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Abstract. This paper describes an extension of the Brands protocol to incorpo-
rate flexibly-divisble k-term Coins via application of Shamir polynomial pa-
rameterisation and Feldman-Pedersen zero knowledge (ZK) verification. User
anonymity is preserved for up to k sub-Coin Payments per k-term Coin, but re-
voked for over-Payments with (k+1) or more sub-Coins. Poly-cash construc-
tion using only discrete logarithm (DL) or elliptic curve (EC) operations
enables efficient implementation in terms of the latter; which constitutes an ad-
vantage over previous divisble Coin formulations based on quadratic residue
(QR) binary-trees, integer factorisation (IF) cryptography or hybrid DL/IF.
Comparative analysis of Poly-cash and previous protocols illustrates the ad-
vantages of the former for operationally realistic Coin sub-denominations. The
advantage of Poly-cash in terms computational overhead is particularly signifi-
cant, and facilitates implementation on lightweight User Purses and Merchant
Payment-terminals. Configurable k-divisibility is also an important considera-
tion for real-world applicability with decimal currency denominations, which is
not well addressed by the binarised values of QR-tree divisible Coins.

1 Introduction

Digital cash protocols—specifying interactions between distinct User, Bank and Mer-
chant entities—typically emphasise anonymous Payment transactions and feature
Coin data-structures which can be recognised as authentic. These attributes are char-
acteristic of physical currency, the goodness of which can be established without User
identity being an operational issue. The notion of User anonymity in a digital cash
context is usually modified to result in preservation only in the event of legitimate
Coin usage. Conditional anonymity allows for offline Coin verification—with respect
having been issued by a particular Bank, without compromising User identity and
without the necessity for Merchant-to-Bank connectivity—during a User-to-Merchant
Payment. Merchants and Banks are, however, protected via detection of User fraud
during subsequent Merchant-to-Bank Deposits. The conceptual framework for digital
cash protocols was defined by the groundbreaking research of Chaum [1] and Brands
[2, 3], the latter of which constitutes the base-formulation (with single-term non-
divisible Coins) for featured protocol.

The concept of Coin-divisibility (with multiple sub-Coins per Coin) was first
formulated by Okamoto-Ohta [4, 5], and is motivated by the reduced overheads aris-
ing from amortisation of computationally-expensive Withdrawals. Okamoto divisi

A. Lioy and D. Mazzocchi (Eds.): CMS 2003, LNCS 2828, pp. 181-193, 2003.
© IFIP International Federation for Information Processing 2003



182 A. Goh, K.W. Yip, and D.C.L. Ngo

bility is based on QR/IF cryptography, with the Coin a binary-tree of successively
computed QRs. Such a data-structure—subsequently also used in the Chan-Frankel-

Tsiounnis [6] protocol—has 2K leaf-nodes for a tree of height k, allowing sub-Coins
k
of binarised fractional value % for k € [1, n]. QR-tree Coinage is extremely effi-

cient for large k values, but would result in relatively high overheads for smaller de-
nominations due to the necessity for long QR parameter-lengths. The Ferguson
protocol [7] also features Coin divisibility based on the Rivest-Shamir-Adleman
(RSA) formulation, and would therefore require similarly high overheads.

We outline a divisible cash protocol with flexibly configurable k-term Coins—

with sub-Coins of relative fractional value %—speciﬁed via Shamir [8] polynomials

and Feldman-Pedersen [9, 10] verification. The proposed divisibility mechanism can
be expressed in terms of DL or EC finite-field operations, the latter of which results in
significantly reduced overheads. This is a major advantage over the QR/IF basis of
previous divisible cash protocols. The resultant k-term Coins and extended Brands
operational framework is both efficient and versatile, for instance being straightfor-
wardly supportive of practical (k = 10) dime or (k = 20) nickel denominations.

2 Review of Single-Term Brands Protocol

2.1 Bank/User Setup

The Brands protocol can be described in terms of the following processes:-

(1) Bank Setup: establishment of common computational environment

(2) User Setup: account establishment and individual licensing for Coin-generation
(3) Withdrawal: generation of anonymised Coin, resulting in User account-debit
(4) Payment: transfer of transaction-committed Coin from User to Merchant

(5) Deposit: submission of Coin to Bank, resulting in Merchant account-credit

as illustrated below:
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Fig. 1. Digital Cash Withdraw-Pay-Deposit Cycle
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Brands digital cash—in common with other DL formulations—can transcribed in
terms of EC finite-field operations, thereby leveraging the latter’s order-of-magnitude
advantage in terms of computation, storage and communications for equivalent-
security parameterisations. The Brands scheme in particular requires publication of
the following environmental parameters: (1) primes (p, q) with q | p—1 as previously
defined, (2) basepoints (g,g’.g")e E%’b on the elliptic curve defined over Zp with
number of points divisible by large prime g, and (3) public component of Bank key-
pair (X, y (= xg)); during Bank Setup.

Individual User Setups episodes can subsequently proceed with the generation of
individual key-pairs (W, I (=ug”)); with the public components submitted to the Bank,
associated with specific User accounts and signed (using Bank private-key x) to create
Coin-generation licenses of form z = x(I + g”). In the Brands framework the different
base-points serve various functions ie g for blind-signature generation and (g’, g”) for
representation of the Coin data-structure.

2.2 User-to-Bank Withdrawal

The simultaneous requirements for verifiable Coin-authenticity and conditional User-
anonymity is ensured by the Bank generating a blinded Schnorr signature for each
Coin, as outlined below:-

Table 1. User-to-Bank Withdrawal

Bank B User U
1 Generate random w
Compute Schnorr (a, b) (a,b) =
2 Generate blinding (s, u, v)

Compute Coin A and (z’, a’, b’)
Generate secret-splitting (x’, x”)
Compute Coin B =x'g’ + x"g”
«—cC Compute Coin challenge (¢’, ¢)
3 Compute r = cx + w mod q r—
4 Verify
e rg=cy+a
o 1I+g’)=cz+b
Compute r’ =ru + v mod q

The Schnorr signature protocol (in common with other EC/DL formulations) requires
a secret signer-determined randomisation w; which is subsequently used to compute
(a, b) = (wg, w(I + g”)), the second component of which is User-specific. The subse-
quent blinding—by the signature verifier (User)—usually requires four parameters,
two each for message blinding and manipulation of the signer (Bank) response to a
verifier-issued challenge. The choice of (I + g”) as the Schnorr message necessitates
the application of User private-key [ as one of the blinding parameters, along with
random Coin-specific (s, u, v). This allows the computation of (A, z’) = (s(I + g”), sz)
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and (a’, b’) = (ua + vg, sub + vA). Parameter A can be regarded as the User-specific
part of the Coin, while (z’, a’, b”) are components of the (as yet incomplete) signature.

Encoding of the User secret into the Coin is established randomly generated fac-
tors (x’, x”) and B. The latter constitutes a User-to-Bank commitment on the specific
Coin, and is later used for the verification of the challenge-response pair during Pay-
ment. This is followed by computation of unblinded ¢’ = h(A, B, z, a’, b") and

blinded c = c'u_lmodq challenge parameters, both of which are Coin-specific and

the latter of which is then presented to the Bank for blind-signature affixation. All of
computations thus far constitute pre-transaction operations which can, in fact, be
executed (and the generated parameters stored) prior to an actual Withdrawal episode
resulting in User account-debit. This speeds up Coin-generation to a significant ex-
tent, which consequently only requires the User-to-Bank challenge-response sequence
in the last two steps of Table 1 for satisfactory conclusion.

A proper response r to blinded challenge ¢ would require knowledge—presumed
as restricted to the Bank—of private-key x and transaction parameter w. Such a re-
sponse for blinded message (z, a, b, c) can be verified using Bank public-key y and
enables construction of unblinded signature 6(A, B) = (z’, a’, b’, r’), following which
the Bank can be safely authorised to execute the account-debit. The interpretation for
Go(A, B) as a blind-signature can be seen from the Bank not knowing (A, B), in con-
junction with the dependence of third-party (Merchant) verification condition (r'g,
’A) = (c'y + a’, ¢’z + b’) on Bank public-key y. Coin % = (A, B, 6(A, B)) is hence
verifiably authentic, while also entirely protective of User anonymity.

2.3 User-to-Merchant Payment

Coin 7 can subsequently be used for Payment as follows:-

Table 2. User-to-Merchant Payment

U Compute challenge ¢ =h (A, B, 1, T)
Compute response (1, r”) for ¢
L XA B). T, (7, 1)

Merchant | Verify Bank signature 6(A, B)
M Compute challenge ¢
Verify response r'g’ + 1"g” = cA + B

Note the Payment-specific non-interactive challenge c—which incorporates Merchant
ID 1y, and external specifier (ie timestamp) T—the correct response for which is (r’,
r”) = (c(us) + x’, cs + x”). The response: (1) encodes | and Coin-specific blinding
factor s, while (2) concealing s; thereby facilitating recovery of the User secret (and
consequently identity I) with two or more of the challenge-response pairs submitted
during the subseqeuntly described Deposit. User anonymity is therefore conditional
on proper use ie not more than one Payment per Coin.
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2.4 Merchant-to-Bank Deposit

Deposit is simply Merchant-to-Bank submission of the Coin and Payment-specific
commitment %’(A, B) = (x(A, B), (c, I, 1)), as outlined below:

Table 3. Merchant-to-Bank Deposit

LA (AB)
Verify own signature (A, B)
Verify response r'g’ + 1’g” = cA + B
Check for over-use of G(A, B)

If detected, then:-

= X

’ ’

e Compute | = r”— p”

r=p

e  Compute I = ug’ for identification

with (p’, p”) some previously catalogued response in the Bank database, threby ena-
bling detection of double spending. There are three types of fraud which can be at-
tempted on a particular Coin, with multiple responses that are: (1) identical, (2) non-
identical but non-verifiable, and (3) non-identical and verifiable. The first two cases
can probably be attributed to Merchant error or fraud, with User non-liability in (2)
due to malformation of the commitments. Case (3) is User double-spending since
valid commitments can only be computed by the User, whose anonymity is the re-
voked via recovery of key-pair (i, I) from multiple Payment-specific responses.

3 Review of Polynomial Secret-Sharing

Our scheme is based on the division of the Brands’ Coin to multiple sub-Coins via
polynomial secret-sharing (SS). Initial setup requires selection of a configurable
threshold (k) so that the secret—in our particular case the User-identity—can be be
split into an arbitrary (n) number of shares, with secret-reconstruction necessitating
possession of k+1 (or more) shares. On the other hand, possession of k (or less)
shares is cryptographically equivalent to knowing nothing about the divided secret,
hence preserving User anonymity.

There are various encoding schemes for such divided secrets, with the most
straightforward (due to Shamir) based on polynomial interpolation over a finite field.

In such a scheme a k-th degree polynomial f(x)= 3}, biximodq is used to encode
i=0
secret f(0)=b(), with the remaining k coefficients b;e Zq (for i # 0 and q prime)

randomly generated and kept secret by the User. The Coin-specific polynomial is
then recoverable via Lagrange interpolation given k+1 distinct (x, f(x)) coordinate
pairs on the polynomial-defined curve, enabling polynomial reconstruction
k k X—=X3
fo=3 f(xi)) M —2
i=0 j=0,21%X17X]

modq and subsequent recovery of secret f(0).
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Polynomial-based SS is attractive due to the inherent threshold property preventing
the manipulation of k (or less) (x, f(x)) shares for any useful information on the en-
coding polynomial.

Shamir SS does, however, assume honest share allocation by the User, which is
operationally unrealistic. The disclosed shares must therefore be verifiable, thereby
allowing receivers to validate share association with the secret polynomial. This can
be established via Pedersen verified SS (VSS) which represents both the secret and its
shares in terms of EC/DL images, thereby resulting in ZK share-verification. The
Pedersen formalism—expressed in terms of EC operations with respect ge Eg’b —

requires prior disclosure of polynomial commitments B; =b;g, thereby allowing ZK

k . k .
polynomial evaluation via f(x)g= X x'B;j= X bjx'g. This enables a Merchant
i=0 i=0
to verify the legitimacy of an individual share (sub-Coin) with respect a Coin-specific
secret, without acquiring cryptographically useful information on the Coin and conse-
quently the User. This results in User anonymity preservation unless there are if k+1
(or more) distinct sub-Coins (Payments) corresponding to a k-term Coin.

Polynomial SS is an elegant mechanism with which to implement Coin divisibil-
ity into the Brands digital cash protocol. Note this results in both divisibility and
conditional-anonymity mechanisms being based on EC operations, in contrast to pre-
vious formulations with Coin divisibility based on QR/IF cryptography. Our ap-
proach also enables interpretation of Brands conditional-anonymity—which is
revoked from two distinct challenge-response pairs—as a special case with linear
(k=1) polynomials.

4 Poly-Cash: k-Divisible Polynomial-Based Coins

Incorporation of polynomial divisibility requires requires extending the above-
outlined Withdrawal, Payment and Deposit operations—for single-term Brands
Coins—as follows:

4.1 Coin Withdrawal

Coin-specific polynomials f(x) (of degree k) can be used to encode User identity ie
bo =W, with the remaining coefficients randomly generated and kept secret by the
User. k-term Coin-generation therefore entails generation of polynomial coefficients
and their EC images ie (bi, ﬁi (: big')) for i = 0...k., with integration into the Brands

formulation via specification of Coin-parameter B = h(]’[ B; J This constitutes a
Vi
User-to-Bank commitment on the Coin-specific polynomial which (if over-spent) can
subsequently be used for secret-recovery.
Withdrawal and Coin-generation then proceeds as follows:
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Table 4. Coin Withdrawal

B U
1 Generate random w
Compute Schnorr (a, b) (a,b) >
2
Generate blinding (s, u, v)
Compute Coin A and (z/, a’, b’)
Generate secret-splitting (x, x”)
Compute Coin B from ;
Compute Coin challenge (¢’, ¢)
«—c
3 Compute r = cx + w mod q
r—
4

Verify

e rg=cy+a

o 1I+g’)=cz+b
Compute r’ =ru + v mod q

with a heavier computation overhead (by a factor of %) for the computation of B.

The first two steps are—in common with the base-formulation of Table 1—precom-
putable, the result of which is improved efficiency compared to Withdrawal of k dis-
tinct single-term Coins.

4.2 Sub-coin(s) Payment

Note the essential similarity of Tables 1 and 4, which differ only in the construction of
the B component of Coin ). The subsequently outlined Payment and Deposit, on the

other hand, must now deal with sub-Coins—of value 1 in relation to k-term Coin
k

x—as the fundamental transactional unit. The basic concept is to commit each sub-
Coin Payment via disclosure of a Shamir polynomial share, which can then be ZK-
verified (by the Merchant) using the Pedersen formalism. This necessitates User
disclosure of Coin ¥ and polynomial-commitments 3, both of which are verifiable via
o(A, B). A single share of the encoded secret is hence (c, r (= f(c))), which is verifi-

k
able via rg”= Y ciBj. Note that knowledge of polynomial-coefficients b is re-
i=0
quired for proper construction of verifiable responses, thereby restricting Payment to
the legitimate User.
Payment then proceeds as follows:
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Table 5. Sub-Coin Payment

U Compute sub-Coins (c,1) j

LBy (To1)

M Verify Bank signature (A, B)
Verify Coin polynomial f;

Verify sub-Coin shares (c,r) i

and can be repeated to transfer n sub-Coins—for n = 1...k and with a relative value of

E—Via computation of n challenge-response pairs of form (c,r) i forj=1...n. Note

the incorporation of non-interactive challenges ¢ i= h(A,B,Im,T j)—with I, and
Tj as previously specified—resulting in a simplified transactional framework. Pay-

ment using multiple sub-Coins divided from a k-term Coin (with reuse of all steps
involving  and PB) is also more efficient than the alternative of several equally-
denominated single-term Coins. Successful Payment results in Merchant possession

of User-commitment on n sub-Coins of form y'(A,B) = (X’ ﬁi,(c,r) J) , the Deposit of

which is subsequently described. The computation complexity for a single sub-Coin

only involves generation of the challenge-response pair, which requires @

modular multiplications with k a small (by cryptographic standards) integer. An aver-

age case of % sub-Coins per Payment would therefore result in an overhead of

2
%kﬂ) modular multiplications.

4.3 Sub-coin(s) Deposit

Digital cash protocols are specifically designed to preserve User-anonymity in the
event of legitimate Coin usage, which in our formulation is specified by the Bank not

having a priori knowledge of Coin details (A,B,ﬁi) and additionally by the number

of sub-Coins being below the recovery threshold. Over-Payment associated with a k-
term Coin (by a particular User) is detectable by the Bank via scrutiny of %'(A, B)
Deposit data for possible accumulation of k+1 (or more) distinct and verifiable shares.
These (c,r) i shares can then be combined (using Lagrange interpolation) by the

Bank, resulting in knowledge of the Coin-specific f(x) and subsequently identification
of the overspending User via (i, I) computation.
The following Deposit process:-
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Table 6. Sub-Coin Deposit

Ly @A,B)

B Verify own signature 6(A, B)
Verify Coin commitments B;
Verify sub-Coins (c, 1) j

Check for over-use of (A, B)

If detected, then:-

e  Recover Coin f(x)

e  Compute (U, I) for identification

leads (barring detection of fraud) to Merchant account-credit by E the value of Coin

%. Note the emphasis on a posteriori detection of User fraud; which contrasts with the
in situ prevention of Merchant or third-party fraud, both of which are effectively ruled
out by the necessity for verifiable sub-Coin commitment. The Brands protocol can
actually be extended to include User-side Observer modules for User fraud prevention
(as opposed detection) at the expense of additional computation. The incorporation of
VSS-based divisibility as outlined in this document is designed to ensure Coin-
structural compatibility with respect the Brands framework, thereby allowing for
Observer-based fraud preventive measures.

The featured protocol does, however, allow the Bank to establish a posteriori sub-
Coin (same Withdrawal, different Payments) level linkages; even when User ano-
nymity is not revoked. This trait is also present in the Brands and Okamoto formula-
tions, but not in the Chan et al protocol due to its elimination and downward-
movement of the User Setup procedure into the Withdrawal operation. Such a strat-
egy is somewhat at odds with one of the important motivations for divisible cash ie to
reduce per-Payment overheads related to Withdrawal, which is particularly heavy due
to the complexity of conditional anonymity enablement and User identity encoding
into individual Coin. Note that our scheme can also be rendered unlinked via use of
Coin-specific identities, as in the Chan et al formulation. The most practical resolu-
tion of this issue is, however, operational in nature via periodic refreshment (via User
Setup repetition) of identity vector (W, I, z).

S Comparative Analysis

We compare the performance of the above-outlined EC-based k-term scheme with
equivalent-security [11] parameterisations of previously published protocols. This
amounts to 160-bit moduli-lengths for our EC formulation being equivalent (at cur-
rently accepted equivalent security levels) to 1024-bit moduli-lengths for DL-based
schemes ie Brands, Okamoto and Chan et al. Equivalent-security considerations also
requires parameter-length adjustments ie standardisation of Okamoto’s (P, Q, N, n, b)
to (512, 512, 1024, 1024, 128) and an upgrade of Chan-Frankel-Tsiounnis’ (P, Q, N,
p, q) to (512,512, 1024, 1024, 512).
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Comparison of DL and EC overheads requires cross-calibration of the two most
significant operations for each formalism ie DL multiplication (Mult) vs EC point
addition (PA) and DL exponentiation (Exp) vs EC scalar multiplication (SM). The
computational costs of these operations is analysed in [11, 12] and can be summarised
as follows:-

o Mulr lgzp

e  Exp (via Repeated Squaring): Igq- lgzp

e  PA: 3.5 Mults and one modular-inversion, which costs lg2p

e SM (via Addition-Subtraction): g p doublings/PAs and 1g§ PAs

Note the EC operations presume a shorter moduli-length. This leads to evaluation of
the relative Mult-to-PA overheads [12] as approximately 9 at the equivalent setting of
(DL, EC) = (1024, 160)-bit, with an increase to 23 for the more rigorous (2048, 200)-
bit [11] setting. Similar analysis establishes a Exp-to-SM ratios [12] of approximately
6 at the regular-security setting, with an increase to 15 at the high-security setting.
The relatively small increase in the EC moduli-lengths can be attributed to its expo-
nential effect on computational security, as opposed increases in DL/IF moduli-
lengths resulting in much less dramatic sub-exponential enhancements.

Our analysis examines the computation, storage and communications overheads
in terms of the leading-order significant operations (mostly Exp and SM); and pre-
sumes pre-computation whenever allowed by the respective protocols. We also adjust
for the continuous divisibility of QR-tree based Coins via assignment of an average
height h (=Ig k). The real-time overheads of the (1) Okamoto, (2) Chan et al, (3)
Brands and (4) Poly-cash schemes are summarised as follows:-

Table 7. Computation, Storage and Bandwidth Overheads of Various Schemes

Computation Storage Communications

User Setup 1,2 Ig[P|- |P|4 “Exp(P) 2|N|+Pl+|Q| Ig[Pl- |P|4

3 2 Exp (p) Ipl Ipl

4 2 SM (p) Ipl Ipl
Withdrawal 1 2 Exp (N) 2|NJ+P|+|Q| 2|N|

2 12 Exp (N) 2|pl+ql+2[P| 3lpl+2q]

3 6 Exp (p) Slpk+al 2lpl+2q]

4 6 SM (p) 6lp| 4fpl
Payment 1 (h+1) exp (N) INJ*(h+1) IN|*(h+1)

2 (h+1) exp (N) [NJ#(h+1) [NJ#(h+1)

3 2 Mult (q) 3ql 3ql

4 k(k+1) Mul (p) K|p| 2K]p|
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with respective Coin bit-lengths of:

3INJ+[bl+[Pl+|Qf (=424)

2|p|+ql+2[P| (=4636)

Slpl+lal (=960)

6lp| (=960) for decimal (k=10) divisibility

e

Poly-cash can be seen to have the most efficient Setup and Withdrawal processes,
with the most striking comparison in case being with respect Okamoto and Chan et al.
This illustrates the usefulness of an EC-compatible divisibility mechanisms, as op-
posed the alternative of tree-node sub-Coins based on QR/IF cryptography. The
Setup and Withdrawal processes are, in fact, essentially as efficient as an EC tran-
scription of the Brands protocol, with negligible additional overheads arising from
Coin divisibility. Note also the relatively modest sub-kbit size of the k-term Coin,
thereby facilitating implementation of Coin-carrying Purses on lightweight handheld
platforms.

Divisible Coins are specifically intended to amortise a particular Withdrawal
overhead over multiple Payments, hence the most interesting analysis being from that
viewpoint. Such schemes are predicated on the efficiency of Sub-Coin verification,
which was the motivation for divisibility based on QR-trees. The intrinsic logarith-
mic efficiency and continuous divisibility of formulations based on QR-trees will
eventually prevail for large divisibility (k) configurations. EC-based Poly-cash is
linearly efficient with respect k; and is therefore expected to be advantageous for
small values of k due to the previously discussed DL-to-EC operational ratios.

We found that our formulation to result in more efficient Payments—at least for
practical divisibilities ie k~10—at the moderate (DL, EC) = (1024, 160)-bit equiva-
lency setting. The computation and communications overheads for increasing k is
illustrated below:

Computation Overhead vs Number of Sub-Coins Communication/Storage Overhead vs Number
for EC Keysize = 104 and DL Keysize of Sub-Coins for EC Keysize=160 and DL
(p,9)=(512,160) During Payment Keysize (p,q)=(1024, 180) During Payment

1.E+04 1
8.E+03
$ 6.E+03 1
w
=}
&

m 4.E+03 7

2.E+03 7

0.E+00

Number of Sub-Coins, k

‘* poly-cash —* Okamoto/Chan-et-al *~ Brands ‘

‘*poly-cash —& Okamoto/Chan-et-al

Fig. 2. (a) Computation and (b) communications overheads at moderate equivalent-security
configurations
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Note from Fig 2(a) that the equal-efficiency (crossover) point is not even on the
graph, hence the lower computational overheads of Poly-cash even for fairly extreme
divisibility settings. The crossover point in Fig 2(b), on the other hand, occurs around

k~16, which is still desirable as it exceeds the practical k=10 configuration with dime-
sized sub-Coins. Comparison of communications overheads at the (2048, 200)-bit
high-security equivalency setting, as follows:-

Communication/Storage Overhead vs
Number of Sub-Coins for EC Keysize=200
and DL Keysize (p,q)=(2048,200) During
Payment

Bit Usage

Number of Sub-Coins, n
‘* poly-cash — Okamoto/Chan-et-al “® Brands ‘

Fig. 3. Communications Overheads at High Equivalent-Security Settings

right-shifts the cross-over point to k~31, thereby demonstrating the relative efficiency
of k=20 divisibility with nickel-sized sub-Coins.

6 Concluding Remarks

Polynomial thresholding is an elegant Coin-divisibility mechanism, and enables an
efficient EC realisation impossible with the earlier QR-tree methodology. The com-
bination of polynomial divisibility, an extended Brands operational framework and an
EC implementation results in significant performance advantages (at equivalent-
security parameterisations) compared to previous protocols. The flexible k-term di-
visibility is also preferable to the more rigid binarised denominations of the QR-tree
formalism, especially with respect straightforward integration into existing trading
and financial frameworks.

This and other digital cash protocols constitute viable alternatives to existing
electronic payment systems, which typically require expensive Merchant-Bank con-
nectivity during Payment. Offline Coin verifiability also lowers the operational over-
head of Bank- side account management. User conditional anonymity also facilitates
consumer privacy (without jeopardising fraud detectability) to an extent impossible
with typical payment solutions.
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