LUND UNIVERSITY

Electrical and Information Technology

LUP

Lund University Publications

Institutional Repository of Lund University
Found at: http://www.lu.se

This is an author produced version of the paper published in
Lecture Notes in Computer Science Vol 2769, ECDL2003

This paper has been peer-reviewed but does not include the
final publisher proof-corrections or journal pagination.

Citation for the published paper:

J. Hollmann, A. Ardo, P. Stenstrom: An evaluation of docu-
ment prefetching in a distributed digital library, Research and
AdvancedTechnology for Digital Libraries / Lecture Notes In
Computer Science, 7th European Conference, ECDL 20083,
Trondheim, Norway, Vol. 2769, 2003-08-17/2003-08-22.

DOI: 10.1007/b11967
Access to the published version may require subscription.
Published with permission from: Springer

An Evaluation of Document Prefetching in a
Distributed Digital Library

Jochen Hollmann', Anders Ard6?, and Per Stenstrém!
! Department of Computer Engineering
Chalmers University of Technology
412 96 Goteborg, Sweden
{joho,pers}@ce.chalmers.se,

2 Department of Information Technology
Lund University
Box 118
221 00 Lund, Sweden
anders@it.lth.se

Abstract. Latency is a fundamental problem for all distributed systems
including digital libraries. To reduce user perceived delays both caching
— keeping accessed objects for future use — and prefetching — transferring
objects ahead of access time — can be used. In a previous paper we have
reported that caching is not worthwhile for digital libraries due to low
re-access frequencies.

In this paper we evaluate our previous findings that prefetching can be
used instead. To do this we have set up an experimental prefetching proxy
which is able to retrieve documents from remote fulltext archives before
the user demands them. Using a simple prediction to keep the overhead
of unnecessarily transfered data limited, we find that it is possible to cut
the user perceived average delay a factor of two.

1 Introduction

Within the last decade, almost all major academic publishers have built up Dig-
ital Libraries (DL) which offer fulltext archives of conference and journal articles
in electronic form. This has given the research community better accessibility to
articles from conferences and journals. Some university libraries have integrated
the bibliographic databases from various publishers into a single point of access,
so that the users can effectively search many fulltext archives at once. DTV’s
Article Database Service DADS [1, 2] is such a system which implements a large
amalgamated index database covering many publishers, searchable through a
gateway which redirects fulltext requests to the publishers fulltext servers. This
avoids the cost of huge replicated archives as well as many copyright issues. As
a result, digital libraries are realized as a distributed information system.
Transferring documents from remote servers distributed around the world
suffers from the latency of networks and servers. While increasing network and

II

server bandwidth can partly mitigate its impact, the latency time for an unloaded
infrastructure is still significant.

Standard techniques to hide latency are caching and prefetching, and have
been applied to computer systems [3] as well as to web-based systems [4]. Caching
works by keeping a copy of previously accessed data close to the consumer for
future re-use and is thus useful for frequently accessed objects. Unfortunately
almost all accessed articles in digital libraries are accessed with very low frequen-
cies. This is the reason why caching does not work well for DL as we observed
in a previous study [5].

Prefetching, transferring a data object ahead of access time, can be applied
even if the data objects are accessed only once. If perfect knowledge of future
accesses would exist, it would be possible to transfer data objects sufficiently in
advance so that a local copy would be available close to the user; thus, hiding
almost all of the latency. In reality it is impossible to have perfect knowledge
about future accesses; hence, a critical issue for prefetching is to establish a good
predictor.

Digital article libraries can organize document accesses as a two-step process.
First the bibliographic record is shown, then the user can proceed to access the
fulltext from the remote server. In a previous study [6] we found that a good
prediction can be made if a prefetch is issued when the article abstract is viewed.
In this study, the goal is to see whether such a prefetching approach works under
real-world conditions by evaluating it in the context of real users.

The specific research questions addressed by this research are: How much
of the network and server latency can be hidden? How much does the network
traffic increase by superfluous and unnecessary prefetch requests? Finally, how
long should we keep prefetched documents in the cache, before we decide that
the user will not access them in the future?

To answer these questions we have set up an experimental gateway which im-
plements the proposed prefetching scheme. We have made this system available
to all members of our university during almost half a year and logged their ac-
tivities, as well as the document transfers. By analyzing the resulting user access
log files and comparing them to a simulated environment without prefetching,
we show the effects of prefetching. We were able to cut the average latency the
user experiences by a factor of two. We have also found that this increases the
number of document transfers by less than a factor two.

As for the rest of this paper, in Section 2 we describe our digital library
system followed by the experimental setup in Section 3, before introducing the
evaluation method in the next section. In Section 5 we show our results. Section 6
gives an overview of prefetching mainly in the area of the World Wide Web.
Finally we summarize and conclude.

11T

2 Distributed Digital Library for Articles

The aim of every library is to make a large collection of publications easily
accessible to the readers. To achieve this, libraries used to build up an archive
as well as an index to enhance searching for a particular publication. With the
shift to digital libraries, libraries have stopped collecting periodicals and instead
provide licenses to directly access remote fulltext archives offered as a service
from most publishers.

While many libraries also rely on web interfaces provided by publishers,
some have built their own gateways to access these fulltext archives. Fig-
ure 1, taken from our previous paper [6], shows the architecture of such an ap-

proach. In an academic envi- p i
. . . X -CI' t
ronment the university library e

would typically run a gateway A CES S\ e
. . @ ______ server

service which has access to ‘ Pt
an index database and the re- % Gateway) server
1 i Fulltext

mote fulltext servers provided ES o N\

by publishers. The gateway - '

———

NN)

may have a document cache to 2 Sateway N —

serve some document requests 2 < h h)
ache

locally. Fig. 1: Architecture of a distributed digital library.
Adapted from [6]

2.1 The DADS System

For the study in this paper we have used DTV’s Article Database Service
DADS [1,2] as an implementation of the above architecture. DADS was de-
veloped with the aim of providing the user with a single point of access to all
research related literature by merging the index databases of all major publishers
into a single super-database.

The DADS user interface is implemented as a web application. Users in-
teract with the DADS system using a standard web browser, which dis-
plays dynamically generated web pages. This implements a user model for
the search process shown in) 7,
Figure 2 (adapted from our (refine e
previous paper [6]). A user o
normally starts in the state
search by providing keywords
which should appear within
the bibliographic record, for
example in the title, the ab-
stract or the authors name.
Normally the user wants to P :
reduce the number of hits to ownload)t (Julhiext e
a manageable amount. This v

brings them to the refine state. Fig- 2: User model during a search session. Adapted
from [6]

(search ~&

,:!L,,,,,
show record

d

From both states, the user can

v

move on to the hit list state, where up to 10 articles are shown. Selecting one
of those articles brings them to the show record state, where they can view the
bibliographic record including the abstract.

If the users decide that they want to fetch the whole article, they proceed
to the download state. To do so, the user has to pass through the fulltext state,
which offers different delivery methods. A paper copy can be ordered from the
library for all articles, while online copies in PDF format are only available for
a large but limited subset of the indexed articles. A more detailed description
and analysis of the user model can be found in our previous paper [6].

2.2 Prefetching

We extended the DADS system by a prefetching component. This was accom-
plished by adding a file area on the gateway machine as a fulltext cache. We also
changed the gateway to manage the prefetch cache in the following way:

e In the state show record we check if the corresponding document can be found
in the cache. If not, a lock for this document is acquired first before fetching
the document from the publishers fulltext archive is started. Locking avoids
the occurrence of concurrent prefetches as well as the delivery of incomplete
documents to the clients. When the transfer is completed the lock is removed.

e In the state download we deliver the paper directly from the cache if it exists
and is not locked. If it is locked, we create a dynamic page telling the user
that prefetching is in progress and program the user’s browser to poll the
download page with a short delay again. If it is neither locked nor existing
— which is an error condition — we start the actions of the show record state
and program the user’s browser as above.

These two changes are sufficient to implement a simple prefetching strategy.

2.3 The Aim of this Study

Given the above system, the overall question is if it allows most of the latency to
be hidden. Furthermore we want to find out how large the overhead in terms of
increased network traffic is. Particularly we are interested in the following issues:

e The percentage of documents that can be served by prefetched documents
from the cache. This critically depends on the time between viewing the
abstract and requesting the document.

e How many of the documents are prefetched, but never accessed by the user?
Compared to the useful prefetches this gives a measure for the overhead
introduced by our scheme.

e Prefetched documents not picked up by the user can potentially pollute
the (limited) cache. To avoid this, there should be a strategy for when a
document should be considered useless and evicted from the cache.

3 Experimental Setup

In order to evaluate our method of prefetching we have set up a DADS gateway
at Chalmers University of Technology in Gothenburg, Sweden. The gateway
was available to all members of the university, approximately 8000 students
and 2000 employees. In order to attract as many potential users as possible on
campus, the prefetch experiment was announced in the library newsletter to all
departments. It was also promoted as a top link on Chalmers libraries front page.
Our volunteer users had not used DADS before, but all users had access to the
fulltext archives before by using each publishers web interface. We conducted
the prefetch experiment from March 1 until August 15, 2002.

We implemented the gateway using a retired commodity PC running Linux
on a Pentium processor with 166MHz and 64MB of RAM. The machine had
a disk with 1.6GB used for storing the OS, the gateway and the cache for
prefetched documents. Our low cost solution did not have the index database
available locally. Instead it connected to the remote index database of the origi-
nal DADS system in Copenhagen, Denmark. While this inevitably slowed down
the navigation interface slightly, it was hardly noticeable, because of the good
network connection to Copenhagen, Denmark (14 hops, typical round trip time
17ms, measured bandwidth 1.5MBit/sec). It did not have any influence on the
timing behavior we wanted to observe, because this is given by the users and
not by the gateway.

We did not implement any cleanup strategy for prefetched documents, neither
for those delivered to the user nor for those which were never requested. Instead
we kept all prefetched documents in the cache. Only once did we have to clean
the cache due to the limited disk space; but again this had no influence on the
timing behavior for our measurements.

The navigation interface was stripped down to offer only searching (standard
DADS does also include browsing). We configured the interface to search only for
articles with fulltext available by default, but did not remove the possibility of
searching even for articles without an online fulltext copy. We made this decision
because we wanted the users to consider the system as useful as possible, in order
to attract as many people as we could. Nor did we remove the fulltext page (see
Figure 2). While we removed the option to order a printout copy from the library,
we still gave the users two alternatives. The first was to download the article
from our cache, the second to download the article from the publishers web site.
This intermediate step did influence the timing behavior of the user, because the
user needed to click on one more hyper link, but we think that the effects were
in the range of a second, because the user did proceed quickly.

This decision has the following advantages. Firstly the user could compare
our prefetching gateway with the publishers server to experience the difference
in speed. Secondly, in case our prefetcher had problems, the users could still get
the documents from the publishers fulltext server. And in fact these issues came
up, mainly due to the access protection strategies used by some publishers.

VI

4

Evaluation Method

In order to analyze the transfer time, start and end points of each doc-

ument transfer have to be logged. On a per document basis, the prefetch
transfer time PTT is defined as the transfer time from the fulltext server

to the gateway. Similarly, the client () without prefetch \ 4 .
transfer time CTT is defined as the) pretetennit Y Vo

transfer time from the gateway to © cache hit % Y Y '
the client. Note that CTTs are only @ prefetch miss 4 '
available for documents requested by | '

the users. Additionally, we define the

. . . v <5h°}"ze€°f£‘> zzzzzzzzZ prefetch transfer time PTT
download time DT, which is the user
. Vv @ mmm client transfer time CTT
observed delay. Also, the publisher
of each document is available. Fig. 3: Occurrence of events

4.1

Classification of Events

For our analysis, we apply the following scheme shown in Figure 3. The download
requests from the client are used as time alignment in the following cases:

().

(b).

The figure shows the DT, when fetching directly from the fulltext server.
This DT is equal to the PTT in all other cases assuming that the gateway
has approximately the same network distance as the clients.

In the case of a successful prefetch, the gateway can prefetch the whole article
from the fulltext server before the client requests it. This is possible because
the show record in the above example occurs long enough in advance. When
the client transfers the document from the gateway cache later, the experi-
enced DT will be reduced to CTT due to the local access hiding latency.

. Because no cache cleanup strategy is implemented, there may be cases where

the document can be served from the cache avoiding another prefetch of the
same document. Even in this case the download time is reduced.

. In this case our prefetching strategy failed. The time frame from show record

to the actual download is too short to transfer the complete document. In
our implementation this delays the transfer to the client. This can poten-
tially lead to an increased DT. In the worst case DT is the sum of PTT
and CTT. Streaming the data through the proxy instead of waiting for the
prefetch would avoid this, but we decided against it in favor of a simple clean
implementation.

Using the above event classification scheme, we can classify all of the down-

load events in our traces into one of the categories (b) to (d) (see Figure 3).

VII

all publishers F only I only

Prefetch hits: 70.46% 84.17% 66.53%

Prefetch misses: 14.93% 3.89% 15.04%

Cache hits: 14.60% 11.94% 18.51%

Overhead: 78.63% 63.06% 69.41%

not used/used: 530/674 198/314 236/340
Average download time

with prefetching : 2.21s 1.16s 3.19s

without prefetch : 4.94s 2.13s 7.30s

Fig. 4. Field test prefetch statistics

4.2 Comparison to Non-Prefetching Systems

In order to evaluate our particular configuration it is necessary to compare it
to other possible setups. A simulation of alternatives, based on the time stamps
available from the traces, is a simple way to do this while preserving the timing
behavior of the users. Additionally we need the assumption that the PTT equals
the DT without prefetching in place. This is reasonable, because both the client
and the gateway are very close to each other compared to the network distance
from the fulltext servers.

To simulate a system without prefetching, we move the PTT of case (b) on
the time line to the download event, hence transforming it into case (a). This
will create a new end point for the DT.

An important part of the analysis is the increase in document transfers, which
is caused by prefetched documents not requested by the user later on. We define
the overhead introduced by dividing the number of prefetched documents by the
number of downloaded documents.

To do this we keep the state on a per document basis. Once a document is
prefetched it is useless until it is requested by the user, where it becomes useful.

During our analysis we have found that only two large international pub-
lishers were heavily used, while the remaining publishers in our experiment ex-
perienced less than 100 download requests each. We have therefore decided to
present our results for Publisher E and I as well as for all publishers together.
This is especially interesting as FEs fulltext archive is approximately 10 times
faster than Is archive, both in bandwidth and round trip time. (E: 16 ms round
trip, 200 Kbytes/s, 2.3 million articles; I: > 120 ms, 1-30 KBytes/s, 1 million
articles). The difference mainly comes from the fact that Es archive is located
close by in Europe, while Is archive is located in North America.

5 Results

In the first analysis we want to be convinced that our simple prefetching scheme
works. Table 4 shows the results. The most important observation is that we get
a considerable amount of prefetch hits. Not surprisingly, the prefetch hit rate is

VIII

a lot higher for the fast E source than the slow [server. Obviously the opposite
applies for the prefetch misses.

The 10-20% hit rate due to caching is about equal for all three cases and
shows what would be achievable by a pure caching strategy. As for the traffic
overhead due to prefetching, we introduce a factor of less than two.

The analysis of average download times shows that it is possible to shorten
the download time a factor of two consistently in all cases. Considering that
this result could be still improved by overlaying the download phase with the
prefetching phase for all hits during prefetch, this result is really encouraging.
Hence we conclude that one solution to the latency problem in the domain of
digital libraries is prefetching.

This leaves us with one question to answer. How long should we keep pre-
fetched documents in the cache before we decide that they are not going to be
used?

To answer this question, we have analyzed the time between the show record
and the download state, where available. Figure 5 shows the cumulative dis-
tribution during the first hour after an abstract was shown on a logarith-
mic scale. We have also included our 1 m—
previous findings [6] marked origi- o onod
nal DADS, where the users moved osf
less quickly to the document down-
load. Hence our assumption that
the users proceed quickly through
the fulltext state is sound. Also we
can clearly see that in almost all
cases it is sufficient to keep the ar-
ticle for an hour. If it is not down- 0 ‘ ‘ ‘
loaded by then, we can almost be __ ' “mleobme?shUW_'em‘a""l::W"'m'"sew"ﬂs .mw_
certain that this prefetch wasted Fig.5: CDF for t1m1n.g between viewing the
only bandwidth. Note that this fig- abstract and downloading the document
ure does not show the timing between subsequent accesses to the same docu-
ment.

Hence the conclusion is that we do not have to keep articles for more than one
hour, which allows the cache size to be limited.
Considering these results, we should modify our strategy as follows:

e We keep the strategy to fetch an article into the cache, when the user views
the abstract.

e If no download occurs during the first hour, we discard the article.

e If a download occurs within an hour, we remove the article with the down-
load.

Note that this approach will eliminate the cache hits, as articles are always
removed from the cache on the first download.

IX

6 Related Work

An alternative to prefetching is traditional caching, which not only reduces the
latency but also reduces the data transferred. Since in digital libraries the articles
are neither modified by the clients nor updated on the servers, this seems to be an
ideal approach at first glance. Unfortunately caching requires multiple accesses
to the same document in order to work. In a previous study [5] we have shown
that this is not the case for 85% of the accessed documents, when not considering
re-accesses from the same client. So even with prefetching it does not make sense
to keep once accessed articles in the cache for the future. Apart from the small
latency gain and the costs, this can also involve copyright issues.

Hence for distributed digital libraries we propose to use document prefetch
only, a topic not studied before to the best of our knowledge. The closest area of
research is prefetching in the World Wide Web. See Lee [4] for a quick overview
of both caching and prefetching and Duchamp[7] for a more in depth overview
of the early work done.

Two main categories of different approaches can be found in the literature.
The most popular approach is to use proxy or server log analysis in order to
predict future accesses of the clients [7—14]. However building up a probabilistic
model in one way or the other requires that the candidates for prefetching have
been accessed many times before. As we have just seen in the case of caching
above, we are missing this property, at least at the university level. Hence, these
methods are not applicable to digital libraries.

The second approach in web prefetching is to extract the hyperlinks contained
in web documents and prefetch based on those links. As a result, this approach
is not limited to pages previously accessed by a particular client or other users.

Eden et al. [15] proposed to let the user mark links, which can be prefetched
by the client ahead of time, claiming that this would not increase the amount
of data transfered, while still reducing the latency by a factor of three. While
extremely simple, it is unrealistic to assume, that the users would be willing to
mark all interesting links as well as that they would always follow all of their own
hints. Hence, approaches which do not involve the user will be more realistic.

Chinen and Yamaguchi [16] analyzed a web proxy based implementation,
where the proxy is placed close to the user in the same way as our gateway.
Their proxy uses the first 10 links encountered in the parsed web pages to fetch
the linked pages including a maximum of ten images. Their analysis showed
in one configuration a 64% hit rate reducing the average latency from 15 to
6 seconds by increasing the traffic by a factor of 2.5.

The work of El-Saddik et al. [17] improved this scheme by ranking the in-
cluded links according to the words in the link description text, which is com-
pared to the description texts clicked by the user earlier. The underlying rea-
soning is similar to ours in the way that they try to get information about the
intention of the user.

They use a maximum of 15 prefetched web documents per web page and
found a lot of generated network traffic: 10 times the amount using the Chi-
nen and Yamaguchi approach and 4.29 times the amount than using their own

X

approach, in both cases compared to the amount of traffic without prefetching.
The more recent work of Davison [18] is quite similar to their approach. Ibrahim
[19] also implemented a similar approach using a neural network targeting news
web sites. The neural network is used to learn about the interests of a particular
user using keywords in the anchor text. They report a low waste rate of 20% to
30%.

WebCompanion [20] by Klemm takes another approach. It selects the pre-
fetched links by the quality of the network connection. Klemm also proposes a
name resolutions cache, used to find the web servers.

Cohen and Haim [21] proposed setting up just the network connection to the
server in advance instead of prefetching the documents themselves. This is done
by doing the name resolution early and establishing the TCP/IP connection.
They also force the web servers to be warmed up for the imminent request by
asking for the document size. Hence the server has to access the file system. Their
techniques are clearly applicable in our case, and could have yielded additional
gains. In fact, we know the publisher’s servers in advance and could use (multiple)
persistent connections to the few fulltext server to speed up transfer times even
more.

Foxwell and Menasce [22] studied the effects of prefetching for web search
engines. They reported only 14% latency reduction for their best example. This
was achieved by prefetching the top eight matching documents of all queries,
with a maximum average hit ratio of 35%.

Our prefetching approach is much simpler compared to the above approaches
[16—20]. Instead of limiting the potential documents or using a selection scheme
to prefetch the highly likely pages, our users give us the information which
document is most likely to be accessed for free by moving to the show record
state. With this information we achieve similar latency reductions with lower
overhead, when compared with current web prefetch methods. Typical values
are 50% latency reduction with 150% increase in network traffic [17,20], while
we achieved the same reduction with less than 80%.

This navigation scheme is possible due to the structure of having biblio-
graphic information available from the index database corresponding to the full-
text articles. The Web in its current form does not offer this structure, hence
it is much harder to build a prefetching system. It is interesting to see that old
fashioned ways of organizing information, as in traditional libraries, still have
their value in the fast moving digital world.

7 Conclusions

We have set up a prefetching experiment for fulltext servers from major academic
publishers. The results from the experiment show that we could reduce the
average experienced download time to 1/2 using a simple scheme. At the same
time the additional introduced document transfers accounted for less than half
of all transfers. We also found that holding articles for a maximum of one hour
in the cache is sufficient.

XI

These encouraging results, as compared to web prefetching, are attributable
to the well-structured user model digital article libraries provide. By keeping
the user “busy” with reading the bibliographic record, including the abstract,
we have enough time to prefetch the article in most cases. Because the user has
already selected this particular article at that time from a hit list, we experience
the extremely high likelihood that they will proceed to download the article —
in our case from a prefetch cache close to the user.

Acknowledgments

We are grateful to Prof. Dr. Ulrich Riide and Dr. Graham Horton from the in-
stitution of system simulation at the Friedrich-Alexander-Universitéit, Erlangen-
Niirnberg, Germany for providing us with infrastructure and a magnitude of
insights how to gather and analyze relevant data.

We would also like to thank the following publishers for allowing us to
prefetch fulltext articles from their fulltext servers: Elsevier, IEEE, ABI, Aca-
demic Press, IOP, Springer, Emerald, Kluwer Academic Publishers, RSC and
IPG. Special thanks go to Silke Struve and David Ashby for proof-reading.

This research is supported by the NORDUnet2 initiative.

References

1. Ardo, A., Falcoz, F., Nielsen, T., Shanawa, S.B.: Integrating article databases and
full text archives into a digital journal collection. In Nikolaou, C., Stephanidis,
C., eds.: Proceedings of the Second European Conference on Research and Ad-
vanced Technology for Digital Libraries, ECDL’98. Volume 1513 of Lecture Notes
in Computer Science., Springer-Verlag (1998) 641-642

2. Sandfeer, M., Ardd, A., Falcoz, F., Shanawa, S.: The architecture of DADS - a
large digital library of scientific journals. In: Online Information 99, Proceedings.
(1999) 217-223

3. Hennessy, J., Patterson, D.: Computer Architecture: A Quantitative Approach.
second edn. Morgan Kaufmann Publishers Inc. (1996)

4. Lee, D.C.: Methods for web bandwidth and response time improvement. In
Abrams, M., ed.: World Wide Web - Beyond the Basics. Prentice Hall (1998)

5. Hollmann, J., Ardo, A., Stenstrom, P.: Prospects of caching in a distributed digital
library. Technical Report 03-04, Department of Computer Engeneering, Chalmers
University of Technology, S-41296 Gé&teborg, Sweden (2003)

6. Hollmann, J., Ard6, A., Stenstrém, P.: Empirical observations regarding pre-
dictability in user access-behavior in a distributed digital library system. In: Pro-
ceedings of the 16th International Parallel and Distributed Processing Symposium,
Fort Lauderdale, FL, USA, IEEE (2002) 221-228

7. Duchamp, D.: Prefetching hyperlinks. In: Proceedings of the Second USENIX
Sysmposium on Internet Technologies and Systems, Bolder, CO, USA, USENIX
(1999) 127-138

8. Padmanabhan, V.N.; Mogul, J.C.: Using predictive prefetching to improve world
wide web latency. ACM SIGCOMM Computer Communications Review 26 (1996)
22-36

XII

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Markatos, E.P., Chronaki, C.E.: A top 10 approach for prefetching the web. In:
Proceedings of INET’98 Conference, Geneva, Switzerland (1998)

Palpanas, T., Mendelzon, A.: Web-prefetch using partial match prediction. In: Pro-
ceedings of the 4th International Web Caching Workshop (WCW’99), San Diego,
CA, USA (1999)

Sarukkai, R.R.: Link prediction and path analysis using markov chains. Computer
Networks 33 (2000) 377386

Yang, Q., Zhang, H.H., Li, T.: Mining web logs for prediction models in www
caching and prefetching. In: 7th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining KDD’01. (2001)

Wu, Y.H., Chen, A.L.P.: Prediction of web page accesses by proxy server log.
World Wide Web 5 (2002) 67-88

Chen, X., Zhang, X.: Coordinated data prefetching by utilizing reference informa-
tion at both proxy and web servers. In: Proceedings of the 2nd ACM Workshop
on Performance and Architecture of Web Servers (PAWS-2001), Cambridge, MA
(2001)

Eden, A.N., Joh, B.W., Mudge, T.: Web latency reduction via client-side prefetch-
ing. In: IEEE International Symposium on Performance Analysis of Systems and
Software, Austin, TX, USA, IEEE (2000) 193-200

Chinen, K., Yamaguchi, S.: An interactive prefetching proxy server for improve-
ment of www latency. In: The Seventh Annual Conference of the Internet Society
(INET 97), Kuala Lumpur, Malaysia (1997)

El-Saddik, A., Griwodz, C., Steinmetz, R.: Exploiting user behaviour in prefetch-
ing www documents. In: Proceedings of 5th International Workshop on Interactive
Distributed Multimedia Systems and Telecommunication Service (IDMS98). Vol-
ume 1483 of Lecture Notes in Computer Science., Oslo, Norway, Springer-Verlag
(1998) 302-311

Davison, B.D.: Predicting web actions from html content. In: Hypertext 2002:
Proceedings of the Thirteenth ACM Conference on Hypertext and Hypermedia,
ACM (2002) 159-168

Ibrahim, T., Xu, C.Z.: Neural nets based predictive prefetching to tolerate www
latency. In: Proceedings 20th IEEE International Conference on Distributed Com-
puting Systems. (2000) 636—643

Klemm, R.: Webcompanion: a friendly client-side web prefetching agent. IEEE
Transactions on Knowledge and Data Engineering 11 (1999) 577-594

Cohen, E., Kaplan, H.: Prefetching the means for document transfer: A new ap-
proach for reducing web latency. In: Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies INFOCOM 2000. Volume 2., IEEE
(2000) 854863

Foxwell, H., Menasce, D.A.: Prefetching results of web searches. In: Proceedings
of the 1998 24th International Conference for the Resource Management and Per-
formance Evaluation of Enterprise Computing Systems, CMG. Part 2. Volume 2.,
CMG (1998) 602-609

