Skip to main content

Conditions of Similarity between Hermite and Gabor Filters as Models of the Human Visual System

  • Conference paper
Book cover Computer Analysis of Images and Patterns (CAIP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2756))

Included in the following conference series:

Abstract

Among the suggested mathematical models for receptive field profiles, the Gabor model is well known and widely used. Another less used model that agrees with the Gaussian derivative model for human vision is the Hermite model which is based on analysis filters of the Hermite transform. It has the advantage of an orthogonal basis and a better fit to cortical data. In this paper we present an analytical comparison based on minimization of the energy error between the two models, and so the optimal parameters letting the two models be close to each other are found. The results show that both models are equivalent and extract about the same frequency information. Actually, we can implement a Hermite filter with an equivalent Gabor filter and vice versa, provided that conditions leading to error minimization are held.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. Dover, New York (1972)

    Google Scholar 

  2. Daugman, J.G.: Complete 2-D Discrete Gabor Transforms by Neural Networks for Image Analysis and Compression. IEEE Trans. Acoust. Speech Signal Processing 36, 1169–1179 (1988)

    Article  MATH  Google Scholar 

  3. De Valois, R.L., Albrecht, D.G., Thorell, L.G.: Spatial Frequency Selectivity of Cells in Macaque Visual Cortex. Vision Research 22, 545–560 (1982)

    Article  Google Scholar 

  4. De Valois, R.L., Yund, E.W., Hepler, N.: The Orientation and Directional Selectivity of Cells in Macaque Visual Cortex. Vision Research 22, 531–544 (1982)

    Article  Google Scholar 

  5. Gabor, D.: Theory of Communication. J. Inst. Electr. Eng. 93, 429–457 (1946)

    Google Scholar 

  6. Gertner, I., Geri, G.A.: Image Representation using Hermite Functions. Biological Cybernetics 71, 147–151 (1994)

    Article  MATH  Google Scholar 

  7. Jones, J.P., Palmer, L.A.: The Two-Dimensional Spatial Structure of Simple Receptive Fields in Cat Striate Cortex. J. Neurophysiol. 58, 1187–1211 (1987)

    Google Scholar 

  8. Jones, J.P., Palmer, L.A.: An Evaluation of the Two-Dimensional Gabor Filter Model of Simple Receptive Fields in Cat Striate Cortex. J. Neurophysiol. 58, 1233–1258 (1987)

    Google Scholar 

  9. Koenderink, J.J.: The Structure of Images. Biological Cybernetics 50, 363–370 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Koenderink, J.J., van Doorn, A.J.: Receptive Field Families. Biological Cybernetics 63, 291–297 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Koenderink, J.J., van Doorn, A.J.: Generic Neighborhood Operators. IEEE Trans. Pattern Analysis Mach. Intell. 14, 597–605 (1992)

    Article  Google Scholar 

  12. Kulikowski, J.J., MarČelja, S., Bishop, P.O.: Theory of Spatial Position and Spatial Frequency Relations in the Receptive Fields of Simple Cells in the Visual Cortex. Biological Cybernetics 43, 187–198 (1982)

    Article  MATH  Google Scholar 

  13. Lee, T.S., Mumford, D., Romero, R., Lamme, V.A.F.: The Role of the Primary Visual Cortex in Higher Level Vision. Vision Research 38, 2429–2454 (1998)

    Article  Google Scholar 

  14. MarČelja, S.: Mathematical Description of the Responses of Simple Cortical Cells. J. Opt. Soc. Amer. 70, 1297–1300 (1980)

    Article  MathSciNet  Google Scholar 

  15. Martens, J.-B.: The Hermite Transform – Theory. IEEE Trans. Acoust. Speech Signal Processing 38(9), 1595–1606 (1990)

    Article  MATH  Google Scholar 

  16. Martens, J.-B.: Local Orientation Analysis in Images by Means of the Hermite Transform. IEEE Trans. Image Processing. 6(8), 1103–1116 (1997)

    Article  Google Scholar 

  17. Perona, P.: Deformable Kernels for Early Vision. IEEE Trans. Pattern Analysis Mach. Intell. 17, 488–499 (1995)

    Article  Google Scholar 

  18. Pollen, D.A., Ronner, S.F.: Phase Relationships between Adjacent Simple Cells in the Visual Cortex. Science 212, 1409–1411 (1981)

    Article  Google Scholar 

  19. Pollen, D.A., Ronner, S.F.: Visual Cortical Neurons as Localized Spatial Frequency Filters. IEEE Trans. Syst. Man Cybern. 13, 907–916 (1983)

    Google Scholar 

  20. Porat, M., Zeevi, Y.Y.: The Generalized Gabor Scheme of Image Representation in Biological and Machine Vision. IEEE Trans. Pattern Analysis Mach. Intell. 10, 452–468 (1988)

    Article  MATH  Google Scholar 

  21. Rivero-Moreno, C.J., Bres, S.: Les Filtres de Hermite et de Gabor Donnent-ils des Modèles Équivalents du Système Visuel Humain? In: ORASIS 2003. Journées Francophones des Jeunes Chercheurs en Vision par Ordinateur, Gérardmer, France, May 2003, pp. 423–432 (2003)

    Google Scholar 

  22. Sakitt, B., Barlow, H.: A Model for the Economical Encoding of the Visual Image in Cerebral Cortex. Biological Cybernetics 43, 97–108 (1982)

    Article  Google Scholar 

  23. Wallis, G.M.: Linear Models of Simple Cells: Correspondence to Real Cell Responses and Space Spanning Properties. Spatial Vision 14, 237–260 (2001)

    Article  Google Scholar 

  24. Yang, J., Reeves, A.J.: Bottom-Up Visual Image Processing Probed with Weighted Hermite Polynomials. Neural Networks 8(5), 669–691 (1995)

    Article  Google Scholar 

  25. Young, R.A., Lesperance, R.M., Meyer, W.W.: The Gaussian Derivative Model for Spatial- Temporal Vision: I. Cortical Model. Spatial Vision 14(3,4), 261–319 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rivero-Moreno, C.J., Bres, S. (2003). Conditions of Similarity between Hermite and Gabor Filters as Models of the Human Visual System. In: Petkov, N., Westenberg, M.A. (eds) Computer Analysis of Images and Patterns. CAIP 2003. Lecture Notes in Computer Science, vol 2756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45179-2_93

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45179-2_93

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40730-0

  • Online ISBN: 978-3-540-45179-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics