sequence diagrams, and collaboration diagrams) to model the behavioral aspect of a system. Each
of them focuses on a certain view on a system.

Use case diagrams model the external view of the system. They help determine the main
functionality or processes of a system (called use cases) and the actors participating in these use
cases. Activity, sequence and collaboration diagrams provide the inter-object view of a system,
i.e., the communication between and collaboration of different objects. A collaboration diagram
shows an interaction, consisting of a set of objects and their relationships, including messages that
may be dispatched among them. A sequence diagram is a collaboration diagram that emphasizes
the temporal ordering of messages. Sequence diagrams present a scenario-oriented description of
the interaction between objects in the system. Activity diagrams are essentially flowcharts
showing flow of control from activity to activity.

In addition to these diagrams, UML provides component diagrams and the deployment diagrams
to describe the transition from a model to the corresponding implementation. The component
diagram describes the software architecture of the system in terms of components. The
deployment diagram describes the hardware architecture of the system.

2.3.4.1. What is the Relationship between UML and 5SL?

UML is a general-purpose language. This is the main advantage and at the same time the main
drawback of UML. UML is a language which is not capable of providing features that are
appropriate to express problem domain-specific situations [38]. This drawback of being a
general-purpose language with lack of a precise semantics has been identified by the UML
standardization groups and has led to establishing corresponding task groups and related Request
For Proposals by the OMG in specific domains to overcome these shortcomings. In order to

 15

provide intuitive and expressive modeling features for a certain domain, UML has to be extended
and adapted by appropriate profiles. 5SL represents such an extended simplified UML profile in
the domain of DLs.

2.4. Construction of DLs

As the focus of this work is 5SLGen, a DL generator, it would be pertinent to look at other tools
and techniques used for modeling, construction, and/or generation of DLs.

2.4.1. MARIAN DL Generator

The MARIAN DL generator, based on a DOM XML parser, automatically generates a set of class
managers, indexing classes, an analyzer, and a user-interface from the 5SLSocieities and
5SLScenarios models of the modeled DL. These four elements help constitute the generated DL.
One important feature of this generator is its use of XML namespaces and the MARIAN API.
The 5SLSocieties and 5SLScenarios models use namespaces to import MARIAN types to specify
properties of the many different parts of documents and metadata records. These properties
include specific matching methods as well as methods for management of indexes, databases, and
sets of instances of the particular class/type.

The MARIAN generator took for granted the capabilities of the MARIAN API for services such
as searching and browsing. This powerful MARIAN API is a double-edged sword. It
tremendously facilitates the process of DL construction, however, at the same time it enforces a
tight coupling with the DL generator, making it is difficult if not impossible to incorporate other
components into the generated DL.

The MARIAN generator did not take into account a multiple scenario representation of the
services. Since scenarios represent partial description of system behavior, an approach for
scenario composition or scenario integration is needed to produce complete specifications of
generic DL services.

The dependence on the MARIAN API and lack of a scenario-based approach are the principal
drawbacks of the MARIAN DL generator.

2.4.2. Greenstone Suite of Software

Greenstone is a comprehensive software system for creating DL collections. It builds data-
structures for searching and browsing from the material provided [30]. Once a collection already
exists, new material can be added automatically. It has extensive support for new collections.
Extensibility is achieved through software plug-ins written to accommodate documents, and
metadata, in different formats. Greenstone is not based on any formal models. Greenstone expects
the DL designer to provide input only in the form of changes to the configuration file rather than
handcrafted models. As compared with the 5S model, the concept of digital library in Greenstone
is simpler and coarser. The 5S model provides a more holistic view of the digital library as
compared to Greenstone’s model.

 16

2.4.3. 5SGraph: A Domain-Specific Visual Modeling Tool

Figure 2.4 User-Interface of 5SGraph

5SGraph is a DL-specific visual modeling tool that helps DL designers model DLs using the 5S
metamodel. 5SGraph presents the metamodel in a structured toolbox, which shows all visual DL
components and the relationships among them, and provides a top-down visual building
environment for designers. As illustrated by Figure 2.4 the tool is divided into two parts. The
lower part is the structured toolbox that shows all available components of the metamodel and the
relationships among them. The upper part is the workspace in which users can create their
instance models.

The visual proximity of the metamodel and instance model facilitates requirements entry and
simplifies the model development process. 5SGraph outputs 5SL DL models for societies,
scenarios, structures, spaces, and streams. 5SGraph maintains semantic constraints specified by
the 5S metamodel and enforces these constraints over 5SL models to ensure semantic consistency
and correctness. 5SGraph also is designed to accommodate and integrate several other
complementary tools reflecting the interdisciplinary nature of DLs.

Ideally the 5SL models generated by 5SGraph could serve as the input to 5SLGen to generate
instantiations of DLs, however 5SGraph in its current state does not support the modeling of
scenarios and societies. 5SGraph represents an excellent starting point in the modeling of DLs
based on the 5S formal theory. Once seamlessly integrated with 5SLGen, the family of 5S tools
(5SGraph + 5SLGen) would provide a complete CASE environment for DLs. This topic is further
elaborated upon in the section on future work.

2.4.4. CASE Tools

A Computer Aided Software Engineering (CASE) set of tools can provide automated assistance
for software development. A typical CASE tool offers graphical editors to help developers model
all the requirements of a software system. Most CASE tools are based on a metamodel that guides
the creation of different software artifacts, as part of the software development process. The

 17

foundation provided by the metamodel allows CASE tools to validate the models created by the
designers and to automate some of the transitions between software development phases,
including the generation of code. As UML is the de facto industrial modeling language, nowadays
most CASE tools are based on the UML metamodel. CASE tools provide support for forward and
reverse engineering, and support for varying levels of abstraction (for example, from
requirements to analysis to design to code). Popular commercial CASE tools include
TogetherSoft's Together/J [39], Rational Rose [40], and Computer Associate's ERWin [40].
ArgoUML and Umbrello are instances of open-source CASE tools [41].

CASE tool interoperability is achieved by serializing models according to the XMI standard [42].
XMI, the OMG’s XML Metadata Interchange format, is a vendor-independent format for saving
and loading UML models. 5SLGen serializes 5SL models to XMI, which can be read by other
CASE tools. Thus, 5SLGen interoperates with other CASE tools, harnessing the benefits offered
by both domain-specific languages and CASE tools

2.4.5. Other Related Tools

Many tools have been built or are under construction with the purpose of helping build digital
libraries. For the server side, there are Mini SQL, Eprints, Harvest, Sprite, Real Audio, Dienst,
ISite, SiteSearch, and many others. XML modeling tools help users to create XML files and allow
users to load a DTD or a XML schema and create an instance that conforms to that DTD or
schema. However, most of the tools only focus on one or more components of the digital library
system. These systems place the onus on the digital library builders to use these tools and tie them
together.

2.5. Scenario-Based Requirements Analysis and Design

We now focus attention on the task of DL generation starting with the scenario-based
requirements analysis and design approach to software development. An introduction to scenarios
was provided in 1.1.3. In this section, we focus on the role of scenarios in software design and the
challenges faced in incorporating them into the software development process.

2.5.1. Importance of Scenarios in Software Design

In [43] Carroll argues for scenario-based design providing 5 reasons. This section will elaborate
each reason in brief. Figure 2.5 taken from [43] summarizes the five issues raised in the
discussion below.

1. Constructing scenarios evokes reflection in the context of design work, helping
developers to reflect on the work they have already done and to coordinate further design
action.

2. Scenarios are both concrete and flexible, to help developers manage changing

requirements. They are concrete in the sense that they simultaneously fix an
interpretation of the design situation and offer a specific solution. At the same time,
scenarios are flexible, deliberately incomplete, and easily revised or elaborated.

3. Scenarios afford multiple views of an interaction, diverse kinds and amounts of detailing,

helping developers manage the many consequences entailed by different given design
moves. For instance, some scenarios can be developed in detail, for example the ones that

 18

describe the core application functionality, whereas other less problematic scenarios can
be merely sketched.

4. The roughness of scenarios coupled with their ability to be classified in terms of causal

relations enables them to be abstracted and categorized, helping designers to recognize,
capture, and reuse generalizations, and to address the challenge that technical knowledge
often lags the needs of technical design.

5. Scenarios are work-oriented design objects. They describe systems in terms of the work

that users will try to do when they use those systems. Scenarios promote work-oriented
communication among stakeholders, keeping the designer focused on the real design
situation experienced by the user.

Figure 2.5 Challenges and approaches in scenario-based design

2.5.2. Scenario Research

Research in scenario-based requirements analysis and design has identified issues in scenario
generation, in the management of scenario descriptions, in analysis and synthesis of scenarios,
and in bridging the model-system gap from scenario descriptions to software designs and
implementations [8]. Our focus in this study has been on the analysis and synthesis of scenario
descriptions as well as bridging the gap between scenario description and software
implementation. For the purpose of this study, we assume that the scenarios modeled by the DL
designer accurately represent the functional requirements of the system and we focus our energies
on applying different approaches for scenario-synthesis and automatic generation of code from
system requirements into the 5SLGen DL generator.

 19

2.5.2.1. Need for Scenario-Synthesis

The full potential of scenarios is not always fully exploited because of the following problems:
[44, 45]

1. Large number of scenarios. Typical object-oriented software systems are composed of
very large sets of scenarios, and each component is usually involved in the execution of
many different scenarios. Scenarios are highly redundant; some scenario parts are part of
many scenarios, sometimes with small variations.

2. Incompleteness of scenario models. Scenario models are most often meant to describe

typical system behavior paths at an abstract level. From this viewpoint, scenario models
are unavoidably incomplete with respect to the overall set of system scenarios, with
respect to the overall set of requirements, and finally they are incomplete as regards to the
level of detail they give.

3. Concurrency, interactions and dependency between scenarios. Scenarios can be

concurrent and may interact with each other. This is an aspect of object-oriented systems
that makes them particularly complex and difficult to design and may lead to missing
traceability between scenarios and other software artifacts.

4. Lack of change management. The set of scenarios that can be executed by a system or a

component can change over time. The temporal nature of scenarios greatly complicates
component behavior specification.

5. Lack of Models. Models used for capturing scenarios lack adequate expressiveness and

semantic foundation.

6. Weak visualization techniques and Insufficient tool support. There is a lack of
techniques and tools to visualize scenarios at varying levels of abstraction.

The first three problems can be addressed by designing an approach for synthesizing all the
scenarios to create a state machine representation/Statechart of the entire system. The last three
problems can be addressed by creating a toolkit for modeling of scenarios based on a formal
framework.

2.5.2.2. Approaches to Scenario-Synthesis

The different approaches to scenario-synthesis are summarized in this section. A comprehensive
survey of all methods for scenario-synthesis is out of scope for this work. The relevant ones are
listed below.

Koskimies [46] presents an algorithm, SMS (state machine synthesis), for synthesizing a
Statechart from a set of scenarios. A scenario is modeled as a set of event traces. Koskimies
addresses scenario-synthesis as a language inference problem and bases his algorithm on the
Biermann-Krishnaswamy algorithm for learning a program from its sample traces. The main idea
behind SMS is to infer a Statechart diagram able to execute all the given input traces. The SMS
algorithm cannot be used within concurrent systems, and the resultant state machines present no
structural information such as hierarchies. As the SMS algorithm is a backtracking algorithm, it
has an exponential complexity in the worst case.

 20

Desharnais [47] give a formal relation-based definition of scenarios and shows how different
scenarios can be integrated. The view of scenarios is state-based, rather than event-based, like
most of the other approaches. This approach uses Z notation to represent scenario relations and
has the same weaknesses as the previous one. It supports neither hierarchy nor concurrency.

Glinz [48] introduces a Statechart-based model that allows the formal composition of all
scenarios. He defines composition rules for creating an integrated, consistent model of external
system behavior. He does not consider the problem of scenario-overlap. In his approach,
hierarchy and concurrency are well supported. Glinz makes the simplistic assumption of
representing each use case of the system by only one scenario.

Khriss [49] suggest a four-step process for synthesizing behavioral specifications from scenarios
represented as UML collaboration diagrams. From a given set of collaboration diagrams, they
generate the Statechart diagrams of all the objects involved. They address the issue of scenario-
interleaving, concurrency, and hierarchy. Their approach is incremental and enables an iterative
process for dynamic modeling. Their scenario-synthesis algorithms are implemented in a tool
called SUIP, which can generate prototype user-interfaces [7] based on the synthesized scenarios.

We have explored the use of the SUIP tool as a component of 5SLGen in [50-52]. In the first
project [52], we implemented a transformation from 5SLScenarios and 5SLSocieties to the
textual representation of scenarios and classes expected by the SUIP tool. The SUIP tool
synthesized the scenarios and output Statecharts for all the objects in the system in addition to a
user-interface prototype that served to validate the scenarios modeled. In the second project [51],
the SUIP tool was extended to generate a device independent user-interface prototype for services
offered by a digital library from the synthesized scenarios.

The SUIP tool has its limitations. The tool takes UML class and collaboration diagrams as input
in a proprietary textual format. The grammars to represent these UML collaboration and class
diagrams are poorly explained. The synthesized Statecharts generated are not human readable. It
is difficult to understand what needs to be modeled to generate the desired output. Even though
this tool seemingly did everything we needed in terms of scenario-synthesis, it was not possible to
use it to accomplish our objectives.

Whittle [53] presents an algorithm for generating synthesized Statecharts from scenarios. The
approach taken identifies and resolves conflicts in the scenarios. The issues of scenario-overlap
and hierarchy also are addressed. The algorithm expects intervention by the designers once the
Statecharts are generated.

Simona [54] proposes a method of synthesizing Statecharts from multiple scenarios and describes
a set of rules for performing the synthesis. Her method addresses the issues of scenario-
interleaving, scenario-dependency, scenario-overlap, and scenario-concurrency. Simona’s method
bridges the gap between requirements and specification. We have implemented Simona’s method
in this study as part of the implementation of 5SLGen. Details of the implementation are provided
in section 5.2.3.1.

 21

2.6. Underlying Technology and Standards

In this section, we provide a brief overview of the important underlying standards that impact this
study.

HTTP is a stateless message-response protocol used in the World Wide Web. It defines what
actions web servers and browsers should take in response to various commands.

XML (eXtensible Markup Language) is a markup language for documents containing structured
information. It differs from HTML (HyperText Markup Language), as it does not define a tag set
and semantics. XML is a pared-down version of SGML, designed especially for Web documents.
It allows designers to create their own customized tags, enabling the definition, transmission,
validation, and interpretation of data between applications.

XSD (XML Schema Definition) provides a way to describe and validate data in an XML
environment. A schema is a model for describing the structure of information. XSD is a
recommendation of the W3C [55-58].

XSL (Extensible Style Language) and XSLT (Extensible Style Language Transformation). XSL
is a specification for separating style from content while creating HTML or XML pages, and
XSLT is the language used in XSL stylesheets to transform XML documents [59].

JDOM is a Java-based "document object model" for XML files. JDOM serves the same purpose
as DOM, but is easier to use [60].

SAX is an application-programming interface for processing XML. SAX is an event-driven XML
parser [61].

OAI (Open Archives Initiative). The Open Archives Initiative develops and promotes
interoperability standards that aim to facilitate the efficient dissemination of content. The current
OAI technical infrastructure is specified by the Open Archives Initiative Protocol for Metadata
Harvesting (OAI-PMH). OAI-PMH is simply an interface that a networked web server employs
to make metadata-describing objects housed at that server available to external applications that
wish to collect this metadata. Such a web server that exposes metadata through the OAI-PMH is
referred to as a Data Provider. A service provider uses the OAI-PMH protocol to gather metadata
from data providers and then uses the metadata for building value-added services.

OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting). The OAI-PMH is a
client-server protocol layered over HTTP, using CGI-encoded parameters in requests and XML-
encoded data in responses. The aim of the protocol is to support the batch transfer of metadata
from a server (data provider) to a client (service provider) using incremental updates whenever a
transfer is initiated. This process of obtaining all the (new) metadata from a server, instead of
only that which satisfies a search query, is commonly known as harvesting [28]. The OAI-PMH
is made up of six requests and associated responses, three of which are administrative while the
other 3 are for data transfer. These requests, and the semantics of their responses, are as follows:

1. Identify – general information about the archive, administrator, and policies.

2. ListMetadataFormats – a list of all the metadata formats supported by the archive as well
their XML namespaces and schema locations.

 22

3. ListSets – a list of all the subsections of the archive for selective harvesting.

4. ListIdentifiers – a list of identifiers for all records, corresponding to the required metadata
format parameter and optional date range and/or set parameters.

5. GetRecord – a single record, specified by its unique identifier and metadata format.

6. ListRecords – a list of records in the specified metadata format, corresponding to optional

date range and/or set parameters.

OA (Open Archive). An Open Archive (OA) is any archive that implements the OAI-PMH, thus
allowing remote archives to access its metadata using an “open” standard.

XMI (XML format for Metadata Interchange). This specification is based on the W3C’s
Extensible Markup Language (XML). XML Metadata Interchange (XMI) is a standard for
representing object-oriented information using XML. XMI provides a basis for the development
of XML documents and DTDs. The XML Metadata Interchange format (XMI) uses XML to
address the need for a textual representation of UML specifications. The main purpose of XMI is
to enable easy interchange of metadata between different modeling tools, based on UML and
other metadata repositories. One can use XMI to both serialize objects in documents, and to
generate schemas from models. Most modeling tools export models to XMI documents following
the UML-DTD. XMI, together with UML helps form the core of the OMG repository architecture
that integrates object-oriented modeling and design tools [42].

 23

3. The 5S Approach to the Generation of DLs

5SLGen is a DL generator that helps generate implementations of DL services from the 5SL
model instances of DL societies and scenarios. Before delving into a detailed treatment of
5SLGen, we briefly elaborate on the 5S theory and present all the 5SL models with emphasis on
the scenarios and societies models. This is followed by an overview of the modeling and
generation process of DLs based on the 5S approach.

3.1. 5S Metamodel for DLs

The 5S theory explains why the presented set of 5S modeling concepts is necessary to represent
the targeted modeling scope. The 5S theory provides a justification for the modeling concepts of
the 5S metamodel. The precise relationship, and the steps involved in a transformation between a
theory and its corresponding metamodel, is a research problem tackled in [62]. The 5S theory
helps define a vocabulary for all the elements in the domain of DLs and helps others understand
the problem by using the same language. It helps us to manage complexity by raising the level of
abstraction at which we think and design. A complete description of all the formal constructs of
5S has been presented in [15].

The 5S metamodel provides streams, structures, spaces, scenarios and societies as the
fundamental entities for modeling DLs. Streams are sequences of arbitrary items used to describe
static and dynamic content. Structures can be viewed as labeled directed graphs, which impose
organization. Spaces are sets with operations on those sets that obey certain constraints. Scenarios
consist of sequences of events or actions that modify states of a computation in order to
accomplish a functional requirement. Societies are sets of entities and activities and the
relationships between and among them. Figure 3.1 adapted from [15] provides a diagrammatic
overview of all the formalisms that constitute the 5S theory.

Figure 3.1 Overview of 5S and DL formal definitions and compositions

5S

structures streams spaces scenarios societies

structural
metadata
specification

descriptive
metadata
specification

repository

collection

)indexing
service

structured
stream

digital
object

metadata catalog

browsing
service

searching
service

digital
library
(minimal)

services

sequence graph
function

measurable, measure,
probability, vector,
topological spaces

event state)

hypertext

sequence

transmission

Relation language

grammar

tuple*

 24

The formalisms of 5S help define higher-level DL concepts such as digital object, structural and
descriptive metadata, collection, catalog, repository, hypertext, searching service, browsing
service, etc. As illustrated in Figure 3.1, a structured stream consists of a number of digital
objects. Structures provide an organization to the DL by way of structural and descriptive
metadata specifications. A number of digital objects that adhere to the structural metadata
specification constitute a collection. A collection also is described by a descriptive metadata
specification, which serves as the metadata catalog for the collection. Other higher-level DL
concepts are defined in a similar manner.

3.2. 5SL Models for DLs

5SL models are represented in XML with each model having an XML schema that defines the
structure of the model. In the following discussion the terms 5SLSocieties and 5SLSocieties
model as well as 5SLScenarios and 5SLScenarios model are synonyms.

3.2.1. Stream Model

The stream model specifies the kinds and formats of multimedia content supported by the DL.
The model encodes information about the type, encoding, and format of the stream. This stream
information is based on the WWW MIME types to ensure compatibility with current standards.
Example 3.1 shows a part of the instance of the 5SL streams model for the NDLTD Union
Catalog DL.

<streams>
 <text name=‘ETDText’>
 <content-type>text/xml</content-type>
 <charset>UTF-8</charset>
 <content-type>application/pdf</content-type>
 <lang>ENG</lang>
 </text>
. . .
</streams>

Example 3.1 Partial 5SL stream model instance for the NDLTD Union Catalog DL

3.2.2. Structures Model

The structural model is composed of the structures that impose organization on the DL. The
structural model describes the internal structure of digital objects (documents), metadata
standards, properties of collections and catalogs, knowledge organization tools, databases, data-
structures, and all IR constructs. The structural models specify ways in which parts of a whole are
arranged and organized. For instance, documents are defined by imposing structures over sets of
streams or by using the structure to provide some organization among them. In other words, a
document is seen as a structural composition of streams. Example 3.2 shows a part of the instance
of the 5SL structures model for a document in the Union Catalog DL that uses the Dublin Core
XML schema for defining the structure of a Dublin Core metadata record [63].

 25

<structures>
 <document>
 <metadata>
 <oai_dc>
 <title>History of Virginia</title>
 <author>Rohit Kelapure</author>
 ……….
 </oai_dc>
 </metadata>
 </document>
</structures>

Example 3.2 Partial 5SL structures model instance for a document

3.2.3. Spaces Model

The spatial model captures the logical representations and operations of the DL IR constructs and
metric spaces. This model gives details of the underlying DL retrieval models. It also describes
indexes for collections and catalogs (each of which defines a sample space or a multidimensional
vector space, depending on the retrieval model), and describes the user-interface appearance (i.e.,
sets of metric spaces) and behavior.

3.2.4. Societies Model

A society describes a set of entities (human and computer) and relationships among them.
Different entities can be aggregated into a set of communities that share common characteristics
and behavior. Societies are used to specify and construct the static aspects of the system. They
can be viewed as representing the skeleton and scaffolding of the DL. In the societal model, we
identify the different entities that interact within the DL environment and model their
characteristics, functionalities, and semantic relationships. In 5SL, each entity is referred to as a
Service Manager (SM). An SM serves as the binding point for societal relationships, scenario
interactions, spatial visualizations, and the streams of a DL. Each Service Manager is modeled
based on the classical object-oriented paradigm.

Classes are the most important building block of any object-oriented system. Classes can
represent software things, hardware things, and even things that are purely at a conceptual level.
An instance of a class is referred to as an object. Classes describe sets of objects that share the
same attributes, operations, relationships, and semantics. A class is an abstraction of the entities
in a problem domain and thus provides the ideal model for an SM. An SM can be thought of as a
class in the classical OOP paradigm. The 5SLSocieties model captures all the classes of a DL and
their relationships. The subsequent paragraphs explain the 5SLSocieties model in detail.

3.2.4.1. 5SLSocieties Model: Terms and Concepts

Large and complex systems involve a large number of SMs collaborating in different ways. When
modeling 5SLSocieities we model both the SMs and the relationships in which they participate.
Each SM is described by its name, attributes operations, type, visibility, and relationships. We
model three kinds of relationships among SMs: associations, dependencies, and generalizations.
Figure 3.2 shows the 5 fundamental modeling constructs of the 5SLSocieties model, viz.,
attributes, operations, associations, generalizations, and dependencies – in a tree structure. Some
of the modeling elements are modeled as attributes and some as elements in XML. To ensure

 26

clarity of view the attributes of the XML elements have not been shown. For the complete
5SLSocieties schema please refer to appendix A.1. In this section, a brief description of each
modeling element is followed by the corresponding 5SLSocieties instance for the CITIDEL
relevance feedback search service. Elaboration of the 5SLSocieties model will provide the
context for the auto-generation of code from the 5SLSocieties model which is detailed in section
5.2.

Figure 3.2 The 5SLSocieties schema tree view

3.2.4.1.1 Name

The name of the SM serves to distinguish it from other SMs. Example 3.3 shows the
5SLSocieties instance for the name, type, and visibility of the SM.

<ServiceManager NAME="ODLSearchImpl" VISIBILITY="public" TYPE="class">
Example 3.3 5SLSocieties instance showing name, visibility, and type of SM

3.2.4.1.2 Attributes

An attribute represents a property of the SM that is shared by all instances of the SM. An attribute
is an abstraction of the kind of data or state an instance of the SM might encompass. Each
attribute has a name and a type. The type could range from a primitive data type such as integer,
character, string, and enumeration to other types such as SM instances. In addition to these, the
DL designer also can specify the visibility, class-scope, multiplicity, an initial value, and
constraints for each attribute.

The visibility of an attribute specifies whether it can be used by other SMs. The DL designer can
specify three levels of visibility.
� public: An outside SM with visibility to the given SM can use the attribute.
� protected: Any descendant of the SM can use the attribute.
� private: Only the SM can use the attribute.

When an attribute is provided with a class-scope, all the instances of the SM will have the same
attribute value, whereas if an attribute does not have a class-scope a new copy of the attribute is
created for every instance of the SM.

 27

Multiplicity is a specification of the range of allowable cardinalities an entity may assume.
[0..1](zero or one), [*](zero or many), [1..n](one or many), [1..4](one to four) are examples of the
multiplicities that the attribute may assume.

A constraint places certain restrictions on the value assumed by the attribute. Three possible
constraints can be placed on an attribute:
� changeable: There are no restrictions on modifying the attribute’s value.
� addOnly: For attributes with a multiplicity greater than one, additional values might be

added, but once created, a value may not be changed.
� frozen: The attributes value may not be changed after initialization.

Example 3.4 shows the 5SLSocieties instance for the DEBUG attribute of an SM.

<Attribute VISIBILITY="private" TYPE="boolean" NAME="DEBUG" CLASS-
SCOPE="true" CONSTRAINT="frozen" INITVAL="true"/>

Example 3.4 5SLSocieties instance for an attribute

3.2.4.1.3 Operations

An operation is an abstraction of something that you can do to an instance of the SM. Each
operation has a name, and a return-type. The range of values assumed by the return-type could
vary from primitive datatypes to other SM instances. The DL designer also can specify the
visibility, scope, parameter-list, concurrency semantics, and exceptions thrown for the operation.
The visibility and the class-scope of an operation are specified in the same manner as those for
attributes as explained above.

The parameter-list consists of a list of parameters, with each parameter having a name, type, and
an optional default value. The concurrency semantics of an operation are of four types.
� isQuery: Execution of the operation leaves the state of the system unchanged.
� sequential: The SM instance can have only one thread of execution.
� guarded: The semantics and the integrity of the instance is guaranteed in the presence of

multiple flows by sequentializing all calls to all of the instance’s operations.concurrent:
The semantics and the integrity of the object are guaranteed in the presence of multiple
flows of control by treating the operation as atomic.

Example 3.5 shows the 5SLSocieties instance for the searchQuery operation of the SM which
takes an encoded user query as an input parameter and returns a void data type.

<Operation VISIBILITY="public" NAME="searchQuery" RETURN="void">
 <Parameter TYPE="String" NAME="encUserQueryStr"/>
</Operation>

Example 3.5 5SLSocieties instance for an operation

3.2.4.1.4 Type

An SM can be of three types viz., a normal, abstract or an interface.
� An SM of type class has both attributes (properties) and behavior. This is the default

interpretation of an SM unless specified otherwise.
� An SM of type interface defines a collection of operations that specify some aspect of its

behavior. An interface serves as a functional specification or a contract that can be
implemented by other SMs.

 28

An SM of type abstract cannot have any direct instances. It is usually used to model SMs at the
top of a relationship hierarchy. Example 3.3 provides a sample encoding of SM type

3.2.4.1.5 Visibility

The visibility of an SM specifies whether it can be used by or related with other SM in the
5SLSocieties model. There are two levels of visibility:
� public: Any outside SM can use and associate with a public SM.
� private: Only the SM defined within the same model instance can use and associate with

a private SM.
Example 3.3 provides a sample encoding of SM visibility.

3.2.4.1.6 Dependencies

A dependency is a relationship that states that a change in specification of one thing may affect
another thing that is dependent on it. It is also referred to as a “using” relationship. While
modeling societies, we use dependencies to model our dependence on other components and code
libraries. Each dependency has a name, a peer, and a dependency kind. The peer signifies the SM
dependent on, and the kind specifies the type of dependency, which can be of two types
� use: Signifies dependence between an SM and code library and other SMs.
� implements: Signifies dependence between an SM and an interface SM.

Example 3.6 presents the 5SLSocieties instance representing a dependency of the UIMFSM SM
on the ODLSearch SM.

<Dependency PEER="ODLSearchImpl.*" DEPKIND="use"/>
Example 3.6 5SLSocieties instance for a dependency

3.2.4.1.7 Associations

An association is a structural relationship that specifies how SMs are connected to one another.
Given an association connecting two SMs, one can navigate from an instance of one SM to an
instance of the other SM and vice versa. When an SM participates in an association, it has a
specific role that it plays in the relationship. The presence of a rolename implies navigability of
the association. Similarly an absence indicates that the association is non-navigable. Roles are
always mentioned with respect to the SM at the other end of the association. An association also
has a multiplicity that defines the number of instances of one SM that can relate to one instance of
the associated SM. When an association’s multiplicity is one-to-many, there arises a need for a
distinct identifier to qualify the instances on the many side of the relationship. Such an identifier
is referred to as a qualifier for the association. A DL designer also can specify a class-scope,
constraint, and the ordering of instances in an association. The modeling constructs for class-
scope, multiplicity, visibility, and constraints are similar to those for attributes as explained
above. Example 3.7 provides the 5SLSocieties instance representing the association between the
uimFsmClone SM and the ODLUtilties SM being modeled. The UIMFSM SM, which plays the
role of a uimFsmClone in the association, is modeled with a class-level scope and singular
multiplicity.

<Association MULTIPLICITY="1" ROLENAME="uimFsmClone" PEER="UIMFSM"
CLASS-SCOPE="true"/>

Example 3.7 5SLSocieties instance for an association

 29

3.2.4.1.8 Generalizations

A generalization represents a relationship between a general thing (parent SM) and a more
specific kind of thing (child SM). It is also referred to as an “is-a” relationship. In a generalization
the child SM (subclass) inherits attributes and operations from the parent SM (superclass). The
parent SM is more general than the child SM. When modeling a generalization the DL designer
needs to specify the parent and child SMs involved. Example 3.8 shows the 5SLSocieties instance
for a generalization relationship between the RelevenanceFeedbackSearchImpl SM (child) and
the ODLSearchImpl SM (parent).

<EXTENDS FROM “ODLSearchImpl”>
Example 3.8 5SLSocieties instance for a generalization

3.2.5. Scenarios Model

The importance and the role of scenarios in software design has already been reflected upon in
section 2.5. Scenarios are used to specify and construct the dynamic aspects of the system. The
purpose of the scenarios model is to describe the behavior of the DL services. In a sense, they
represent the body of the DL, specifying the interaction between various parts and making sense
of the whole. A scenario is modeled as a sequence of interactions among the SMs. An interaction
comprises of a set of messages being exchanged among a set of objects within a context to
accomplish a specific purpose [37].

A UML sequence diagram can be used to graphically represent the temporal sequence of events
of a scenario. The time is represented by the vertical axis of the sequence diagram (normally time
proceeds downward) and the participating objects by the horizontal dimension. The lifeline shows
the existence of an object and is represented by a dashed line [64]. If an object is destroyed or
terminated during this period, the lifeline ends with the object termination symbol (X). The
interaction is realized using messages sent from the objects playing the sender role to the objects
playing the receiver role. The communication between the objects is denoted by an arrow from
the sender’s to the receiver’s lifeline that represents a message. The message arrow is labeled by
the operation to be invoked. The message label is return-value: = operation-name (argument-list).
A message that initiates the creation of a new object is represented by an arrow pointing with the
arrowhead to the object symbol. For a detailed treatment of sequence diagrams the interested
reader is referred to [19, 37].

The 5SLScenarios model provides an XML-based syntax to serialize the temporal ordering of
messages in a sequence diagram. The messages sent between the sender and the receiver in the
sequence diagram map to the operations defined by the SM. Figure 3.3 shows the hierarchy of the
5SLScenarios XML schema used to define the scenarios. For the complete 5SLScenarios schema
please see appendix A.2.

 30

Figure 3.3 The 5SLScenarios schema tree view

3.2.5.1. 5SLScenarios Model: Terms and Concepts

In 5S, a DL service is represented by multiple correlated scenarios. Therefore, the 5SLScenarios
model contains an XML serialization of all the sequence diagrams related to the service. As
mentioned before a multitude of scenarios is required to model a service completely. We
therefore require that for a complete specification of the DL, the DL designer must model a
minimum of one primary scenario for each service. In the sections below we detail each modeling
element of the 5SLScenarios model and provide an instance for the same. Elaboration of the
5SLScenarios model will provide adequate background for understanding the scenario-synthesis
algorithm and auto-generation of code from scenarios, detailed in section 5.2.3.

 31

3.2.5.1.1 Service

As illustrated in Figure 3.3, each service has a name and is composed of one-to-many scenarios.
Only one service can be modeled in a 5SLSocieties instance at a time. Example 3.9 shows a part
of the 5SLScenarios instance for the name of a service.

<SERVICE NAME="RelevanceFeedbackSearchService">

Example 3.9 5SLScenarios instance for a service

3.2.5.1.2 Scenario

Each scenario consists of a note, an interface object, a start message, and a list of events (see
Figure 3.3). A note serves the purpose of documenting the scenario. The interface object specifies
the SM responsible for receiving user input events and presenting output to the user. The start
message specifies the state of the interface SM before the scenario begins. The significance of
this element will be elaborated upon later while explaining the scenario-synthesis algorithm.
Example 3.10 shows the 5SLScenarios instance for the primary scenario of the CITIDEL
relevance feedback search service.

<SCENARIO SC_NUMBER="1">
 <NOTE> This is the simple scenario for the relevance feedback search service wherein
 1 User issues a basic search for certain documents.

 2 After seeing the results of the search the user does a relevance feedback
search with the selected documents.
3 After seeing the results of the relevance feedback search the user then
retrieves a document of his choice.

 Any sequence of the above 3 steps can be repeated after the first step

 </NOTE>
 <INTERFACEOBJECT>UIMFSM</INTERFACEOBJECT>
 <STARTMESSAGE>MainMenu</STARTMESSAGE>

 <LISTOFEVENTS>
 ……..
</SCENARIO >

Example 3.10 5SLScenarios instance for a scenario

3.2.5.1.3 Event

Each event (see Figure 3.3) is described by a sender, a receiver, the message between them, and
the list of actions taken on receipt of the message. The sender sends the message to the receiver,
which on the receipt of the message the receiver takes the appropriate actions. For instance, in
Example 3.11 the user sends a GET HTTP event to the interface SM. On receiving the doGet
event the SM in this case, the UIMFSM, calls on the parseRequest action to ascertain the nature
of the request.

 32

<EVENT SEQNO="1">

 <SENDER>User</SENDER>
 <RECEIVER>UIMFSM</RECEIVER>
 <MESSAGE NAME="doGet">
 <LISTOFARGUMENTS>
 <ARGUMENT>HttpServletRequest(request)</ARGUMENT>
 <ARGUMENT>HttpServletResponse(response)</ARGUMENT>
 </LISTOFARGUMENTS>
 <LISTOFEXCEPTIONS>
 <EXCEPTION>ServletException</EXCEPTION>
 <EXCEPTION>IOException</EXCEPTION>
 </LISTOFEXCEPTIONS>
 </MESSAGE>
 <LISTOFACTIONS>
 <ACTION NAME="parseRequest">
 <ARGUMENT>HttpServletRequest(request)</ARGUMENT>
 <ARGUMENT>HttpServletResponse(response)</ARGUMENT>
 </ACTION>
 </LISTOFACTIONS>
 </EVENT>

Example 3.11 5SLScenarios instance for an event

3.2.5.1.4 Message

As illustrated in Figure 3.3, a message has a name, a method, and a list of arguments. The method
corresponds to the name of the operation defined in the 5SLSocieties model for the SM. The
name signifies the state of the SM after sending the message. Each argument in the list of
arguments has a name and type. Consider the message searchQuery sent from the UIMFSM SM
to the ODLSearch SM in Example 3.12. Execution of the searchQuery method, defined in the
5SLSocieties instance for the ODLSearch SM (see Example 3.5), results in the sender, UIMFSM
SM, going to the search state.

 <EVENT SEQNO="3">
 <SENDER>UIMFSM</SENDER>
 <RECEIVER>ODLSearch</RECEIVER>
 <MESSAGE NAME="search" METHOD="searchQuery">
 <LISTOFARGUMENTS>
 <ARGUMENT>String(searchStr)</ARGUMENT>
 </LISTOFARGUMENTS>
 </MESSAGE>
 </EVENT>

Example 3.12 5SLScenarios instance for a message

3.2.5.1.5 Action

As illustrated in Figure 3.3, an action is comprised of a name, a list of arguments, and any
exceptions thrown. An action is taken by a sender on receiving an event. For the 5SLScenarios
instance encoding of an action please refer to Example 3.11. An action is always taken passively
in response to an event whereas a message is sent actively by an SM.

 33

3.3. Modeling and Generation of DLs

In this section, we present an overview of the entire modeling and generation process and provide
the big picture (please look at Figure 3.4) of the complete process of building DLs using the 5S
family of tools. This process of building DLs is then compared with different software
development paradigms. All the previous sections have laid the groundwork for this section.
Please note the role played by 5SLGen, the focus of this work.

Figure 3.4 Overview of the architecture for DL modeling and generation

3.3.1. Process of Building a DL

We adopt an approach shown to be highly effective in other areas of computing: develop
powerful theories and metamodels (i.e., 5S); use them to develop formal specifications (i.e., 5SL),
and generate tailored systems from those specifications (using 5SLGen).
The process of building a DL with 5S is a 4-step process.

Specifying the Metamodel: First the DL expert captures all “societal” conditions and capabilities
to which the DL must conform. 5S provides a common ground of terminology and a domain
model that is close to the DL world and furnishes precisely defined concepts so that the resulting
description is understandable by end users. The role of the DL expert is to design a metamodel for
DLs, which will be used for modeling the DL. We already have defined the 5S metamodel for
DLs. The DL expert may either create a new metamodel, use the 5S metamodel, or extend the 5S
metamodel for digital libraries.

Capture Requirements as 5SL Models: The 5SGraph modeling tool processes the metamodel,
allowing the digital librarian (or the DL designer) to visualize the components of the metamodel.
The DL designer must be aware of the functional requirements — what services a community
needs and what form of interaction these services should have with the users of the DL – say
practitioners, teachers, and researchers. The designer uses those visualized graphical components
of the metamodel to put together the final model of his own digital library. The DL requirements
acquired with 5SGraph are captured with user-level 5SL models.

5S
Meta

Model
5SGraph

DL
Expert

DL
Designer

5SL
DL

Models

5SLGen

Practitioner

Researcher

Tailored
DL

Services

Teacher

component
pool

ODLSearch,
ODLBrowse,
ODLRate,
ODLReview,

…….

5S
Meta

Model

5S
Meta

Model
5SGraph

DL
Expert

DL
Designer

5SL
DL

Models

5SL
DL

Models

5SLGen5SLGen

Practitioner

Researcher

Tailored
DL

Services

Tailored
DL

Services

Teacher

component
pool

ODLSearch,
ODLBrowse,
ODLRate,
ODLReview,

…….

 34

Generation and Modification of 5SFramework classes: The 5SL DL models are input to the
5SLGen DL generator, along with a pool of reusable DL components (a component implements a
specific service such as search, browse, rate, etc.), to generate classes for the 5SFramework. The
5SFramework is a reusable design, expressed as a set of classes, which implements the modeled
DL and supports reuse at a larger granularity than classes. This transformation from 5SL models
to object-oriented classes involves scenario-analysis, scenario-synthesis, component pool
utilization, and mapping of 5SL constructs to programming language concepts. The 5SLSocieties
and 5SLScenarios models are instances of the 5SLSocieties and 5SLScenarios schema defined in
sections 0 and 0.

Deployment of the DL services: The DL designer finishes the modeling and generation process
by modifying the generated 5SFramework classes and coupling them with the user-interface
provided by the web developer. Once a DL is generated, it is tested to complete the process of
building a DL. Further customization entails refinement of 5SL models, regeneration, and
modification of 5SFramework classes, followed by user-interface coupling.

3.3.2. 5S Approach VS. Software Development Paradigms

In this section, we will compare the 5S approach to the standard software development paradigms
for systems development.

 A Software Development Paradigm outlines a development strategy typically consisting of five
activities: Requirements Analysis, Design, Implementation, Integration & Testing, and
Maintenance [65]. Different paradigms decompose these activities in different ways based on the
timing of an individual activity and its outcome. The first of these models, the Waterfall model,
places the five development processes in a linear sequence. The disadvantages of this approach
are well documented [66]. Subsequent approaches followed a model of prototyping and
successively refining the implementation based on user feedback. This approach is referred to as
the evolutionary-approach to software development. Examples of this approach include the Spiral
model [67], Rapid Application Development [68], and the more recent Extreme Programming
[69].

Figure 3.5 5S approach vs. software development paradigms

Requirements Analysis Design Implementation Test

5S
Metamodel

5SL
Model

Workflow
OO Classes

ODL
Components

DL
Evaluation

5SGraph 5SLGen
Tailored DL

Formal
Theory

DL XML
Log

Requirements Analysis Design ImplementationImplementation TestTest

5S
Metamodel

5SL
Model

Workflow
OO Classes

ODL
Components

DL
Evaluation

5SGraph 5SLGen
Tailored DL

Formal
Theory

DL XML
Log

 35

All the six activities of a software development paradigm can be mapped onto the 5S approach
for building DLs. (Please look at Figure 3.5.) The 5S approach, particularly the 5SLGen tool,
supports the evolutionary-prototyping approach by automatically generating object-oriented
classes from the 5SL models that can be successively refined after user feedback.

During the Requirements Analysis phase, the DL designer captures the functional requirements of
the DL in the form of 5SL models of societies, scenarios, spaces, structures, and streams.

The focus of the Design phase is to produce models that are closer to the implementation and the
target architecture, but still preserve the structure of the system as captured during requirements
analysis. 5SLGen produces design models from 5SL models by transforming higher-level 5SL
concepts into object-oriented classes and workflows.

Finally, in the Implementation phase, 5SLGen uses the produced design models to generate
running DL services by integrating components from pools, mapping models to specific target
platforms and languages (e.g., Java, Perl), and compiling and producing new components and
subsystems.

In the Integration and Testing phase, the generated DL services are integrated with the user-
interface and tested for functionality. One possible way to evaluate and test a live system in a
production mode is through log analysis. Accordingly, our team [70] has proposed an XML-
based log standard for digital library log analysis based on 5S.

The reuse of components from the component pool as well as the 5SFramework architecture of
the generated DL facilitates all activities in the Maintenance phase.

 36

4. The 5SLGen Digital Library Generator: Design and Architecture

In this chapter, we describe the design and architecture of the 5SLGen DL generator. The
emphasis here is on “who does what” rather than “how is it done”. We first start with the design
of 5SLGen. Thereafter, we elaborate on the input, output, and the architecture of 5SLGen. At the
end of this section, the reader will have a grasp of the functionality and architecture of the
5SLGen DL generator.

The 5SLSocieties and 5SLScenarios models mentioned hereafter are instances of the
5SLSocieties and 5SLScenarios schemas (see appendix A). These models constitute the layer M0
of the OMG metamodel architecture and represent instantiations of the 5SLSocieties and
5SLScenarios layer M1 models.

4.1. 5SLGen: Design

We envision the services exposed by a DL to be either of the composite or elementary type. We
have already explained the categorization of DL services in section 2.1.2.2. To summarize the
discussion, elementary services provide the basic infrastructure for the DL whereas composite
services fulfill the information seeking needs of DL users. Composite services are composed of
other services (elementary or composed) by reusing or extending them.

The problem of composability of services has been studied recently, mainly in the web
community [71-73]. However, DL services are restricted to certain specific types with
constrained inputs and outputs, therefore making the problem more manageable and possible to
be treated with domain-specific techniques. Figure 4.1 shows a model for the services exposed
by the tailored DL produced by 5SLGen. The model defines composite services recursively as an
aggregation of other services, composite or elementary.

The application logic of a composite service is described by a workflow, i.e., a combination of
control and data flows that mirror the behavior defined in the scenarios for the service, including
invocations of other services. Statecharts [48] and Petri-nets [74] are possible notations for
formally representing workflows. In our implementations, we chose Statecharts to represent the
workflow of a service. Statecharts, introduced by Harel [75], represent a compact way of
describing the dynamic aspects of the system. Statecharts are an extension of finite state automata
to include hierarchical decomposition, concurrency, and structured transitions. At the bottom of
the decomposition, all Statecharts are ordinary finite state automata/state-event diagrams.
Statecharts connect events and states. When an event is received, the system leaves its current
state, initiates the actions specified for the transition, and enters a new state. The next state
depends on the current state as well as the event.

 37

 Figure 4.1 DL service composition model

The distinct aspects of this model are

1. The combination of an explicit workflow and service aggregation to support composite
services.

2. The emphasis on scenario-based modeling of services and the automatic synthesis of

Statecharts from them.

3. The role of the SM (a societal member) as the binding point for societal relationships,
scenario interactions, and spatial visualizations.

From an architectural and implementation point of view, point 1 becomes significant, since
combining a small set of basic DL services (like searching and browsing) from a pool of DL
components allows a designer to model and generate most digital libraries (at least from the
behavioral point of view) with a minimum amount of coding. The only situations when coding is
unavoidable are, for example, when a specific behavior of a composite service (e.g., Multi-
classification browsing) is not defined by any component in the core pool or cannot be reused
(e.g., due to incompatibility of interfaces).

It is interesting to notice the connections between the roles of the SM and the classical Model-
View-Controller (MVC) architecture of user-interfaces [14], which explicitly separates
functionality, behavior, and presentation and has helped facilitate the development of user-
interfaces that are modular and extensible. This relationship is further explored in section 4.3.

This model in Figure 4.1 shows how the five ‘Ss’ help when defining all components of a real,
implemented DL. Services are implemented as components taken from the pool or automatically
generated from the societies and their interactions/relationships. SMs define the context or
functionality of the service in terms of its operations and the data it expects, and are associated
with a spatial (presentational) model of a user-interface. This design provides the basic
architectural underpinnings for the 5SLGen, as described in the next section.

W ork flo w

h as

C om po site
S er vice

co m p o sed o f

S e rvice

C o llec ting
S erv ice

co m po sed o f

bin d ing

E lem en tary
S er vice

L in k ing
S e rvice

In d ex in g
S e rvice

R a ting
S e rvice

…

S cen ar io s
co m p osed o f

gen e ra tes

M an ag er

U ser
In te rface

(co m p o n ent)

A c to rs
d isp laysS p aces

S o c ie tie s

S o c ie tie sS tream s + S tru cture s
co m m u n ica te s

S cen a rio s

p articip ate s

 38

4.2. 5SLGen: Input

The 5SLGen DL generator takes three things as input.

1. 5SLSocieties model of the services being modeled:
The DL designer models each society as a collection of cooperating SMs. The model
specifies their attributes, operations, and relationships.

2. 5SLScenarios model of the services being modeled:

The DL designer models each service with multiple scenarios. A scenario involves a
sequence of interactions among multiple collaborating SMs. A set of messages is
exchanged in an interaction. Each message corresponds to an operation invocation on the
receiver SM with certain exceptions.

3. Reusable set of classes that compose the component pool:

The functionality of each elementary service such as searching, browsing, etc., is
provided by a component. In terms of software, the component is a package/collection of
classes that exposed a clean interface and implements a specific functionality. We
consider components as “black boxes” that can be incorporated into a generated DL
without knowing their implementations [76]. A collection of such components is referred
to as the component pool. The ODL project has helped constitute such a pool of
components [11].

The implementation of the component can be in any language. Therefore, in order to use
them on a particular platform or with a specific language we need to define translators or
wrappers that translate any foreign operations on a component to its native operation. For
instance if the DL being generated is a Java web application and the implementation of
the search component is in Perl, then we need to define a wrapper that translates the Java
method calls on the search component to Perl method invocations and returns the
appropriate results from the Perl component to the Java web application. The job of a
wrapper is to act as a bridge between two applications implemented in different
programming languages or platforms.

In the context of 5SLGen, the ODL components, originally implemented in Perl, have
been encapsulated through a Java interface, allowing them to be imported by the Java
classes for the SMs. Any component that follows the ODL protocols can be included into
the component pool, by defining a wrapper that exposes its functionality in Java. The
standard semantics of the OAI-PMH protocol thus enables the compositions of
heterogeneous components with the wrappers acting as a bridge between the protocol
implementation and the target platform.

4.3. 5SLGen: Output

The 5SLGen takes the above input and generates object-oriented classes. These classes along
with the wrapper classes from the component pool constitute the 5SFramework. The service
implementations reuse the implementation of the elementary services from the component pool.
If a composite service is completely defined by a collection of elementary services, then a
complete implementation is generated, however if the composite service contains certain
functionalities that are not present in the component pool, 5SLGen generates a partial
implementation. The DL designer completes this partial implementation, by adding code at

 39

certain extension points. The DL designer only writes code for the functionalities that are not
present in the component pool. In this process, he is aided by 5SLGen, which provides a
framework of classes to modify. The amount of code written depends largely on the overlap
between the functionalities desired and the functionalities exposed by the components in the
component pool.

The 5SFramework classes generated are differentiated into model, view, and controller based on
the MVC design pattern. The MVC design pattern helps better separate the three essential views
of a DL listed below:

a. The logic of the application (the model). The model consists of the SMs from the
component pool and other SMs that are implemented/extended by the DL designer.

b. The control of the interaction triggered by the user's actions (the controller). The

controller is responsible for interpreting the user's request, producing the appropriate
request for action, examining the result of each action, and deciding what to do next. The
controller class is generated by synthesizing all the scenarios of the composite service.

c. The interface presented to the user (the view). The view embodies the presentation logic

for assembling the user-interface.

The model and the controller in the 5SFramework are coupled by 5SLGen. 5SLGen does not
generate any classes for the view of the DL. We envision that the view for the DL will be
constructed by web designer rather than the DL designer. The model and the controller are
organized in the 5SFramework, in such a way that the view can be coupled easily by a web
designer at a later stage. The interaction among the 5SFramework classes generated by 5SLGen is
illustrated by Figure 4.2. Details of the interaction are provided in the next chapter.

Figure 4.2 Classes of the 5SFramework in context to the MVC design pattern

4.4. 5SLGen: Architecture

5SLGen is primarily composed of two architectural components, viz., the scenarios-converter and
the societies-converter. They are responsible for transforming the 5SLSocieties and 5SLScenarios
models to the 5SFramework classes that implement the DL services. This section presents the
component architecture of 5SLGen. We will dive into the implementation of each 5SLGen
component in the next chapter. Figure 4.3 illustrates the component architecture of 5SLGen and
the 5SFramework. Table 4.1 summarizes the transformations carried out by each 5SLGen
architectural component.

User Controller Model

View

requests updates

updatespresents

User Controller Model

View

requests updates

updatespresents

 40

Figure 4.3 Architecture of 5SLGen and the generated 5SFramework classes
(expanding part of Figure 3.4)

4.4.1. Societies-Converter

As the name suggests the societies-converter (please look at Figure 4.3) operates on the
5SLSocieties model. The societies-converter is responsible for transforming the 5SLSocieties
model to a programming language specific code skeleton. The generated Java classes along with
the classes from the component pool constitute the application logic/model of the DL.

We have chosen to transform the modeling constructs in the 5SLSocieties model to Java. This
transformation can be applied because most of our 5SL modeling entities lend quite well to
object-oriented programming concepts. The exact mapping from the 5SLSocieities model to Java
language constructs is explained in the next chapter.

The societies-converter is also responsible for serializing the 5SLSocieities model to XMI. This
serialization of the 5SLSocieties model to XMI entails deriving a mapping of the UML
metamodel to the 5S metamodel. The societies-converter implements this mapping to serialize
5SLSocieties model to XMI according to the UML DTD for XMI released by the OMG.
Exploring the XMI standard or the UML DTD for XMI is out of the scope of this report; instead,

5SLScenarios
Model

DL
Designer

5SLGen

5SLSocieties
Model

Societies
converter

Scenarios
converter

Java
Classes
Model

XMI
Serialized

5SLSocieties
model

Java
Controller

Class

Synthesized
Statechart

import

import

Component
Pool

ODL
Browse

Java

Wrapping

ODL
Search

Java

Wrapping
JSP
User

Interface
View

Web
Designer

DLServices Implementation

5SLScenarios
Model

DL
Designer

5SLGen

5SLSocieties
Model

Societies
converter

Scenarios
converter

Java
Classes
Model

XMI
Serialized

5SLSocieties
model

Java
Controller

Class

Synthesized
Statechart

import

import

Component
Pool

ODL
Browse

Java

Wrapping

ODL
Browse

Java

Wrapping

ODL
Search

Java

Wrapping

ODL
Search

Java

Wrapping
JSP
User

Interface
View

Web
Designer

Web
Designer

DLServices Implementation

 41

the emphasis here is on the transformation from 5SL to XMI. For a thorough coverage of the
XMI standard, refer to [42, 77].

4.4.2. Scenarios-Converter

The scenarios-converter (please look at Figure 4.3) implements the scenario-synthesis algorithm
on the 5SLScenarios models and generates a Statechart for the controller of the DL services. This
transformation from multiple service scenarios to a single Statechart is explained in the next
chapter. The Statechart generated can be given to any valid state machine compiler to generate a
controller for the DL services. Generation of the Statechart as a separate artifact decouples our
scenario-synthesis algorithm from the rest of the scenarios-converter implementation making the
5SLGen extensible and modular.

In addition to generating a Statechart, the scenarios-converter generates a controller Java class for
the DL services based on the State design pattern [13]. The State pattern localizes state-specific
behavior in an individual class for each state, and puts all the behavior for that state in a single
state object eliminating the necessity for a set of long, look-alike conditional statements. In the
context of 5SFramework, when the controller class receives an event, it delegates the request to
its state object, which provides the appropriate state specific behavior.

Table 4.1 5SLGen component functionality

Input 5SLGen Component Output
5SLSocieties model societies-converter XMI:Class serialization of 5SL

Models

5SLSocieties model societies-converter Java class skeleton for the
Societies model

5SLScenarios model scenarios-converter
Synthesized Statechart for the
controller of the composite DL
service

5SLScenarios model scenarios-converter Java class for the controller of
the DL composite service

 42

5. 5SLGen: Implementation

In this chapter, we describe the architecture and implementation 5SLGen. We start with a
description of the platform and environment used for implementing 5SLGen. In the body of the
chapter, we elaborate on the implementation of 5SLGen components and their workflow, placing
emphasis on the transformation process from 5SLSocieties and 5SLScenarios models to code.
Workflows of the components are illustrated with diagrams.

5.1. 5SLGen: Platform and Environment

5SLGen is implemented in Java. It can be deployed on any platform. The DLs created using
5SLGen can be deployed as web applications on any standard servlet container that implements
the servlet-2.3 and JSP-1.2 specification. The servlet container of our choice was Tomcat. Each
DL service is implemented as a servlet. 5SL XML documents were parsed using the Xerces open-
source XML parser. The implementation of some of the modeled services uses the open-source
mySQL database for persistence. We have chosen open-source tools and technologies whenever a
valid and viable open-source choice was available.

Care was taken during the implementation of 5SLGen to avoid hard coding any variables in the
source code. All configuration and customization is done from the command-line, via a properties
file, or through properties classes. For instance, all the XML tag names used for serializing the
5SLSocieties model to XMI have been placed in a particular Java class. This facilitates future
maintenance of the code, as any XMI schema change would require all changes to be made to
only one file rather than the entire code base.

5.2. 5SLGen: Implementation

5SLGen consists of two components, viz., the scenarios-converter and the societies-converter.
The implementation of each converter is explained below in brief.

Figure 5.1 Workflow of the societies-converter (expanded part of Figure 4.3)

JDOM
Transform

XMI:Class
Model

Xmi2Java
Java

Classes
Model

Java
Mapper

XMI
Serializer

Societies-converter

5SLSocieties
Model

DL
Designer

JDOM
Transform

XMI:Class
Model

Xmi2Java
Java

Classes
Model

Java
Mapper

XMI
Serializer

XMI
Serializer

Societies-converter

5SLSocieties
Model

5SLSocieties
Model

DL
Designer

 43

5.2.1. Societies-Converter: Implementation

The workflow of the societies-converter is illustrated in Figure 5.1. The societies-converter has
two workflows corresponding to its functionalities listed in Table 4.1. Both the workflows have
the same first step, i.e., the construction of the input language syntax tree. This is carried out by
the JDOM transform package.

JDOM Transform: The 5SLSocieties model is parsed by an XML parser, in our case the Xerces
Java parser, to construct a Java representation of the 5SLSocieties XML. The parse tree holds in-
memory representation of the input 5SLSocieties model. Construction of the parse tree is
absolutely essential since it captures the document in a data structure on which all further
processing algorithms operate [78].

After construction of the parse tree, two kind of processing occur, namely, mapping to Java code
and serialization to XMI. This corresponds to the two workflows of the societies-converter
component.

5.2.1.1. 5SLSocieties to Java classes

Java Mapper: The mapping of 5SLSocieties model constructs to Java [79] is carried out by the
Java Mapper package (see Figure 5.1). The 5SLSocieties model captures the details of the SMs
and their relationships. Each SM is described by its attributes, operations, associations,
dependencies, and its generalizations. Each of these modeling entities maps on to a programming
language construct in Java. Table 5.1 summarizes this mapping from the 5SLSocieties model to
Java. The mapping provides insight into how we met certain challenges such as lack of multiple
inheritance in Java. The 5SLSocieties modeling elements in the mapping are referred to as
SM.name, SM.operation and so on. The Java language constructs in the mapping are represented
in object.member notation.

Table 5.1 Mapping of 5SLSocieties model elements to Java language constructs.

5SLSocieties model

Element
Java language

construct
Notes

Model element = SM
An SM maps to a class in Java.

SM.name class name SM.name is the name of the Java class.
ServiceManager

class
interface
abstract class

SM.type =classÆ Java construct = class
SM.type=interface Æ Java construct = interface
SM.type=abstractÆJava construct=abstract class

SM.visibility

access modifiers SM.visibility maps one on one with class
visibility. SM.visibility= private Æ
class.visibility = private
SM.visibility= public Æ class.visibility = public

Model element = Attribute (SM.attribute)
An SM attribute maps to an attribute in Java.

SM.attribute.name attribute name SM.attribute.name = attribute name
SM.attribute.class-scope

special modifier
(instance variable or
class variable)

SM.attribute.class-scope=false Æ
attribute is an instance variable
SM.attribute.class-scope=true Æ
attribute is a class variable

SM.attribute.visibility

access modifiers 3 visibility modes are defined private, public and
protected. A one-to-one mapping exists between

 44

 attribute visibility=SM.visibility.
SM.attribute.multiplicity

arrays of
instance/class
variable

SM.attribute.multiplicity[1..n] Æ
public Integer items[];

SM.attribute.type primitive
datatypes,classes

SM.attribute.type=primitive datatype Æ
Java datatype is a primitive datatype
When, SM.attribute.type=SM Æ
Java datatype is the corresponding class,

SM.attribute.constraint

special modifier When, SM.constraint = “frozen” Æ Java
modifier = “final”

Model element = Operation (SM.operation)
An SM operation maps to a method in Java.

SM.operation.name method name SM.operation.name = method name
SM.operation.visibility access modifier See note above for attributes.
SM.operation.constraint special modifier See note above for attributes.
SM. operation class-scope special modifier SM.operation.class-scope=”true” Æ

special modifier=“static”
SM.operation.class-scope=”false”Æ
no special modifier

SM.operation. parameter.
name
SM.operation.parameter.type

parameter list SM parameter.names and SM.parameter.types
are aggregated to generate a comma-separated
list of parameter declarations.

SM.operation.concurrency - The SM.concurrency modeling element has not
been mapped yet to Java. By default all
operations as of now are sequential in nature.

Model element = Dependency (SM.dependency)
An SM dependency either leads to a package/class import or implementation of an interface.

SM.dependency.peer class/package name SM.dependency.peer = class/package name. The
SM on which the dependency exists maps to a
class or a package depending on the kind of
dependency.

SM.dependency.kind OOP specific
keywords

SM. dependency.kind =”import” Æ
OOP specific keyword =”import”
SM. dependency.kind =”implements”Æ
OOP specific keyword =”implements”

Model element = Association (SM.dependency)
An association is modeled as an attribute in Java [80]. For instance, if an SM A is in

association with an SM B, and the SM B plays the role of a teacher in the association, then the
class A will have a data attribute of name teacher and type B. Java code: private B teacher;

SM.association.name - The SM association name serves to uniquely
identify a bidirectional association.

SM.association.peer class This is the class that is in association with the
modeled SM.

SM.association.role name of the
instance/class
variable

If the rolename is not defined then the
association is non-navigable.

SM.association.qualifier HashTable class A HashTable class takes care of uniquely
identifying classes in a one-to-many association.

SM.association.class-scope special modifier See note above for attributes.
SM.association.constraint special modifier See note above for attributes.

 45

Modeling element = Generalization (SM.dependency)
Since Java does not permit multiple inheritance, we implement multiple inheritance in Java

using interfaces. Say class son inherits from classes mother and father. In that case, we create
three implementation classes (sonImpl, motherImpl, fathterImpl) and three interfaces (sonIntf,
motherIntf, fatherIntf). As multiple inheritance is permitted with interfaces in Java, we make

the sonIntf extend the motherIntf and fatherIntf. At the same time, we make the sonImpl
implement the sonIntf, motherImpl implement the motherIntf, and the fatherImpl implement
the fatherIntf. As interfaces are contracts that are honored by their classes, the sonImpl class

inherits from the motherImpl and fatherImpl classes.
SM.generalization.from Class The name of the parent class

A 5SLSocieties model fragment for the RelevanceFeedback SM and the Java source code
generated according to the mapping rules described above is shown in Example 5.1 and Example
5.2 respectively. The Java code generated from the 5SLSocieties model is a skeleton for the
actual implementation of the SM. It is the responsibility of the DL designer to flesh out the
implementation from the skeleton generated by 5SLGen.

<ServiceManager NAME="RelevanceFeedbackSearchImpl" VISIBILITY="public" TYPE="class">

<Attribute VISIBILITY="private" TYPE="boolean" NAME="DEBUG" CLASS-
SCOPE="true" CONSTRAINT="frozen" INITVAL="true"/>

<Operation VISIBILITY="public" NAME="relevanceFeedbackSearch" RETURN="void">

 <Parameter TYPE="ArrayList" NAME="oaiIds"/>
 </Operation>

<Association MULTIPLICITY="1" ROLENAME="uimFsmClone" PEER="UIMFSM"
CLASS-SCOPE="true"/>
<Association MULTIPLICITY="1" ROLENAME="handler" PEER="SAXPrintHandler" />

<Association MULTIPLICITY="1" ROLENAME="ODLSearch" PEER="ODLSearchImpl" />

 <Dependency PEER="Java.util.*" DEPKIND="use"/>
 <Dependency PEER="org.xml.sax.XMLReader" DEPKIND="use"/>
 <Dependency PEER="org.xml.sax.InputSource" DEPKIND="use"/>
 <Dependency PEER="org.apache.xerces.parsers.SAXParser" DEPKIND="use"/>
 </ServiceManager>

Example 5.1 5SLSocieties model for the relevance feedback search SM

import org.apache.xerces.parsers.SAXParser;
import org.xml.sax.InputSource;
import org.xml.sax.XMLReader;
import Java.util.*;
import Java.util.*;

public class RelevanceFeedbackSearchImpl {

 //Attribute
 private static final boolean DEBUG =true;

//Operation
public void relevanceFeedbackSearch (ArrayList oaiIds){ }

 46

//Associations
private static UIMFSM uimFsmClone ;
private SAXPrintHandler handler ;
private ODLSearchImpl ODLSearch ;

//Getters and Setters
 public UIMFSM getUimFsmClone (){ return(uimFsmClone); }
 public void setUimFsmClone (UIMFSM setObject){ this.uimFsmClone = setObject; }

 public SAXPrintHandler getHandler (){ return(handler); }
 public void setHandler (SAXPrintHandler setObject){ this.handler = setObject; }

 public ODLSearchImpl getODLSearch (){ return(ODLSearch); }
 public void setODLSearch (ODLSearchImpl setObject){ this.ODLSearch = setObject; }

}

Example 5.2 Generated Java code for the relevance feedback search SM

5.2.1.2. 5SLSocieties to XMI

XMISerializer: The parse tree created by the JDOM Transform package serves as input to the
XMISerializer package (see Figure 5.1). The XMISerializer then applies a set of transformation
rules to create an XMI representation of the 5SLSocieties model. The XMISerializer has an
operation similar to that of the Java Mapper, however instead of mapping to Java classes, we map
from the 5SLSocieties model to the UML DTD for XMI (explained in section 4.4.2). This
mapping cannot be elaborated here due to limitations on the size of the document and the
complexity of the UML DTD for XMI specification [42]. Indeed, implementing the
XMISerializer was one of the challenging tasks in this project. Several tools such as EMF, MDR,
and XMI-Toolkit [77, 81, 82] were looked at, however none of them was able to map between the
metamodels of 5S and UML. Failing to find a third party tool, we have implemented our own
XMISerializer tool. For a 5SLSocieties model containing 139 lines of XML, the corresponding
XMI document is 1080 lines long. This gives an idea of the verbosity of the XMI standard and
the complexity of the task.

XMI:Class: The XMI generated from the XMISerializer is referred to as XMI:Class (see Figure
5.1) because we are mapping only the 5SLSocieties model to XMI. For a complete mapping to
XMI, we also need to map the 5SLScenarios model to XMI. This XMI:Class can be imported into
other CASE tools. Figure 5.2 presents snapshot of the 5SLSocieties model loaded into the
Poseidon CASE tool [83].

 47

Figure 5.2 5SLSocieties model imported into the Poseidon CASE tool using XMI

XMI2Java: Once the XMI:Class model has been generated by the XMISerializer, one can use
open-source XMI2Java or CASE tools for XMI2Java conversion (see Figure 5.1). The dotted
arrow in Figure 5.1 from the XMI2Java package to the Java classes indicates that the workflow
involving the XMISerializer, XMI:Class, and XMI2Java is optional. In most cases, we envision
the DL designer will not use the XMI serialization of the 5SLSocieites model. Having said that,
we have provided the flexibility to the DL designer to move away from 5SLGen’s Java Mapper to
other code generation tools and CASE tools. CASE tools possess the ability to generate class
code from XMI. In addition to forward and reverse engineering, they also assist in modeling with
UML.

5.2.2. Component Pool Utilization

Before moving on to the implementation of the scenarios-converter, we explain how the
components from the component pool are incorporated into the model (MVC) of the DL. The
functionality of each component from the component pool is provided by an SM that acts as the
wrapper for the component. This existing pool of implemented SMs is used while implementing
the basic services of the DL. The 5SLSocieties models for these SMs are fixed and can be copied
as-is while modeling other DL services.

Once the societies-converter generates the skeleton Java classes for the 5SLSocieties model, the
component SM implementations are placed along with the generated code in the web application.
The generated SMs communicate with the component SMs according to the interaction specified
by the 5SLScenarios model. The component SMs expose the functionalities from the component

 48

pool whereas the skeleton SMs implement the new functionalities modeled by the DL designer.
The designer needs to complete the partial implementation of these skeleton SMs, before the DL
can be deployed.

5.2.3. Scenarios-Converter: Implementation

Figure 5.3 illustrates the workflow of the scenarios-converter. The first step as before is parsing
the 5SLScenarios model to create a parse tree. This is done by the JDOM Transform package. As
this step has been elaborated before, we move to the next step of the transformation process, i.e.,
the scenario-synthesis algorithm. The parse tree created by the JDOM transformation yields all
the data-structures, i.e., the list of scenarios of the service and their respective events, required by
the scenario-synthesis algorithm.

Figure 5.3 Workflow of the scenarios-converter (expanded part of Figure 4.3)

5.2.3.1. Scenario-Synthesis

The scenario-synthesizer (see Figure 5.3) package implements the scenario-synthesis algorithm.
We will illustrate the implementation of the scenario-synthesis algorithm with respect to the
scenarios for the NDLTD Union Catalog DL. The Union Catalog DL exposes a composite service
that is comprised of three elementary services, viz., search, browse, and search-similar (search all
items similar to a particular item). To maintain clarity we explain the scenario-synthesis with
respect to the primary scenarios for each service (search, browse, and search-similar). The
scenario-synthesis will be carried out for the controller SM (UIMFSM) of the composite service.

A brief description of the scenario-synthesis algorithm implemented follows [54]. The scenario-
synthesis algorithm consists of two transformations that are applied to the scenarios of a service.
The scenario-synthesis is always carried out with respect to a particular object. The
transformations required for scenario-synthesis are:

Scenarios-converter

JDOM
Transform

5SLScenarios
Model

Scenario
Synthesis

Java
Controller

Class

Synthesized
Statechart

State Machine
Compiler

DL
Designer Scenarios-converter

JDOM
Transform

5SLScenarios
Model

Scenario
Synthesis

Java
Controller

Class

Synthesized
Statechart

State Machine
Compiler

JDOM
Transform

5SLScenarios
Model

Scenario
Synthesis

JDOM
Transform

JDOM
Transform

5SLScenarios
Model

5SLScenarios
Model

Scenario
Synthesis
Scenario

Synthesis

Java
Controller

Class

Synthesized
Statechart

State Machine
Compiler

Java
Controller

Class

Synthesized
Statechart

Synthesized
Statechart

State Machine
Compiler

State Machine
Compiler

DL
Designer

DL
Designer

DL
Designer

 49

1. Generate separate Statecharts from all the single scenarios according to the following rule:

For any object in a sequence diagram incoming events trigger transitions, outgoing events
become actions of the transitions leading to the states. On receiving an event the list of
actions associated with the event are carried out by the receiver.

Consider the sequence diagram (see Figure 5.4) and the corresponding Statechart (see
Figure 5.5) for the search scenario of the Union Catalog DL.

The doGet, search_query and return_search_results are incoming events in the sequence
diagram. These are mapped to the triggers of the Statechart.

On the reception of doGet, search_query and return_search_results events, the controller
carries out the UIMFSM.parseRequest, ODLSearch.odlsearch, and
ODLUtilties.transformResults actions, respectively. These actions are mapped to their
corresponding triggers. This mapping of trigger to actions completely specifies all the
transitions of the Statechart.

The outgoing event names, search and display, along with the initial state MainMenu,
constitute the states in the Statechart. The initial state of the controller is specified in the
5SLScenarios model for the service. The other state names are obtained from the
controller’s outgoing events.

Figure 5.4 Sequence diagram for the search scenario of the Union Catalog DL

 50

Figure 5.5 Statechart for the search scenario of the Union Catalog DL

Figure 5.6 Statecharts for browse & search-similar scenarios of the Union Catalog DL

 51

2. Merge all the Statecharts generated in step 1, according to the following rules:

Rule 2.1: In a succession of two scenarios, the resulting Statechart merges the two basic
corresponding Statecharts in temporal order.

Rule 2.2: If a transition is common to the two Statecharts, it will be taken only once in the
final Statechart.

Rule 2.3: If at a certain moment in time either one or another scenario is executed, the
Statecharts are combined with sequential (object can be in only one state) substates
within a composite state.

Rule 2.4: If two scenarios are executed at the same time they are combined with
concurrent substates (object can be in more than one state) within a composite state.

Figure 5.5 and Figure 5.6 show the Statecharts generated by applying rule 1 to the search,
browse, and search-similar scenarios. Figure 5.7 shows the synthesized Statechart that
results from application of rules 2.1, 2.2, 2.3, and 2.4. The search-similar scenario
follows the search and browse scenarios in temporal order (application of rule 2.1). The
doGet transition in the MainMenu state is common to both the search and the browse
scenarios and appears only once in the synthesized Statechart (application of rule 2.2).
The search and the browse states are joined in an OR relationship (application of rule
2.3). Rule 2.4 cannot be applied while merging the generated Statecharts, as two
scenarios are never executed simultaneously.

Figure 5.7 Synthesized Statechart for the Union Catalog DL

5.2.3.2. State Machine Compiler

While modeling 5SLScenarios, we always synthesize the Statechart with respect to the controller
of the composite service. This controller is responsible for receiving user requests and calling the
appropriate methods on the components of the DL. The synthesized Statechart serves as input to
the state machine compiler (SMC) (see
Figure 5.3). The SMC reuses the data-structures created by the scenario-synthesizer and generates
a Java class that serves as the controller. The controller Java class is based on the State design
pattern [84]. The synthesized Statechart generated by the scenario-synthesizer gives the DL
designer the flexibility of using other SMC tools.

The UML class diagram for the controller SM in Figure 5.8 illustrates the implementation of the
State design pattern in the context of the Union Catalog service modeled above. The states of the

 52

synthesized Statechart map (MainMenu, search, browse, search-similar) map to the
corresponding state classes in the State design pattern. Each state in the synthesized Statechart
becomes a Java class. All the state-specific behavior for a state is placed in the class for that state.
For instance, the method return_browse_results, which is specific to the browse state, is placed
only in the browse state class. Please note that this is not the UML class diagram of the entire
5SFramework. This class diagram only covers the structure of the controller and its relationship
with its state classes. It does not model the relationship of the controller with the component
classes that constitute the model of the DL.

Figure 5.8 UML class diagram for the controller of the Union Catalog DL

We now explain the implementation of the scenario shown in Figure 5.4 with respect to the
controller Java class (UIMFSM). Please refer to the synthesized Statechart shown in Figure 5.7
and the controller UML class diagram shown in Figure 5.8 to understand the state transitions and
actions involved.

The scenario starts with the user sending a doGet event to the UIMFSM through the browser.
When the UIMFSM receives an event, it calls the relevant method of the state class involved, and
changes its state according to the synthesized Statechart. On receiving the doGet event, the
UIMFSM calls the doGet method of the MainMenu state class and transitions to the same state.
The doGet method invokes the parseRequest method of UIMFSM, which in turn parses the
request and generates the search_query internal event.

When the UIMFSM receives the search_query event, in the MainMenu state, it calls the
search_query method of the MainMenu state class. The MainMenu state class then implements

 53

search state-specific behavior, which involves making method calls on the components of the
generated DL services. In this case, the MainMenu state class calls the odlSearch method of the
ODLSearch component and transitions to the search state.

On receiving results, through the return_results event from the ODLSearch component, the
UIMFSM calls the return_results method of the search state class and transitions to the display
state. The return_results method of the display state class in turn invokes the transformResults
method of the ODLUtiltitiesImpl SM. This event-action-transition cycle terminates when the user
receives the results from the ODLUtiltitiesImpl SM.

 54

6. Case Studies

In order to test the feasibility of 5SLGen for generating DL services using real world scenarios,
various composite services were implemented. Once the services exposed by a DL were
implemented with the 5SFramework, we modeled and implemented the DLs that exposed these
services. Thus, the approach we followed was that of modeling and generation of the services,
followed by modeling and generation of the DL. CITIDEL, Virginia Instructional Architect for
Digital Undergraduate Computing Teaching (VIADUCT) [85], and the Union Catalog – all real
world DLs or DL services – were re-implemented in this manner. We deliberately chose to model
real world DLs to ensure that our model implementation could be validated against production
systems. The real world DLs provide ideal benchmarks for comparison between the old and new
systems.

In addition to exposing the composite services, a DL also may expose many elementary services
such as searching, browsing, etc.; these elementary services were integrated with the composite
services during the modeling and generation of the DL. All the generated services and DLs are
enumerated below.

Composite DL services generated with 5SLGen:

1. CITIDEL: multi-classification browsing service
2. CITIDEL: profile based filtering service
3. CITIDEL: relevance feedback search service
4. CITIDEL: binder service

DLs implemented using 5SLGen:

1. Union Catalog
2. CITIDEL
3. VIADUCT

The name of each service is prefixed with the name of the DL that exposes the service. The
services exposed follow the model explained in section 4.1, and illustrate reusability and
extensibility. More formally, a service Y reuses a service X if the behavior of Y incorporates the
behavior of X. A service Y extends a service X if it subsumes the behavior of X and potentially
includes conditional sub-flows of events.

In this chapter, we start with the description of each of the generated services. We describe the
functionality of the service, the primary scenarios of usage, the composition of the service, and
the synthesized Statechart for the service. The composition of the service is explained with the
help of a UML class diagram that illustrates the 5SLSocieities model for the service. The primary
scenario of usage is depicted by a UML sequence diagram. It is not possible to comment on all
the scenarios of a particular service or a DL for the sake of brevity; instead we focus only on the
primary scenarios. The synthesized Statechart provides a complete overview of the controller of
the DL service. The primary scenario, along with the synthesized Statechart, seek to provide
insight into the dynamic behavior of the services captured by the 5SLScenarios model.

As regards to the generated DLs, we comment on the most interesting aspects of the modeling
and implementation process, explaining with diagrams and providing screenshots where
necessary. We place special emphasis on the aggregation of the composite services exposed by
the DL. We conclude by summarizing our observations regarding the entire modeling and
generation process.

 55

6.1. Composite DL Services

6.1.1. CITIDEL: Multi-Classification Browsing Service

The purpose of modeling this service is to show that complex services that do not reuse any
elementary services can be implemented using the 5SFramework classes generated by 5SLGen.
This service does not reuse any elementary services/components from the component pool. All
the methods in the Java skeleton classes generated by 5SLGen have to be implemented by the DL
designer.

6.1.1.1. Functionality

Classification allows partitioning the DLs’ contents into separately browseable and filterable
areas. These classification schemes can become hierarchical, that is, they can take on the form of
trees, in order to represent the natural levels of specificity and interrelatedness involved in
different subjects. However, there is no standard classification scheme suitable for all DLs. When
dealing with different classification schemes among libraries that communicate with one-another
using OAI-PMH, there needs to exist a mechanism by which the records harvested from the host
repository can be appropriately mapped to the correct classification categories in the destination
repository. We need a system that will map between classification schemes, and to act
accordingly.

The CITIDEL multi-classification browsing service provides a subject-hierarchical browsing
interface, built upon categorization metadata of the DL resources that is invariant with respect to
which supported scheme is being used. This means that users can browse the same set of content
organized by schemes like ACM’s Computing Classification System [86], Computing Curricula
2001 [87] and others, according to their preferences. Resources need only be classified under one
scheme, with the invariant behavior provided by inter-scheme mappings. As a side effect, this
system removes almost all of the work in migrating between subsequent revisions of
classification schemes. This robust and useful functionality can be abstracted into a component
and deployed in many other settings where multiple alternate classification schemes exist or
multiple revisions of schemes are used [28].

 56

6.1.1.2. Societies

The UML class diagram depicting the 5SLSocieties model of the service is shown in Figure 6.1.
Note that all the attributes and operations of the SMs are not shown, to maintain clarity.

Figure 6.1 5SLSocieties model for the multi-classification browsing service

The multi-classification browsing service is implemented by the MultiClassBrowsingImpl SM.
The MultiClassBrowsingImpl provides the logic for the DL application. The application logic
consists of all operations that help the user browse through the classified resources. For instance,
given a particular category-code from a classification scheme, the DL application returns all the
records within it.

The MultiBrowseService, Resource Mapping, Resource, and Transitive Closure SMs are
responsible for creation of the mapping across the classification schemes and classifying the
resources in the CITIDEL database. Mapping of classification schemes involves computing of a
transitive closure on a matrix of all the relationships among the classification schemes. This is
done by the Transitive Closure SM. The ResourceMapping and Resource SMs are responsible for
classifying the resources in the database. This service assumes the existence of a database of
records with categorization metadata.

The Multi-ClassUtilitiesImpl SM is responsible for formatting the output and represents the view
of the DL service.

The UIMFSM SM serves as the controller of the service.

The SMs described above can be clearly categorized into the model, controller, and view
abstractions of the MVC design pattern, which illustrates the architecture of the 5SFramework.

 57

6.1.1.3. Scenarios

Three scenarios were modeled for the multi-classification browsing service. The sequence
diagram in Figure 6.2 shows the interaction among the various SMs in the first primary scenario.
In this scenario the user first retrieves all the classification schemes supported by the system.
After selecting a particular classification scheme the user retrieves all the categories in that
classification scheme. Thereafter the user identifies a category of interest and retrieves all the
record-identifiers belonging to that category. Finally, the user retrieves the metadata associated
with all the record-identifiers retrieved in the previous step.

In the second primary scenario, the user first retrieves the classification schemes supported by the
system. Having selected a particular scheme, he retrieves the categories from that scheme. Once
all the categories of the scheme are presented, he retrieves the sub-categories of a particular
category in the scheme. After narrowing down a category, in the penultimate step the user
retrieves the record-identifiers in that category. In the last step, the user retrieves the metadata
associated with an individual record-identifier.

The third scenario captures the navigation of the user across different states of the controller. The
controller follows the synthesized Statechart of the service. This Statechart allows user access to
services depending on its current state. Sometimes, it becomes necessary to return the controller
to a previous state in order to repeat a user activity.

For instance, let us assume that the controller of the DL service is in the SchemesDisplay state
(see the controller-Statechart in Table 6.1). When the controller is in the SchemesDisplay state,
the user is unable to get all the classification schemes supported by the DL because the event
get_class_schemes is valid only in the MainMenu state. In order to transition the controller back
to the MainMenu state a back event needs to be generated on the controller. Such a back event
takes the controller to the MainMenu state. Once in the MainMenu state the user can again issue a
valid query to get all the classification schemes supported. These navigation scenarios help the
user in navigation of the various services exposed.

All the DLs and DL services modeled using 5SLGen incorporate scenarios for user navigation
across different states of the controller.

 58

Figure 6.2 Primary scenario of the multi-classification browsing service

6.1.1.4. Controller-Statechart

Table 6.1 details the Statechart of the controller (the UIMFSM SM) of the service. The Statechart
is synthesized after taking into account all three of the modeled scenarios. This Statechart governs
the behavior of the multi-classification browsing service. We do not use the diagrammatic
notation for the Statechart because of the large number of states and transitions involved. We
have not shown the parameters passed to the events and the actions of the Statechart for the sake
of brevity. All the events in the second column of Table 6.1 are invoked on the controller SM.
The actions in the last column of Table 6.1 are denoted in object-oriented notation
(object.member).

 59

Each row of Table 6.1 signifies a transition in the Statechart. One can track the sequence of
interactions in the primary scenario represented in Figure 6.2 through the Statechart. The first
interaction between the user and the controller through the doGet event can be mapped to the first
transition of the Statechart (first row of Table 6.1). The subsequent get_class_schemes internal
event in the sequence diagram maps to the second transition of the Statechart (second row of
Table 6.1). Other events in the sequence diagram can be tracked in a similar manner.

Table 6.1 Statechart for the controller of the multi-classification browsing service

Initial state: MainMenu, SMs:
MultiClasssificationBrowsingImpl mcb, MultClassUtilitiesImpl mui, UIMFSM uimfsm

Current state Event Next State Action

doget MainMenu Uimfsm.parseRequest MainMenu get_class_schemes SchemeRetrieval mcb.getClassSchemes

SchemeRetrieval return_class_schemes SchemesDisplay mcb. TransformClassSchemes

doget SchemesDisplay Uimfsm.parseRequest
get_class_scheme
_categories

CategoryRetrieval mcb.getClassSchemeCategories
 SchemesDisplay

back MainMenu uimfsm.getBackToMainMenu

return_Class_Scheme
_Categories

CategoryDisplay mui.transformCategories
CategoryRetrieval

return_Sub_Categories CategoryDisplay mui.transformCategories

doGet CategoryDisplay uimfsm.parserequest
get_OaiIdsAndURLs_
InCategory

OaiIdRetrieval mcb.
GetOaiIdsAndUrlsInCategory

get_Sub_Categories CategoryRetrieval mcb.getsubcategories CategoryDisplay

back SchemesDisplay uimfsm.getbacktoschemes
display

OaiIdRetrieval return_OaiIds
AndURLs_InCategory

OaiIdDisplay mui.transformUrls

doGet OaiIdDisplay uimfsm.parseRequest
get_Metadata MetadataRetrieval mcb.getMetadata
get_List_Metadata MetadataRetrieval mcb.getListMetadata OaiIdDisplay
back CategoryDisplay uimfsm.getBackToCategoryDis

play

return_Metadata MetadataDisplay mui.transformMetadata MetadataRetrieval return_List_Metadata MetadataDisplay mui.transformMetadata

doGet MetadataDisplay uimfsm.parseRequest
MetadataDisplay back OaiIdDisplay uimfsm.getBackToOaiIdDispla

y

 60

6.1.2. CITIDEL: Profile Based Filtering Service

The purpose of modeling this service is to illustrate the 5SLGen approach of reusing existing
components wherever possible, and building on their functionalities to implement composite DL
services.

6.1.2.1. Functionality

The CITIDEL profile based filtering service accommodates multiple user sub-communities by
means of filtering profiles that tell the filtering system what view of the content should be
provided to specific users. Each user’s profile maps onto a particular view of the records in the
CITIDEL database. The profile is constituted from a vocabulary defined by CITIDEL. The user
does not see the records in the CITIDEL database that lack filtering element metadata.

6.1.2.2. Societies

Figure 6.3 5SLSocieties model for the profile based filtering service

This composite service implemented by the ProfileBasedFilteringImpl SM extends the browsing
service provided by the ODLBrowse component. The ODLBrowse SM serves as a Java wrapper
for the ODLBrowse component.

The ProfileBasedFilteringImpl SM is responsible for implementing the profile based filtering
service. The ProfileBasedFilteringImpl SM expects the user profile in the form of an XML file.
The user profile is a set of conditions on the metadata of the resource. The schema for the profile
is defined using the CITIDEL filtering element metadata vocabulary. The
ProfileBasedFilteringImpl SM parses the user profile XML file and generates a set of SQL
queries that filter the results from the ODLBrowse component response. Thus, the
ProfileBasedFilteringImpl SM builds upon the browsing functionality provided by the
ODLBrowse component to offer profile based filtering.

 61

In Figure 6.3, one can see three sets of SMs, the controller (UIMFSM), the view SM
(ProfileFilteringImpl), and the model SMs (ProfileBasedFilteringImpl, SAXPrintHandler,
ODLBrowseImpl). All the SMs together constitute the 5SFramework classes. This demonstrates
the architecture of 5SFramework classes based on the MVC design pattern.

6.1.2.3. Scenarios

Figure 6.4 Primary scenario of the profile based filtering service

Figure 6.4 illustrates the sequence diagram for the primary scenario of the profile based filtering
service. The scenario for the profile based filtering service is simple. The user first issues a query
for browsing the resources. The ProfileBasedFilteringImpl SM then reads the user profile and
filters the browsed resources. After returning a list of filtered resources to the user, the user
requests for the metadata of a particular resource. Please note the interaction among the
ProfileBasedFiltering object and the ODLBrowse component. The remaining scenarios modeled
are for navigation across different states of the controller. The navigation scenarios enable the
controller to transition from the DocumentDisplay state to the FilterResults state and from the
FilterResults state to the MainMenu state (see Figure 6.5).

 62

6.1.2.4. Controller Statechart

Figure 6.5 Statechart for the controller of the profile based filtering service

Figure 6.5 illustrates the Statechart for the controller of the modeled service. In addition to the
primary scenario, the Statechart incorporates scenarios of navigation across different states of the
controller. All the interactions in the sequence diagram (see Figure 6.4) can be mapped onto
either events or actions of the Statechart. For instance, the doGet event on the controller, initiated
by the user, maps to the first event of the Statechart. The parseRequest event, invoked in response
to the doGet method call, maps to an action in the Statechart The filter_resources internal event,
and the FilterResources event of the ProfileBasedFilteringImpl SM in the sequence diagram, both
map to the transition of Statechart from the MainMenu state to the Filter state.

6.1.3. CITIDEL: Relevance Feedback Search Service

The purpose of modeling this service is to illustrate the extensibility of services implemented with
5SLGen.

6.1.3.1. Functionality

Relevance feedback is a well-known technique to improve quality of search services. A relevance
feedback search service extends a basic search service by allowing the user to refine the search
using relevant documents from the basic search results. The selected relevant documents are then
used to construct an expanded query, which is then used to retrieve the next set of documents to
be presented to the user.

6.1.3.2. Societies
Figure 6.6 shows the relationship between the SMs for the relevance feedback search service. The
UIMFSM SM serves as the controller of the service. The RelevanceFeedbackSearchImpl SM
implements the relevance feedback service and extends the ODLSearchImpl SM that serves as
the wrapper for the ODLSearch component providing the basic search service. The
RelevanceFeedbackUtilitiesImpl SM transforms the results returned by the
RelevanceFeedbackSearchImpl SM and presents them to the users. It serves as the view of the
DL service. The RelevanceFeedbackSearchImpl SM extends the basic functionality provided by
the ODL component to implement relevance feedback.

 63

Figure 6.6 5SLSocieties model for the relevance feedback search service
6.1.3.3. Scenarios

Figure 6.7 Primary scenario of the relevance feedback search service

 64

The scenario (see Figure 6.7) shows the primary scenario of the service. Note that all the events
associated with the basic search scenario occur in the relevance feedback scenario, in addition to
other events responsible for the relevance feedback. This is the simple scenario wherein the user
first issues a basic search query. On receiving the results from the basic search the user selects the
relevant documents and issues a relevance feedback search query. On receipt of the relevance
feedback search results, the user retrieves the metadata of the document of interest. The rest of the
scenarios modeled are for user navigation across different controller states.

6.1.3.4. Controller-Statechart

We present the Statechart of the relevance feedback service in a tabular form (see Table 6.2). The
Statechart represented in the table defines the permissible actions for the user at different stages
in the retrieval process. For instance, the user cannot issue a relevance feedback search query
before doing a basic search as the relevance_feedback_search event is permitted only in the
SearchResults state. The SearchResults state can only be entered upon after the user has
completed a basic search. Thus, the controller-Statechart provides a mechanism to enforce valid
user behavior.

Table 6.2 Statechart for the controller of the relevance feedback search service

Initial state: MainMenu, SMs: RelevanceFeedbackSearchImpl rfb, RelevanceFeedbackUtilitiesImpl
rui, UIMFSM uimfsm, ODLSearchImpl odl
Current state Event Next State Action

doget MainMenu uimfsm.parseRequest MainMenu search_query Search odl.searchQuery

return_search_results SearchResults rui.transformResults
 Search return_search_similar

_results
SearchResults rui.TransformRelevance

Results

doget SearchResults uimfsm.parseRequest
get_Document DocumentRetrieval odl.getDocument
search_query Search odl.searchQuery
relevance_feedback
_search

Search rfb.
relevanceFeedbackSearch

SearchResults

back MainMenu uimfsm.getBackToMainMen
u

DocumentRetrieval return_document SearchResults rui.transformDocument

 65

6.1.4. CITIDEL: Binder Service

The purpose of modeling the Binder service is to complete the set of services needed for
implementing the CITIDEL with 5SLGen.

6.1.4.1. Functionality

The Binder service provides a personalized space for the user where he can maintain the
resources of his interest. A user can only access his binder after authenticating himself. The
service allows a user to: insert resources into the binder, delete resources from the binder, and
view all the resources of the binder. The resources used for creation of an instructional activity in
VIADUCT [85] can only be inserted from the binder. Every user in CITIDEL starts off with an
empty binder, which is later populated, with resources of interest. The binder service serves to
bind the services offered by VIADUCT to CITIDEL.

6.1.4.2. Societies

The SMs that implement the Binder service can be classified as the controller SM (UIMFSM),
and the model SMs (BinderServiceImpl, AuthenticationServiceImpl). The model SMs expose
functionalities for user authentication and binder actions such as insertion, deletion, and listing.
This service assumes the existence of a user database that can be used for user authentication. The
5SLSocieties model for the binder service is shown in Figure 6.8.

Figure 6.8 5SLSocieties model for the binder service
6.1.4.3. Scenarios

We have modeled four scenarios that capture all the possible means of using the binder service.
Please note that the word resource and item in this context mean the same thing, i.e., a digital
object from the CITIDEL.

1. The user authenticates himself and views all the items in the binder (see Figure 6.9).
2. The user authenticates himself and inserts some items in the binder.
3. The user authenticates himself and deletes some items in the binder.
4. The user is not authenticated.

 66

Figure 6.9 First primary scenario of the binder service

6.1.4.4. Statechart

The Statechart of the Binder service contains three states, i.e., MainMenu, BinderStatus, and
ValidBinder (see Table 6.3). The controller of the service starts in the MainMenu state. The
controller transitions from the MainMenu state to the ValidBinder state once the user is
authenticated. In this state, the user can insert, delete, or view the binder resources. BinderStatus
serves as the intermediate state in the transition to the ValidBinder state.

Table 6.3 Statechart for the controller of the binder service

 Initial state: MainMenu,
SMs: BinderServiceImpl bsi, AuthenticationServiceImpl asi, UIMFSM uimfsm
Current state Event Next State Action

doget MainMenu uimfsm.parseRequest MainMenu check_user_exists BinderStatus asi.checkUserExists

user_exists ValidBinder
BinderStatus user_does_not_exist MainMenu asi.

displayInvalidUserIdMsg

doget ValidBinder uimfsm.parseRequest
view_binder_items ValidBinder bsi.viewBinderItems
insert_binder_items ValidBinder bsi.insertBinderItems ValidBinder

delete_binder_items ValidBinder bsi.deleteBinderItems

 67

6.2. DLs Implemented using 5SLGen

6.2.1. Union Catalog

The purpose of modeling this DL is to demonstrate the ease of implementing a DL that exposes
all elementary services through the components of the component pool. This was the first DL
implemented using 5SLGen and serves as proof of concept for the modeling and generation
process.

6.2.1.1. Functionality

The Union Catalog DL provides for searching and browsing the items in the catalog. This catalog
is created through the process of metadata harvesting using the OAI-PMH protocol. The
searching and browsing services are provided by the ODLBrowse and ODLSearch ODL
components from the component pool.

6.2.1.2. Societies

The 5SLSocieties model of this DL consists of the controller SM, the view SM, and the
component wrapper SMs. The DL designer only needs to write code to implement the skeleton
SMs that constitute the view of the DL and modify the generated controller SM to parse user
requests. The component wrapper SMs are used as-is in the implementation.

6.2.1.3. Scenarios

This DL is modeled with scenarios for searching the resources in the catalog, browsing the
resources in the catalog, retrieving a particular document from the catalog, and user navigation.

6.2.1.4. Screenshot

Figure 6.10 shows the main menu of the DL. The search service expects a word input. Other
options also can be specified such as presence or absence of terms. The search service follows the
odlsearch1 protocol that defines the precise semantics of the search input. The search-similar
service implements relevance-feedback search and expects multiple record-identifiers as input.
The precise semantics is defined by the odlsearch2 protocol. The browse service expects browse
queries as defined by the odlbrowse protocol. The document retrieval service retrieves any valid
resource in the catalog that has an OAI-identifier. The ODL component protocols are defined in
[11].

 68

Figure 6.10 Screenshot of the Union Catalog DL

6.2.2. CITIDEL

The purpose of implementing CITIDEL using 5SLGen is to demonstrate the construction of
existing DLs using the 5SFramework. The modeling and implementation of 5SLGen represents a
union of all the modeling and generation efforts of its composite services. In the previous
sections, we have modeled and implemented all the composite services of CITIDEL using
5SLGen. We now integrate all our 5SLSocieties and 5SLScenarios models created in the previous
phase to create a single model for CITIDEL that reuses these services and serves as the input to
5SLGen.

6.2.2.1. Functionality

The CITIDEL implementation represents an aggregation of all the services modeled in this work.
The functionality exposed by CITIDEL includes

1. Multi-Classification Browsing
2. Profile Based Filtering
3. Basic Keyword Search
4. Relevance Feedback Search
5. Binder

6.2.2.2. Societies

The 5SLSocieties model of CITIDEL includes all the SMs that constitute the application logic of
its component services. In addition to this, the CITIDEL implementation has SMs that are
responsible for the control and the view of the CITIDEL interface. The list of the SMs that
implements CITIDEL and the services they expose is provided below. The numbers in the right
column match the functionalities listed in section 6.2.2.1.

 69

Table 6.4 SMs and their roles in the CITIDEL implementation

SMs Service
RelevanceFeedbackSearchImpl Relevance Feedback Search (4)
ProfileBasedFilteringImpl
UserProfile Profile Based Filtering (2)

MultiClassificationBrowsingImpl Multi-classification browsing (1)
AuthenticationServiceImpl User Authentication
BinderServiceImpl Binder Service (5)
ODLBrowseImpl Flat Browsing based on metadata fields
ODLSearchImpl Basic Search (3)
UIMFSM Controller
RelevanceFeedbackUtilitiesImpl
ProfileBasedUtilitiesImpl
MultiClassUtilitiesImpl

View

Debug, DBProperties, SAXPrintHandler Helpers

6.2.2.3. Scenarios

The scenarios of CITIDEL represent all the possible ways in which the user can interact with the
system. We have ensured that the controller-Statechart allows all user actions that are permitted
in the real world CITIDEL. The 5SLScenarios model of CITIDEL is a union of the scenarios of
its composite services and scenarios of navigation among its composite services.

The large number of scenarios in the 5SLScenarios model makes it impractical to include them in
the body of this thesis document. For the controller Statechart of CITIDEL, please refer to
appendix B.

6.2.2.4. Screenshot

Figure 6.11 shows the user-interface of the CITIDEL implementation. The first screenshot
illustrates all the input fields, which are required by the services exposed. The second screenshot
illustrates all the services and sub-services exposed. For instance, the “Get all schemes
categories”, “Get all categories within a scheme”, “Get All sub-categories within the scheme”,
and the “Get All record-identifiers/URLs within the category” checkboxes and their associated
input text fields expose the CITIDEL multi-classification browsing service.

 70

Figure 6.11 Screenshot of the CITIDEL interface

 71

6.2.3. VIADUCT

The purpose of implementing the VIADUCT DL is to complete the implementation of CITIDEL
and all its dependent DLs. This example also demonstrates the reusability and the extensibility of
services in the 5SFramework.

6.2.3.1. Functionality

The VIADUCT DL provides for the creation of instructional activity for teachers. An
instructional activity can be a lesson plan, exercise, laboratory plan, or any related type of activity
that would be useful in teaching. All resources for a VIADUCT instructional activity are
CITIDEL resources. Before inclusion in an instructional activity, they have to be present in the
user’s binder.

6.2.3.2. Societies

VIADUCT is implemented by the ActivitiesImpl and Activity SMs. The
AuthenticationServiceImpl SM service created while implementing the binder service is reused
here to provide the authentication service. The rest of the SMs serve as the controller, view, and
helpers of the implemented DL. No ODL components are used in the implementation of
VIADUCT. The ActivitiesImpl and Activity Java skeleton classes created by 5SLGen have to be
fleshed out by the DL designer. The VIADUCT implementation is responsible for creation of the
activity, and saving the activity to the CITIDEL database.

6.2.3.3. Scenarios

The scenarios modeled for VIADUCT are listed below:
• The user logs in, creates a new activity, and saves the instructional activity.
• The user logs in and sees a listing of the current instructional activities.
• The user logs in and sees a particular instructional activity.
• Plumbing scenario to complete the Statechart for the controller.

Other scenarios of usage of VIADUCT, in conjunction with CITIDEL, are elaborated in [88]. The
emphasis in [88] is on the process of seeking resources and creation of a specific instructional
activity. In this document we have attempted to differentiate the functionalities of VIADUCT
from CITIDEL, so that VIADUCT can be abstracted as a component and used in the modeling
and implementation of other DLs.

 72

6.2.3.4. Screenshot

Figure 6.12 illustrates the user-interface for the activity creation sub-service of the VIADUCT
DL.

Figure 6.12 Screenshot of the VIADUCT DL

6.3. Observations on the Modeling and the Generation of DLs

After the generation of 5SFramework classes by 5SLGen and inclusion of component wrappers
from the component pool, the DL designer writes code primarily to implement the new
functionalities desired by the service or the DL. The time taken to implement a DL is proportional
to the number of components in the component pool utilized by the DL. An analysis of the lines
of code (LOC) and the time taken to implement the DLs is shown in Table 6.5. Consider the
VIADUCT and the Union Catalog DLs. In the case of the Union Catalog, 77% of the total code
was reused, whereas there was 43% code reuse with VIADUCT. The time taken to implement
VIADUCT was 7 days, whereas the time taken to implement the Union Catalog was 2 days. A
similar analysis for CITIDEL reveals similar trends. This proves that the greater the number of
components utilized, the less the time taken to implement the DL.

Once a particular service is implemented using 5SLGen, it can be considered as another
component in the component pool. Thus, the modeling and generation process with 5S results in
an ever-increasing number of components in the component pool, which translates into a
reduction in implementation times for constructing the next DL. Each service implemented
simplifies the task of generating the next service as components from the previous service can be
reused. This sort of piggybacking was seen in the implementation of the VIADUCT system. After

 73

implementation of CITIDEL, we could reuse the authentication mechanism of CITIDEL while
implementing the VIADUCT system.

As most scenarios are slight variations of one another, a lot of copy-paste activity from other
scenarios was observed while creating 5SLScenarios. This contributes to the verbosity of the
5SLScenarios model. The complexity and the verbosity of the 5SLScenarios model indicates the
need for a visual modeling tool to construct these models. We envision that 5SGraph could be
extended to do this modeling.

Table 6.5 Evaluation of the generated DLs

Metrics Union Catalog CITIDEL VIADUCT
Total lines of code (LOC) 910 2400 1003

LOC implemented by the DL
designer 210 500 574

LOC reused from components
and composite services 700 2000 429

Time taken 2 day 9 days 7 days

 74

7. Conclusions and Future Work

7.1. Conclusions

In this thesis, we have implemented a DL generator that yields a framework of classes that can be
customized for implementing DLs and DL services. This DL generator is based on the 5S
metamodel for DLs. The 5S metamodel of DLs is derived from the 5S theory, which provides the
theoretical foundation for our work. The 5SL models developed for capturing the 5S abstractions
represent the requirements of a DL. Our work in particular focuses on the scenarios and societies
aspects of DLs. In 5SLGen, societies models were used for generation of the static contextual
structure and the scenarios models were used to implement the dynamic behavior of DLs and
their services.

7.1.1. Contributions of 5SLGen

• The implementation of CITIDEL and other DLs along with their composite services has
partially validated the theory of 5S.

• Through this thesis, we have attempted efforts in DL interoperability with DL modeling.

This marriage has resulted in the birth of 5SLGen, which introduces a scenario-based
approach to the generation of componentized DLs.

• The DL services and DLs implemented using the 5S approach prove that our work is not

in the realm of theory alone. The proof of the pudding lies in the eating, and through the
implementation of DLs that mirror existing production systems we have shown that high
quality complex DLs can be built on the basis of a formal theory.

• We believe that our work with the 5S metamodel, 5SL, and 5SLGEN, and implemented

DLs such as CITIDEL, has provided a unifying framework for the specification and
generation of DLs.

• We have attempted to loosely couple the different artifacts that are generated in the

process of modeling and generation of DLs. This allows the 5S approach for the
generation of DLs to use tools other than 5SLGen for the code generation.

• The 5SFramework incorporates the latest developments in the field of DL interoperability

and software modeling. This adherence to open standards and established design patterns
ensures that our work is extensible and relevant in the field of DLs and software in
general.

7.2. Future Work

7.2.1. Integration of 5SLGen with 5SGraph

Both 5SLGen and 5SGraph are based on the 5S metamodel. 5SLGen is a tool for generation of
DL services, whereas 5SGraph is a visual tool for modeling DLs. 5SGraph in its current state
does not support the modeling of 5SLScenarios and 5SLSocieties. 5SGraph needs to provide
support for the creation and reuse of the 5SLScenarios and 5SLSocieties models to realize the
integration of both tools. This integration of 5SGraph and 5SLGen will result in the creation of a

 75

complete CASE tool based on the 5S theory that will provide for the complete lifecycle
development of DLs.

7.2.2. Incorporating the uPortal Framework into the 5SFramework

uPortal is a distributed multi-tiered Internet application framework for developing a web portal
and developing content for display within that portal [89]. The uPortal framework consists of a
number of uPortal components or portlets communicating together via XML. uPortal has a
number of components that provide services such as LDAP authentication, single-sign on, etc.
The 5SFramework could incorporate the uPortal framework for the presentation of DL content
and include its components into the component pool thereby allowing the 5S approach to build on
the advantages offered by this open-source uPortal technology. As uPortal components talk to one
another through XML the integration with 5SLGen should be a smooth one.

7.2.3. Improvements to the 5SFramework

7.2.3.1. Scalability of the Generated DLs and DL Services

Each DL or DL service implemented using the 5SFramework has a single controller. Thus if two
or more users use the service simultaneously the single controller for the service cannot maintain
a consistent state. The solution to this is to create an instance of the controller for every user. In
this way, every user has his view of the DL. This involves adding another layer to the classes of
the 5SFramework. This additional layer will be responsible for instantiation of the controller for
every user of the DL.

7.2.3.2. Automated Construction of User-Interfaces

We have previously explored the automatic generation of user-interfaces from scenarios [51].
However, the approaches explored yielded results that were less than satisfactory. Ian Horrocks in
[90] provides ideas for constructing the user-interface with Statecharts. As 5SLGen generates
Statecharts in the process of DL generation, the application and implementation of Ian’s ideas has
the potential to provide an additional dimension of user-interface-prototyping to the 5S approach
of generating DL libraries.

7.2.3.3. Support for Transaction Scoping and Error handling

Modern web applications have to carry out conversational transactions with the client. This
requires the server to have a firm idea of the client state and a strong knowledge of the transaction
boundaries. We need to formulate an approach for scoping and enforcing the transaction
boundaries within the presentation layer of the 5SFramework.

In the DL web applications the client, using the browser, can take the controller to an unknown
state. The server must be able to cope comfortably with unexpected events from the client
because the user has altered the client state using the browser “Back” button or the browser
“Goto” bookmark facility. Again, an approach is needed for having the server keep track of the
state of the client and still cope adequately with unexpected events from the client. The
uidesign.net magazine (in [91]) provides solutions to the above problems, using a rigorous UML
Statechart modeling approach to the presentation layer.

 76

7.2.3.4. Web Services

Web services are self-contained, self-describing, modular applications that can be published,
located, and invoked across the web. Web services perform functions, ranging from simple
requests to complicated business processes. The ODL experiments have shown how web-based
services can be used to effectively and efficiently create distributed systems to meet the needs of
a particular community [28]. The 5SFramework needs to include such web-based services into
the component pool. We envision that, eventually, DLs can be modeled and implemented with
the 5SFramework using web services, ODL components, uPortal components, and other
componentized systems that communicate in XML.

7.2.4. Model Validation

We need to carry out 5SL model validation to ensure the correctness and consistency of the
generated DLs. This will involve comparison of the real systems and the modeled systems on a
number of metrics including time for implementation, complexity of generated code,
functionality, maintainability, reliability, etc. An alternative way to perform model validation
would be to carry out Wizard of Oz tests [92].

7.2.5. Personalization of the 5S Approach for Generation of DLs

Personalization entails customizing information access, structure, and presentation to the DL end-
user. PIPE is an approach to personalizing information-seeking interactions by transforming
programmatic representations. PIPE models personalization as a form of partial evaluation [93],
an automatic technique for specializing programs given some of their input. PIPE models
can be mapped onto 5SL models allowing the 5S approach to bring the full power of
transformation to bear upon diverse information resources. Integration of PIPE models into 5SL
has been pursued in [94]. The implementation of 5SLGen needs to adapt to accept
personalized5SL DL models as input so as to generate personalized 5SFramework classes that
can be customized to implement a personalizable DL (see Figure 7.1 taken from [95]).

Figure 7.1 Personalization in DLs

 77

Appendix A. XML Schemas

A.1. XML Schema for the 5SLSocieties model

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <!-- The Schema Starts here -->
 <xs:element name="Societies5SL">
 <xs:complexType>

 <!-- List of Service Managers -->
 <xs:sequence>
 <xs:element name="TaggedValue" type="TaggedValueType" minOccurs="0"/>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <!-- Each Service Manager -->
 <xs:element name="ServiceManager">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="TValue" type="TValueType" minOccurs="0"/>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="Attribute" type="AttributeType"/>
 <xs:element name="Operation" type="OperationType"/>
 <xs:element name="Extends" type="GeneralizationType"/>
 <xs:element name="Association" type="AssociationType"/>
 <xs:element name="Dependency" type="DependencyType"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="NAME" type="xs:string" use="required"/>
 <xs:attribute name="TYPE" type="xs:string" use="required"/>
 <xs:attribute name="ABSTRACT" default="false">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="true"/>
 <xs:enumeration value="false"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="VISIBILITY" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="public"/>
 <xs:enumeration value="private"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <!-- Documentation for the Service Manager and the 5SLSocieties file -->
 <xs:complexType name="TaggedValueType">

 78

 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="Tag" type="xs:string"/>
 <xs:element name="Value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 <!-- Attribute -->
 <xs:complexType name="AttributeType">
 <xs:attribute name="VISIBILITY" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="public"/>
 <xs:enumeration value="protected"/>
 <xs:enumeration value="private"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="TYPE" type="xs:string" use="required"/>
 <xs:attribute name="NAME" type="xs:string" use="required"/>
 <xs:attribute name="INITVAL" type="xs:string"/>
 <xs:attribute name="CONSTRAINT" default="changeable">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="changeable"/>
 <xs:enumeration value="addOnly"/>
 <xs:enumeration value="frozen"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="CLASS-SCOPE" default="false">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="true"/>
 <xs:enumeration value="false"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="MULTIPLICITY" type="xs:string"/>
 </xs:complexType>

 <!-- Operation -->
 <xs:complexType name="OperationType">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="Parameter">
 <xs:complexType>
 <xs:attribute name="TYPE" type="xs:string" use="required"/>
 <xs:attribute name="NAME" type="xs:string" use="required"/>
 <xs:attribute name="DEFAULTVAL" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 <xs:attribute name="VISIBILITY">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="public"/>
 <xs:enumeration value="protected"/>

 79

 <xs:enumeration value="private"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="NAME" type="xs:string" use="required"/>
 <xs:attribute name="RETURN" type="xs:string" use="required"/>
 <xs:attribute name="CLASS-SCOPE" default="false">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="true"/>
 <xs:enumeration value="false"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="CONCURRENCY" default="sequential">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="isQuerys"/>
 <xs:enumeration value="sequential"/>
 <xs:enumeration value="guarded"/>
 <xs:enumeration value="concurrent"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="EXCEPTION" type="xs:string"/>
 </xs:complexType>

 <!-- Generalization/Inheritance -->
 <xs:complexType name="GeneralizationType">
 <xs:attribute name="FROM" type="xs:string" use="required"/>
 </xs:complexType>

 <!-- Association/Includes -->
 <xs:complexType name="AssociationType">
 <xs:attribute name="MULTIPLICITY" type="xs:string" use="required"/>
 <xs:attribute name="NAME" type="xs:string" use="optional"/>
 <xs:attribute name="ORDERING" default="unordered">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="ordered"/>
 <xs:enumeration value="unordered"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="QUALIFIER" type="xs:string"/>
 <xs:attribute name="ROLENAME" type="xs:string"/>
 <!-- Existence of rolename indicates that the asssoc.is navigable-->
 <xs:attribute name="CLASS-SCOPE" default="false">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="true"/>
 <xs:enumeration value="false"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="CONSTRAINT" default="changeable">

 80

 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="changeable"/>
 <xs:enumeration value="addOnly"/>
 <xs:enumeration value="frozen"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="PEER" type="xs:string" use="required"/>
 </xs:complexType>

 <!-- Dependency -->
 <xs:complexType name="DependencyType">
 <xs:attribute name="PEER" type="xs:string" use="required"/>
 <!-- Two types (use ...package import),(implements ...For interfaces)-->
 <xs:attribute name="DEPKIND" type="xs:string" use="required"/>
 </xs:complexType>

</xs:schema>

A.2. XML Schema for the 5SLScenarios model

<?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <!-- The Schema starts here -->
 <!-- Service -->
 <xs:element name="SERVICE">
 <xs:complexType>
 <xs:sequence>

<xs:element name="SCENARIO" type="SCENARIOTYPE"
maxOccurs="unbounded"/>

 </xs:sequence>
 <xs:attribute name="NAME" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>

 <!-- Each scenario of the service -->
 <xs:complexType name="SCENARIOTYPE">
 <xs:sequence>
 <xs:element name="NOTE" type="xs:string"/>
 <xs:element name="INTERFACEOBJECT" type="xs:string"/>
 <xs:element name="STARTMESSAGE" type="xs:string"/>

<xs:element name="LISTOFEVENTS" type="LISTOFEVENTTYPE"
maxOccurs="unbounded"/>

 </xs:sequence>
 <xs:attribute name="SC_NUMBER" type="xs:integer" use="required"/>
 <xs:attribute name="SC_NAME" type="xs:string" use="optional"/>
 </xs:complexType>

 <!-- List of Events -->
 <xs:complexType name="LISTOFEVENTTYPE">
 <xs:sequence>
 <xs:element name="EVENT" type="EVENTTYPE" maxOccurs="unbounded"/>

 81

 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="EVENTTYPE">
 <xs:sequence>
 <xs:element name="SENDER" minOccurs="0"/>
 <xs:element name="RECEIVER" minOccurs="0"/>
 <xs:element name="MESSAGE" type="MESSAGETYPE" minOccurs="0"/>
 <xs:element name="LISTOFACTIONS" type="LISTOFACTIONSTYPE" minOccurs="0"/>

 </xs:sequence>
 <xs:attribute name="SEQNO" type="xs:string" use="optional"/>
 </xs:complexType>

 <!-- List of Messages -->
 <xs:complexType name="MESSAGETYPE">
 <xs:sequence>

<xs:element name="LISTOFARGUMENTS" type="LISTOFARGUMENTSTYPE"
minOccurs="0"/>
<xs:element name="LISTOFEXCEPTIONS" type="LISTOFEXCEPTIONSTYPE"
minOccurs="0"/>

 </xs:sequence>
 <xs:attribute name="NAME" type="xs:string" use="required"/>
 <xs:attribute name="METHOD" type="xs:string" use="optional"/>
 </xs:complexType>

 <!-- List of Arguments -->
 <xs:complexType name="LISTOFARGUMENTSTYPE">
 <xs:sequence>
 <xs:element name="ARGUMENT" type="xs:string" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <!-- List of Exceptions -->
 <xs:complexType name="LISTOFEXCEPTIONSTYPE">
 <xs:sequence>
 <xs:element name="EXCEPTION" type="xs:string" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <!-- List of Actions -->
 <xs:complexType name="LISTOFACTIONSTYPE">
 <xs:sequence>
 <xs:element name="ACTION" type="ACTIONTYPE" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ACTIONTYPE">
 <xs:sequence>

<xs:element name="ARGUMENT" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="EXCEPTION" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>
 <xs:attribute name="NAME" type="xs:string" use="required"/>
 </xs:complexType>
</xs:schema>

 82

Appendix B. Synthesized Statechart for the CITIDEL

InitialState: MainMenu
{

Source state
MainMenu
{
 Event Destination state Actions
 doGet MainMenu parseRequest

check_user_exists UserStatus checkUserExists
}

UserStatus
{
 user_exists validUser viewBinderItems
 user_does_not_exist MainMenu displayInvalidUserIdMsg
}

validUser
{
 doGet validUser parseRequest
 search_query ListRetrieval searchQuery
 get_Class_Schemes ListRetrieval getClassSchemes
 get_Class_Scheme_Categories ListRetrieval getClassSchemeCategories
 view_binder_items ListRetrieval viewBinderItems
 back MainMenu getBackToMainMenuState
}

ListRetrieval
{
 doGet ListRetrieval parseRequest
 return_search_results Display transformSearchResults
 return_Class_Schemes Display transformClassSchemes
 return_Class_Scheme_Categories Display transformCategories
}

Retrieval
{
 doGet ListRetrieval parseRequest
 return_search_results Display transformSearchResults
 return_Class_Schemes Display transformClassSchemes
 return_Class_Scheme_Categories Display transformCategories
 return_OaiIdsAndURLs_InCategory Display transformURLs
 return_Sub_Categories Display transformCategories
 return_Metadata Display transformMetadata
 return_List_Metadata Display transformListMetadata
 return_filtered_results Display transformFilteredResults
 return_relevance_documents Display transformListMetadata
}

 83

Display
{
 doGet Display parseRequest
 get_Metadata Retrieval getMetadata
 get_List_Metadata Retrieval getListMetadata
 filter_resources Retrieval FilterResources
 relevance_feedback_search Retrieval relevanceFeedbackSearch
 search_query Retrieval searchQuery
 get_Class_Schemes Retrieval getClassSchemes
 get_Class_Scheme_Categories Retrieval getClassSchemeCategories
 get_Sub_Categories Retrieval getSubCategories
 get_OaiIdsAndURLs_InCategory Retrieval getOaiIdsAndURLsInCategory
 view_binder_items Retrieval viewBinderItems
 insert_binder_items Retrieval {insertBinderItems viewBinderItems}
 delete_binder_items Retrieval {deleteBinderItems viewBinderItems}
 back validUser getBackToValidUserState
}

}

 84

References

[1] V. Bush, “As We May Think,” Atlantic Monthly, vol. 176, pp. 101--108, 1945.
[2] J. C. R. Licklider, Libraries of the Future. Cambridge, MA: MIT Press, 1965.
[3] B. M. Leiner, “The Scope of the Digital Library”. Website. DLib Working Group on

Digital Library Metrics, October 15, 1998, 1998.
http://www.dlib.org/metrics/public/papers/dig-lib-scope.html

[4] D. Waters, “What Are Digital Libraries?,” Council on Library and Information
Resources, vol. 4, 1998. http://www.clir.org/pubs/issues/issues04.html#dlf

[5] E. Fox, “Digital Library Definitions”, 2003. http://ei.cs.vt.edu/~dlib/def.htm
[6] E. A. Fox, “Sourcebook on Digital Libraries: Report for the National Science

Foundation”. Technical Report TR-93-35. Blacksburg, VA: Dept. of Computer Science,
Virginia Tech, December, 1993. Available by FTP from directory pub/DigitalLibrary on
fox.cs.vt.edu

[7] M. A. Goncalves and E. A. Fox, “5SL -- A Language for Declarative Specification and
Generation of Digital Libraries,” in Proceedings JCDL'2002, G. Marchionini, Ed.
Portland, OR: ACM, 2002.

[8] J. M. Carroll, Scenario-based design: Envisioning work and technology in system
development. New York: John Wiley and Sons, 1995.

[9] J. Ryser and M. Glinz, “Dependency Charts as a Means to Model Inter-Scenario
Dependencies,” presented at Modellierung 2001, Workshop der Gesellschaft fur
Informatik e. V. (GI), 28.-30. Marz 2001 in Bad Lippspringe, Germany, 2001.

[10] E. A. Fox, R. Akscyn, R. Furuta, and J. Leggett, “Digital Libraries,” Communications of
the ACM, vol. 38, pp. 22-28, 1995.

[11] H. Suleman, “Open Digital Libraries,” Virginia Tech Department of Computer Science,
Blacksburg, Ph. D. Disseration, 2002. http://scholar.lib.vt.edu/theses/available/etd-
11222002-55624/

[12] H. Suleman and E. A. Fox, “A Framework for Building Open Digital Libraries,” D-Lib
Magazine, vol. 7, 2001. http://www.dlib.org/dlib/december01/suleman/12suleman.html

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, 1st ed: Addison-
Wesley Pub Co, 1995.

[14] G. Krasner and S. Pope, “A Cookbook for Using the Model-View-Controller User
Interface Paradigm in Smalltalk-80,” JOOP, vol. 1, 1998.

[15] M. A. Goncalves, E. A. Fox, L. T. Watson, and N. A. Kipp, “Streams, Structures, Spaces,
Scenarios, Societies (5S): A Formal Model for Digital Libraries,” Virginia Tech,
Department of Computer Science TR-03-04, 2003.
http://eprints.cs.vt.edu:8000/archive/00000646/

[16] D. S. Batory, C. Johnson, B. MacDonald, and D. Heeder, “Achieving extensibility
through product-lines and domain-specific languages: a case study,” TOSEM, vol. 11, pp.
191--214, 2002.

[17] J. M. Carroll, Making use: Scenario-based design of human-computer interactions.
Cambridge, Massachusetts: MIT Press, 2000.

[18] C. Lagoze, H. Van de Sompel, M. Nelson, and S. Warner, “The Open Archives Initiative
Protocol for Metadata Harvesting - Version 2.0, Open Archives Initiative”, 2002.
http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm

[19] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language For Object-
Oriented Development, Documentation Set Version 1.0. Santa Clara, CA: Rationale
Software Corporation, 1997.

[20] “Definition and Purposes of a Digital Library”, vol. 2003. Website. 1995.
http://www.arl.org/sunsite/definition.html

 85

[21] G. Marchionini, “Research and Development in Digital Libraries”. Website. 2003.
http://ils.unc.edu/~march/digital_library_R_and_D.html

[22] CITIDEL, “CITIDEL Homepage”, in Computing and Information Technology Interactive
Digital Educational Library,. Website. Blacksburg, VA, USA: Virginia Tech, 2001.
www.citidel.org

[23] M. A. Gonçalves, R. K. France, and E. A. Fox, “MARIAN: Flexible Interoperability for
Federated Digital Libraries,” presented at Proceedings of the 5th European Conference on
Research and Advanced Technology for Digital Libraries, Darmstadt, Germany, 2001.

[24] E. Fox, “NDLTD: Networked Digital Library of Theses and Dissertations”. Website.
2000. http://www.ndltd.org

[25] J. R. Davis and C. Lagoze, “NCSTRL: Design and Deployment of a Globally Distributed
Digital Library,” J. American Society for Information Science, vol. 51, pp. 273--280,
2000.

[26] S. Payette and C. Lagoze, “Flexible and Extensible Digital Object and Repository
Architecture,” presented at ECDL, Heraklion, Crete, Greece, 1998.

[27] D. Castelli and P. Pagano, “OpenDLib: A Digital Library Service System,” presented at
ECDL, Rome, Italy, 2002.

[28] H. Suleman, E. Fox, R. Kelapure, A. Krowne, and M. Luo, “Building Digital Libraries
from Simple Building Blocks,” Virginia Tech, Blacksburg, Technical Report, TR-03-09,
2003.

[29] M. A. Gonçalves, P. Mather, J. Wang, Y. Zhou, M. Luo, R. Richardson, R. Shen, L. Xu,
and E. A. Fox, “Java MARIAN: From an OPAC to a Modern Digital Library System,” in
Proceedings of 9th String Processing and Information Retrieval Symposium (SPIRE
2002). Lisbon, Portugal, 2002.

[30] I. H. Witten, R. J. McNab, S. J. Boddie, and D. Bainbridge, “Greenstone: A
Comprehensive Open-Source Digital Library Software System,” in Proceedings of the
Fifth ACM Conference on Digital Libraries: DL '00, June 2-7, 2000, San Antonio, TX.
New York: ACM Press, 2000, pp. 113--121.

[31] D. Schwabe, G. Rossi, and S. D. J. Barbosa, “Systematic Hypermedia Application Design
with OOHDM,” in Proceedings of the Seventh ACM Conference on Hypertext, 1996, pp.
116 -- 128.

[32] P. Fraternali and P. Paolini, “Model-driven development of Web applications: the
AutoWeb system,” ACM Transactions on Information Systems, vol. 18, pp. 323-382,
2000.

[33] S. Ceri, P. Fraternali, and A. Bongio, “Web Modeling Language (WebML): a modeling
language for designing Web sites,” Computer Networks (Amsterdam, Netherlands: 1999),
vol. 33, pp. 137--157, 2000.

[34] W. Bing, “A hybrid system approach for supporting digital libraries,” International
Journal on Digital Libraries, vol. 2, pp. 91--110, 1999.

[35] L. A. Kalinichenko, N. A. Skvortsov, D. O. Briukhov, D. V. Kravchenko, and I. A.
Chaban, “Designing Personalized Digital Libraries,” Programming and Computer
Software, vol. 26, pp. 123--133, 2000.

[36] D. Castelli, C. Meghini, and P. Pagano, “Foundations of a Multidimensional Query
Language for Digital Libraries,” Lecture Notes in Computer Science, vol. 2458, pp. 251--
265, 2002.

[37] G. Booch, I. Jacobson, J. Rumbaugh, and J. Rumbaugh, The Unified Modeling Language
User Guide: Addison-Wesley Pub Co, 1999.

[38] G. Engels, R. Heckel, and S. Sauer, “UML - A Universal Modeling Language?,”
presented at ICATPN, Aarhus, Denmark, 2000.

[39] “Borland® Together® ControlCenter™ for Collaborative Application Development”.
Website. 2003. http://www.togethersoft.com/products/index.jsp

 86

[40] “Rational Rose Corporation”. Website. www.rational.com
[41] “ArgoUML:A UML design tool with cognitive support”. Website. Tigris.org: Open

Source Software Engineering. http://argouml.tigris.org
[42] OMG, “OMG-XML Metadata Interchange (XMI) Specification, v1.2”: OMG, 2002, pp.

268. http://cgi.omg.org/docs/formal/02-01-01.pdf
[43] J. M. Carroll, “Five reasons for scenario-based design,” presented at Proceedings of the

32nd Hawaii International Conference on Systems Sciences, 1999.
[44] F. Bordeleau and J. Corriveau, “From Scenarios to Hierarchical State Machines: A

Pattern-Based Approach,” presented at OOPSLA, Minnesota, 2000.
[45] H. Behrens, “Requirements Analysis and Prototyping using Scenarios and Statecharts,”

presented at International Conference on Software Engineering, Orlando, Florida, USA,
2002.

[46] K. Koskimies, T. Systa, J. Tuomi, and T. Mannisto, “Automatic support for modeling OO
software.,” IEEE Software, vol. 15, pp. 42--50, 1998.

[47] J. Desharnais, M. Frappier, R. Khédri, and A. Mili, “Integration of Sequential Scenarios,”
Transactions on Software Engineering, vol. 24, pp. 695--708, 1998.

[48] M. Glinz, “An integrated formal model of scenarios based on statecharts,”, 1995.
http://citeseer.nj.nec.com/glinz95integrated.html

[49] I. Khriss, M. Elkoutbi, and R. K. Keller, “Automating the Synthesis of UML Statechart
Diagrams from Multiple Collaboration Diagrams,” presented at UML'98: Beyond the
Notation, Mulhouse, France, 1998.

[50] M. A. Gonçalves, Q. Zhu, R. Kelapure, and E. A. Fox, “Rapid Modeling, Prototyping,
and Generation of Digital Libraries - A Theory-Based Approach,” Virginia Tech,
Blacksburg, Technical Report, TR-03-16, 2002.

[51] L. Lobo, V. Colaso, A. Shah, and P. Shastri, “Generation of a User Interface Prototype
from an Integrated Scenario Specification,” Virginia Tech, Blacksburg, Technical Report,
TR-02-33, 2002.

[52] A. Prabhune, R. Mahajan, and M. Singhal, “Scenario/Class Diagram Synthesis,” Virginia
Tech, Blacksburg, Technical Report, TR-03-15, 2002.

[53] J. Whittle and J. Schumann, “Generating statechart designs from scenarios,”, Limerick,
Ireland, 2000. http://citeseer.nj.nec.com/whittle00generating.html

[54] S. Vasilache and J. Tanaka, “Synthesizing Statecharts from Multiple Interrelated
Scenarios,”, Zheng Zhou, China, 2001.

[55] D. Connolly and H. Thompson, “XML Schema”Cambridge, MA: W3C, 2000.
http://www.w3.org/XML/Schema

[56] P. V. Biron and A. Malhotra, “XML Schema Part 2: Datatypes,” W3C, work-in-progress,
2000. http://www.w3.org/TR/2000/WDxmlschema-2-20000407/

[57] H. S. Thompson_et_al., “XML Schema Part 1: Structures,” W3C, Cambridge, MA,
working-in-progress, 2000. http://www.w3.org/TR/2000/WDxmlschema -1-20000407/

[58] W3C, “World Wide Web Consortium (W3C) Home Page”: W3C, 2000.
http://www.w3.org/

[59] J. Clark, “XSL Transformations (XSLT),”, W3C Recommendation, 1999.
http://www.w3.org/TR/xslt/

[60] J. Hunter, “JDOM 1.0,”Java Community Process, 2001.
http://jcp.org/en/jsr/detail?id=102#4

[61] D. Brownell, “Simple API for XML”. Website. 2003. http://www.saxproject.org/
[62] D. Akehurst and S. Kent, “A Relational Approach to Defining Transformations in a

Metamodel,” presented at UML, Dresden, Germany, 2002.
[63] Dublin-Core-Community, “Dublin Core Metadata Initiative”, in The Dublin Core: A

Simple Content Description Model for Electronic Resources. WWW site. Dublin, Ohio:
OCLC, 1999. http://purl.org/dc/

 87

[64] A. Tsiolakis, “Semantic Analysis and Consistency Checking of UML Sequence
Diagrams,” University of Berlin, Berlin, Technical Report, 2001.

[65] R. Winston, “Managing the Development of Large Software Systems:Concepts and
Techniques,” presented at International Conference on Software Engineering, Pittsburgh,
PA, USA, 1989.

[66] R. Carter, A. Antón, A. Dagnino, and L. Williams, “Evolving Beyond Requirements
Creep: A Risk-Based Evolutionary Prototyping Model,” presented at IEEE 5th
International Symposium on Requirements Engineering, 2001.

[67] B. Boehm, “A Spiral Model of Software Development and Enhancement,” IEEE
Computer, vol. 21, pp. 61--72, 1988.

[68] R. Pressman, Software Engineering : A practitioner's approach, 3rd ed. New York:
McGrawHill Inc, 1992.

[69] K. Beck, “Embracing Change with Extreme Programming,” Computer, vol. 32, pp. 70--
77, 1999.

[70] M. Gonçalves, G. Panchanathan, U. Ravindranathan, A. Krowne, E. A. Fox, F.
Jagodzinski, and L. Cassel, “The XML Log Standard for Digital Libraries: Analysis,
Evolution, and Deployment,” presented at Third Joint Conference in Digital Libraries,
Houston, Texas, 2003.

[71] W3C, “Web Services Activity”. Web site. 2003. http://www.w3.org/2002/ws/
[72] B. Benatallah, M. Dumas, Q. Z. Sheng, H. Anne., and H. Ngu, “Declarative Composition

and Peer-to-Peer Provisioning of Dynamic Web Services,” presented at International
Conference on Data Engineering, San Jose, California, USA, 2002.

[73] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana,
“Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI,”
IEEE Internet Computing, vol. 6, pp. 86--93, 2002.

[74] R. Wolfgang, Petri nets: an introduction: Springer-Verlag New York, Inc., 1985.
[75] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Science of Computer

Programming, vol. 8, pp. 231--274, 1987.
http://citeseer.nj.nec.com/harel87statecharts.html

[76] R. Johnson and B. Foote, “Designing Reusable Classes,” Journal of Object-Oriented
Programming, vol. 1, pp. 22-35, 1988.

[77] T. Grose, G. Doney, and S. Brodsky, Java programming with XMI, XML and UML. New
York: John Wiley & Sons, Inc., 2002.

[78] S. Sarkar and C. Cleaveland, “XML based document transform applied to application
software development projects”: The ServerSide J2EE Community, 2002, pp. 20.
http://citeseer.nj.nec.com/sarkar01xml.html

[79] J. Gosling, B. Joy, and G. Steele, The Java(TM) Language Specification, 2-nd ed:
Addison-Wesley Pub Co, 1996.

[80] J. M. Carroll, C. W. Choo, D. R. Dunlap, P. L. Isenhour, S. T. Kerr, A. MacLean, and M.
B. Rosson, “Knowledge Management Support for Teachers,” Educational Technology
Research and Development, 2003.

[81] “Metadata Repository project (MDR)”. Website. 2000. http://mdr.netbeans.org/
[82] IBM, “Eclipse modeling framework”. Website. 2000. http://www.eclipse.org/emf/
[83] “Poseidon for UML”. Website. 2003. http://www.gentleware.com/
[84] J. Cooper, The design patterns Java companion: Addison-Wesley, 1998.
[85] J. Pryor, “Virginia Instuctional Architect for Digital Undergraduate Computing

Teaching”. Website. Virginia Tech, 2001. http://citidel-dev.dlib.vt.edu/viaduct/app_user/
[86] “The ACM Computing Classification System”. website. Association for Computing

Machinery, Inc, 2003. http://www.acm.org/class/1998/
[87] “Computing Curricula 2001”: Association for Computing Machinery, 2003.

http://www.computer.org/education/cc2001/report/appendix-a.html

 88

[88] R. Kelapure, M. A. Goncalves, and E. Fox, “Scenario-Based Generation of Digital
Library Services,” presented at European Conference of Digital Libraries, Trondheim,
Norway, 2003.

[89] “uPortal by JASIG”. Website. Java Architectures Special Interest Group, 2000.
http://mis105.mis.udel.edu/ja-sig/uportal/

[90] I. Horrocks, Constructing the User Interface with Statecharts, 1st edition ed: Addison-
Wesley Pub Co, 1999.

[91] “Server-side MVC Architecture: Clients, Transactions and Exceptions”, in uidesign.net.
website. uidesign.net, 2000. http://www.uidesign.net/2000/papers/webmvc1a.html

[92] J. Gould, J. Conti, and T. Hovanyecz, “Composing Letters with a Simulated Listening
Typewriter,” CACM, vol. 26, pp. 295--308, 1983.

[93] N. Ramakrishnan, “PIPE: Web Personalization By Partial Evaluation,” IEEE Internet
Computing, vol. 4, pp. 21--31, 2000.

[94] M. A. Gonçalves, A. A. Zafer, N. Ramakrishnan, and E. A. Fox, “Modeling and Building
Personalized Digital Libraries with PIPE and 5SL,” in Proceedings of the Joint DELOS-
NSF Workshop on Personalization and Recommender Systems in Digital Libraries.
Dublin, Ireland: DELOS, 2001.

[95] E. Fox, J. Carroll, P. Fan, L. Cassel, Z. Mohammed, K. Maly, G. McMillan, N.
Ramakrishnan, and M. Halbert, “Science of Digital Libraries,” Virginia Tech,
Blacksburg, NSF Proposal, TR-03-13, February 2, 2003.

 89

VITA

Rohit Kelapure was born on November 23, 1979 in Mumbai, India.

Rohit Kelapure earned a Bachelor of Science degree in Computer Science & Applications from
the University of Mumbai, Mumbai in May 2001. He stood fourth in the merit list for the last two
years of engineering study and graduated with Honors.

He started his graduate study in the Computer Science Department at Virginia Tech, Virginia in
August 2001. He completed his Master of Science degree requirements in June 2003.

From June to August 2002, Rohit Kelapure interned with IBM in the Extreme Blue internship
program. After graduation, he will continue his professional career with IBM in the Network
Dispatcher Development software group, in Raleigh, North Carolina.

