
Modeling Consensus in a Process Calculus?

Uwe Nestmann1, Rachele Fuzzati1, and Massimo Merro2

1 EPFL, Switzerland
2 University of Verona, Italy

Abstract. We give a process calculus model that formalizes a well-
known algorithm (introduced by Chandra and Toueg) solving consensus
in the presence of a particular class of failure detectors (♦S); we use our
model to formally prove that the algorithm satisfies its specification.

1 Introduction & Summary

This paper serves the following purposes: (1) to report on the first formal proof
known to us of a Consensus algorithm developed by Chandra and Toueg using a
particular style of failure detectors [CT96]; (2) to demonstrate the feasibility of
using process calculi to carry out solid proofs for such algorithms; (3) to report
on an operational semantics model for failure detectors that is easier to use in
proofs than the original one based on so-called failure patterns.

Distributed Consensus In the field of Distributed Algorithms, a widely-used
computation model is based on asynchronous communication between a fixed
number n of connected processes, where no timing assumptions can be made.
Moreover, processes are subject to crash-failure: once crashed, they do not re-
cover. The Distributed Consensus problem is well-known in this field: initially,
each process proposes some value; eventually, all processes who do not happen
to crash shall agree on one of the proposed values. More precisely, Consensus is
specified by the following three properties on possible runs of a system.

Termination: Every correct process (eventually) decides some value.
Validity: If a process decides v, then v was proposed by some process.
Agreement: No two correct processes decide differently.

Here, a process is called correct in a given run, if it does not crash in this run.
An important impossibility result states that Consensus cannot be solved in the
aforementioned computation model when even a single process may fail [FLP85].
Since this impossibility result, several refinements of the computation model
have been developed to overcome it. One of them is the addition of unreliable
failure detectors (FD), i.e., modules attached to each process that can be locally
queried to find out whether another process is currently locally suspected to

? Appeared in the Proceedings of CONCUR 2003, LNCS 2761 (c© Springer-Verlag).
Supported by the Swiss National Science Foundation, grant No. 21-67715.02, the
Hasler Foundation, grant No. DICS 1825, an EPFL start-up grant, and the EU FET-
GC project PEPITO. The full version is available at: http://lamp.epfl.ch/˜uwe/

2 Uwe Nestmann, Rachele Fuzzati, Massimo Merro

have crashed [CT96, CHT96]. FDs are unreliable in that they may have wrong
suspicions, they may disagree among themselves, and they may change their
suspicions at any time. To become useful, the behavior of FDs is constrained
by abstract reliability properties about (i) the guaranteed suspicion of crashed
processes, and (ii) the guaranteed non-suspicion of correct processes. Obviously,
due to the run-based definition of correctness of processes, also these constraints
are expressed over runs. A number of different combinations of FD-constraints
were proposed in [CT96], one pair of which is commonly referred to as ♦S:

Strong Completeness (SC): Eventually every process that crashes is perma-
nently suspected by (the FD of) every correct process.

Eventual Weak Accuracy (EWA): There is a time after which some correct
process is never suspected by (the FD of) any correct process.

Chandra and Toueg also provide an algorithm—using pseudo-code, without for-
mal semantics—in the context of FDs satisfying the reliability constraints of ♦S.
The algorithm solves Consensus under the condition that a majority dn+1

2 e of
processes are correct. It proceeds in rounds and is based on the rotating coor-
dinator paradigm: for each round number, a single process is predetermined to
play a coordinator role, while all other processes in this round play the role of
participants. Each of the n processes counts rounds locally and knows at any
time, who is the coordinator of its current round. Note that, due to asynchrony,
any such system may easily reach states, in which all processes are in different
rounds. Each round proceeds in four phases, in which (1) each participant sends
to the coordinator of its current round its current estimate of the consensus
value stamped with the round number at which it adopted this estimate; (2) the
coordinator waits for sufficiently many estimates to arrive, selects one of those
with the highest stamp; this is the round proposal that is distributed to the par-
ticipants; (3) each participant either waits for the coordinator’s round-proposal
or, if this is currently permitted by its local FD, suspects the coordinator—in
both cases, participants then send (positive or negative) acknowledgments to
the coordinator and proceed to the next round; (4) the coordinator waits for
sufficiently many acknowledgments; if they are all positive it proceeds to the de-
cision, otherwise it proceeds to the next round. “Deciding on a value” means to
send the value to all processes using Reliable Broadcast (RB). The reception of
an RB-message is called RB-delivery ; processes may RB-deliver independent of
their current round and phase. On RB-delivery, a process “officially” decides on
the broadcast value. Note that also the broadcast-initiator must perform RB-
delivery. Since RB satisfies a termination property, every non-crashed process
will eventually receive the broadcast messages.

Intuitively the algorithm works because coordinators always wait for a ma-
jority of messages before they proceed (which is why, to ensure the computation
is non-blocking, strictly less than the majority are allowed to crash). Once a
majority of processes have positively acknowledged in the same round, the co-
ordinator’s proposal of that round is said to be locked : if ever “after” another
majority positively acknowledges, it will be for the very same value, thus sat-
isfying Agreement. If some coordinator manages to get these acknowledgments

Modeling Consensus in a Process Calculus 3

and survives until RB-delivery, the algorithm also satisfies Termination. The in-
terest in having a FD with ♦S is the guarantee (EWA) that eventually there
will be a correct process that is never again suspected, thus will be positively
acknowledged when playing the coordinator. ♦S also gives the guarantee (SC)
that such a process will indeed be able to reach a round in which it plays the
coordinator role. More detailed proofs of termination, validity, and agreement,
are given in natural language and found in [CT96]. We found them reasonable,
but hard to follow and very hard to formally verify.

Our first main criticism is that the pseudo-code does not have a formal se-
mantics. Thus, there is no well-defined way to generate system runs, which are
the base of the FD and Consensus properties. To tackle this problem, many years
of research on concurrency theory provide us with a variety of decent formalisms
that only need to be extended to also model failures and their detection.

Our second main criticism is more subtle. Some proofs of properties over
runs make heavy reference to the concept of rounds, e.g., using induction on
round numbers, although the relation between runs and asynchronous rounds
is never clarified. This is problematic! Typically, such an induction starts with
the smallest round in which some property X holds, e.g., in which a majority
has positively acknowledged. In a given run, to find this starting point one may
take the initial state and search from there for the first state in which X holds
for some round. However, this procedure is not correct. It may well be that at
a later state of the run, X holds for a smaller round ! Accordingly, when the
induction proceeds to a higher round, it might go backwards in time along a
system run. Therefore, the concept of time—and of iteration along a run—is not
fully compatible with the concept of asynchronous rounds. The solution, rather
implicit in [CT96], is to consider runs as a whole, ignoring when events happen,
just noting that they happened. In other words, we should pick a sufficiently
advanced state of a given run (for example the last one in a finite run), and then
find an appropriately abstract way to reason about its possible past. Summing
up, the proofs would profit much from a global view on system states and their
past that provides us with precise information about what processes have been
in which round in the past, and what they precisely did when they were there.

Our Approach We provide a process calculus setting that faithfully captures the
asynchronous process model. We equip this model with an operational control
over crash-failure and FD properties (§2). However, instead of ♦S, for which the
algorithm was designed, we use the following FD [CHT96]:

Eventual Perpetual Uniform Trust (Ω) There is a time after which all the
(correct) processes always trust the same correct process.

The FDs Ω and ♦S are equivalent in the sense that one can be used to imple-
ment the other, and vice versa. Although Ω was introduced only to simplify the
minimality proofs of [CHT96], it turns out to be more natural to develop our
operational model for it rather than for ♦S. (Briefly, instead of keeping track of
loads of useless unreliable suspicion information, Ω only requires to model small
amounts of reliable trust information.) We then model the Consensus algorithm

4 Uwe Nestmann, Rachele Fuzzati, Massimo Merro

as a term in this calculus (§3), allowing us in principle to analyze its properties
over runs generated by its local-view formal operational semantics. However, we
do not do this as one might expect by iteration along system runs, showing the
preservation of invariants. Instead, in order to formally deal with the round ab-
straction, we develop a global-view matrix-like representation of reachable states
that contains the complete history of message sent “up to now” (§4). Also for
this abstraction, we provide a formal semantics, and we use it instead of the
local-view semantics to prove the Consensus properties (§5). The key justifica-
tion for this approach is a very tight formal operational correspondence proof
between the local-view process semantics and the global-view matrix semantics.
It exploits slightly non-standard process calculus technology (see the full paper).

Contributions One novelty is the operational modeling of FD properties.
However, the essential novelty is the formal global-view matrix representa-

tion of the reachable states of a Consensus system that formally captures the
round abstraction. It allowed us to bridge the gap between the local-view code
and semantics describing the algorithm on the one hand, and the round-based
reasoning that enables comprehensible structured proofs on the other hand.

Another contribution is that some proofs of [CT96], especially for Agreement,
can now be considered as being formalized. Instead of trying to directly formalize
Termination, we came up with different proof ideas for it (Theorem 2).

Conclusion The matrix semantics provides us with a tractable way to perform
a formal analysis of this past, according to when and which messages have been
sent in the various earlier rounds.

We use process calculus and operational semantics to justify proofs via global
views that are based on the abstraction of rounds. In fact, this round-based global
view of a system acts as a vehicle for many proofs about distributed algorithms,
while to our knowledge it has never been formally justified and thus remained
rather vague. Thus, we expect that our contribution will not only be valuable for
this particular verification exercise, but also generally improve the understanding
of distributed algorithms in asynchronous systems.

Related work We are only aware of a formal model and verification of Randomized
Consensus using probabilistic I/O-automata [PSL00].

Future work Apart from this application-oriented work, we have also modeled
the other failure detectors of [CT96]. We are currently working on the formal
comparison of our representation to theirs. This work is independent of the
language used to describe the algorithms that make use of failure detectors.

It would also be interesting to study extensions of our operational semantics
setting for failure detectors towards more dynamic mobile systems.

Acknowledgments We thank Sergio Mena, André Schiper, Pawel Wojciechowski,
and Rachid Guerraoui for discussions on the Consensus problem; James Leifer,
Peter Sewell, Holger Hermanns for discussions on proof techniques; Daniel Bünzli
and Aoife Hegarty for improving the presentation; and the anonymous reviewers.

Modeling Consensus in a Process Calculus 5

2 The Process Calculus Model

We use a simple distributed asynchronous value-passing process calculus; name-
passing is not needed for static process groups. We use an extension with named
sites inspired by Berger and Honda [BH00], but unlike them we do not have
to model message loss. Our notion of sites also resembles the locations of Dπ
[RH01] and the Nomadic pi calculus [WS00]. For convenience, we also employ
site-local purely signaling synchronous actions. We do not need the usual restric-
tion operator, because we are going to study only internal transitions.

v ::= x
∣

∣

∣

∣

∣

∣ i
∣

∣

∣

∣

∣

∣ t
∣

∣

∣

∣

∣

∣ f
∣

∣

∣

∣

∣

∣ f(ṽ)
∣

∣

∣

∣

∣

∣ . . .

M ::= a〈ṽ〉
α ::= a(x̃)

∣

∣

∣

∣

∣

∣ τ
∣

∣

∣

∣

∣

∣ suspj

∣

∣

∣

∣

∣

∣ a
∣

∣

∣

∣

∣

∣ a

G ::= G+G
∣

∣

∣

∣

∣

∣ α.P
∣

∣

∣

∣

∣

∣ 0

P ::= P |P
∣

∣

∣

∣

∣

∣ Y〈ṽ〉
∣

∣

∣

∣

∣

∣ M
∣

∣

∣

∣

∣

∣ G
∣

∣

∣

∣

∣

∣ if v then P else P

N ::= N |N
∣

∣

∣

∣

∣

∣ i[P]
∣

∣

∣

∣

∣

∣ M

where process constants Y are associated with defining equations Y(x̃) := P ,
which also gives us recursion. I ⊆ V is a set of site identifiers (metavariables
i, j, k, n), for which we simply take a subset of the natural numbers Nat equipped
with standard operations like equality and modulo. { t, f } ⊆ V is the set of
boolean values. The set V of value expressions (metavariable v) contains various
operations on sets and lists, like addition, extraction, arity, and comparison.
We also use a function eval that performs the deterministic evaluation of value
expressions. By abuse of notation, we use all value metavariables (and x) also as
input variables. Names N (metavariable a) are different from values (N∩V = ∅).

We use G, P, and N, to refer to the sets of terms generated by the respective
non-terminal symbols for guards G, local processes P , and networks N . Sites i[P]
are named and may be syntactically distributed over terms; sometimes, we refer
to them as processes. The interpretation of all operators is standard [BH00]. For
actions suspj , see the explanation and formal semantics later on. We include
both synchronous signals (a, a) and asynchronous messages M with matching
receivers; for simplicity, we do not introduce separate syntactic categories for
respective channels. As usual, parallel composition is associative and commuta-
tive; with finite indexing sets I we use

∏

i∈I Pi as abbreviation for the arbitrarily
ordered and nested parallel composition of the Pi, and similar for

∏

i∈I Ni.

Structural Equivalence The relation 〈≡〉 is defined as the smallest equivalence
relation generated by the laws of the commutative monoids (G,+,0), (P, |,0),
and (N, |,0), the law i[P1] | i[P2] 〈≡〉 i[P1|P2] that defines the scope of sites, the
straightforward laws induced by evaluation of value expressions:

– if v then P1 else P2 〈≡〉 P1 if eval(v) = t,
– if v then P1 else P2 〈≡〉 P2 if eval(v) = f,
– a〈ṽ〉 〈≡〉 a〈eval(ṽ)〉, Y〈ṽ〉 〈≡〉 Y〈eval(ṽ)〉;
– Y〈ṽ〉 〈≡〉 P{ṽ/̃x} if Y(x̃) := P ,

6 Uwe Nestmann, Rachele Fuzzati, Massimo Merro

(tau) i[τ.P + G]
τ@i

−−−−→ i[P] (suspect?) i[suspj .P + G]
suspj@i

−−−−−−−→ i[P]

(com) i[a.P1 + G1 | a.P2 + G2]
τ@i

−−−−→ i[P1 | P2]

(snd) i[M]
τ@i

−−−−→ M (rcv) a〈ṽ〉 | i[a(x̃).P + G]
τ@i

−−−−→ i[P{ṽ/̃x}]

(str)
N 〈≡〉 N̂ N̂

µ@i
−−−−→ N̂ ′ N̂ ′ 〈≡〉 N ′

N
µ@i

−−−−→ N ′
(par)

N1
µ@i

−−−−→ N ′
1

N1|N2
µ@i

−−−−→ N ′
1|N2

Table 1. Network Transitions

(trust)
i 6∈ TI ∪ C

(TI, C) −→ (TI ∪ {i}, C)
(crash)

i 6∈ TI ∪ C |C| ≤ bn−1
2

c

(TI, C) −→ (TI, C ∪ {i})

Table 2. Environment Transitions

and that is preserved within non-prefix contexts. The inclusion of conditional
resolution and recursion unfolding within structural equivalence is to allow us to
have the transition relation defined below to deal exclusively with interactions.
However, an unconstrained use of 〈≡〉 quickly leads to problems when applying
equivalence laws in an unintended direction. Thus, for proofs, we replace the
relation 〈≡〉 and the rule (str) of Table 1 with a directed (normalized) version.

Network Transitions Transitions on networks are generated by the laws in Ta-
ble 1. Each transition µ@i is labeled by the action µ ∈ {τ, suspj} and the site
identifier i indicating the site required for the action. The communication of
asynchronous messages takes two steps: once they are sent, i.e., appear at top-
level on a site, they need to leave the sender site (snd) into the buffering “ether”;
once in the ether, they may be received by a process on the target site (rcv).

Without definition (see the full paper for details), let
µ@i−−−−→n denote the nor-

malized transition relation that we get when using a directed structural relation;
this relation is defined on the subset of normalized network terms N

n.

Environment Transitions By adding an environment component Γ to networks,
we model both failures and their detection, as well as “trust” in the sense of Ω.
Environments Γ := (TI,C) contain (i) information about sites i ∈ TI ⊆ I that
have become trusted forever and immortal, so they can no longer be suspected
nor crash, and (ii) information about sites i ∈ C ⊆ I that have already crashed.

Environments are updated according to the rules in Table 2. Rule (trust)
models the instant at which (according to Ω) processes become trusted—in our
model they also become immortal: they will be “correct” in every possible future.

Modeling Consensus in a Process Calculus 7

(detect)
Γ −→ Γ ′

Γ ` N −→ Γ ′ ` N
(act)

i 6∈ C N
τ@i

−−−−→ N ′

(TI, C) ` N −→ (TI, C) ` N ′

(suspect!)
j 6= i 6∈ C N

suspj@i

−−−−−−−→ N ′ j 6∈ TI

(TI, C) ` N −→ (TI, C) ` N ′

Table 3. System Transitions

Rule (crash) keeps track of processes that crash and is subject to an upper
bound: for instance, the Consensus algorithm of [CT96] is supposed to work
correctly only under the constraint that at most bn−1

2 c processes may crash.

System Transitions Configurations are pairs of the form Γ ` N . Their transi-
tions come either from the environment Γ (detect), modeling the unconstrained
occurrence of its transitions, or they come from the network N . In this case, the
environment must explicitly permit the network actions. Rule (act) guarantees
that only non-crashed sites may act. Rule (suspect!) provides the model for
suspicions: a site j may only be suspected by a process on another (different)
non-crashed site i and—which is crucial—the suspected site must not be trusted.
Note that suspicions in this model are “very unreliable” since every non-trusted
site may be suspected from within any non-crashed site at any time.

Runs FD properties are based on the notion of run. In our language, runs are
complete (in)finite sequences of transitions (denoted by −→∗) starting in some
initial configuration (∅, ∅) ` N . According to [CT96], a process is called correct
in a given run, if it does not crash in that run. There is a close relation between
this notion and the environment information in states of system runs.

Lemma 1 (Correctness in System Runs).

1. If R is the run (∅, ∅)`N0 −→∗ (TI,C)`N 6−→ then:
– i ∈ TI iff i is correct in R; i ∈ C iff i is not correct in R.
– |TI| ≥ n−bn−1

2 c, |C| ≤ bn−1
2 c, and TI] C = { 1.., n } .

2. If R is the run (∅, ∅)`N0 −→∗ (TI,C)`N −→∗/ω then:
– If i ∈ TI, then i is correct in R. If i ∈ C, then i is not correct in R.
– |TI| ≥ n−bn−1

2 c, |C| ≤ bn−1
2 c, and TI] C ⊆ { 1.., n }.

Proof (Sketch). By the rules of Table 2 and rule (suspect!) in Table 3. ut
For finite runs, Lemma 1(1) states that in final states all decisions concerning
“life” and “death” are taken. For intermediate states of infinite runs, Lemma 1(2)
provides us with only partial but nevertheless reliable information.

Our operational representation of the FD Ω consists of two parts: (i) the
above rule (suspect!), and (ii) a condition on runs that at least one site must
eventually become trusted and immortal (for the current run) such that it cannot
be suspected afterwards and will turn out to be correct.

8 Uwe Nestmann, Rachele Fuzzati, Massimo Merro

Definition 1 (Ω-Runs). Let R be a run starting in (∅, ∅)`N0.
R is called Ω-run if (∅, ∅)`N0 −→∗ (TI,C)`N is a prefix of R with TI 6= ∅ .

The condition TI 6= ∅ means that, for at least one transition in the run R, the rule
(trust) must have been applied. In Ω-runs, it is sufficient to check a syntactic
condition on states that guarantees the absence of subsequent unpermitted sus-
picions. In contrast, the original FD model requires to carefully check that after
some hypothetical (not syntactically indicated) time all occurrences of suspicion
steps do not address a particular process that happens to be correct in this run
by analyzing every single step of the run. Thus, our operational FD model con-
siderably simplifies the analysis of runs. The formal comparison of operational
models and the original history-based models is ongoing work, in which we also
address the remaining failure detector classes introduced in [CT96].

3 Solving Consensus with Ω-Detection

Table 4 shows the Consensus algorithm of [CT96] represented as the process
calculus term Consensus(v1..,vn). When no confusion is possible, we may omit
the initial values (v1.., vn). We use the notation Yṽ

i as an abbreviation for both
Yi(i, ṽ) and Yi〈i, ṽ〉, so the subscript is part of the constant while the super-
scripts represent formal/actual parameters. The subscript must, in fact, also be
considered part of the parameters, because we will access it in the body, but
since we never change this parameter, we omit it in the abbreviation.

Let n be the number of processes, and crd(r) := ((r−1) mod n)+1 denote the

coordinator of round r. Y
r,v,s,L
i represents participant i in round r with current

estimate v dating back to round s, and a list L of messages previously received
from other participants (see below). Yi itself ranges over P1i,P2i,P4i,Ri,Zi for
i = crd(r), and over P1i,P3i,Ri for i 6= crd(r). Di is part of the RB-protocol: it
is the component that “decides” and re-broadcasts on RB-delivery.

All protocol participants are interconnected; we use separate channel names
(c1i, c2i, c3i) for the messages sent in the first three phases, and further channel
names for broadcasting (bi) and announcing decisions (decidei). For convenience,
we use site-indexed channel names, but note that the indices i are only virtual:
they are considered to be part of the indivisible channel name. In addition to
these 5∗n asynchronous channels, we use n synchronous channels (undecidedi),
also “indexed”. We use the latter to conveniently avoid fairness conditions on
runs concerning the reception of the otherwise asynchronous signals. We in-
clude some redundant information (gray-shaded in Table 4) within messages—
especially about the sender and receiver identification—such that we can easily
and uniquely distinguish messages. We also add some τ -steps, which are only
there to facilitate the presentation of some of the proofs.

Behaviors In the 1st phase, we (P1r,v,s,L
i) send our current estimate and de-

pending on whether we are coordinator of our round, we move to phase 2 or 3.
In the 2nd phase, we (P2r,v,s,L

i) wait for sufficiently many 3rd-phase estimate
messages for our current round r. Once we have them, we determine the best

Modeling Consensus in a Process Calculus 9

Consensus(v1..,vn)
def
=

n
∏

i=1

i
[

P11,vi,0,∅
i

∣

∣ Di

]

P1r,v,s,L
i

def
= c1crd(r)〈i, r, v, s〉 | if i= crd(r) then P2r,v,s,L

i else P3r,v,s,L
i

P2r,v,s,L
i

def
= if |Lr

1 | < dn+1
2

e

then c1i (x̃) . P2
r,v,s,(1,x̃)::L
i

else τ .
(n

∏

i6=k=1

c2k〈k, r, best(Lr
1)〉

∣

∣ P4
r,best(Lr

1
),r,L

i

)

P3r,v,s,L
i

def
= if Lr

2 = ∅

then

(

c2i (x̃) . P3
r,v,s,(2,x̃)::L
i + suspcrd(r) .

(

c3crd(r)〈i, r, f〉 | R
r,v,s,L
i

)

)

else τ .
(

c3crd(r)〈i, r, t〉 | R
r,val(Lr

2
),r,L

i

)

P4r,v,s,L
i

def
= if |Lr

3 | < dn+1
2

e−1

then c3i (x̃) . P4
r,v,s,(3,x̃)::L
i

else if
∧

l∈L
r
3

bool(l) then τ .
(

n
∏

k=1

bk〈i, k, 1, r, v〉 | Z
r,v,s,L
i

)

else R
r,v,r,L
i

Z
r,v,s,L
i

def
= 0

R
r,v,s,L
i

def
= undecidedi . P1r+1,v,s,L

i

Di
def
= undecidedi . Di + bi (j, ·, m, r, v) .

(

decidei〈j, i, m, r, v〉
∣

∣

n
∏

k=1

bk〈i, k, 2, r, v〉
)

Table 4. Consensus

one among them (see below), and we impose its value as the one to adopt
in the round r by sending it to everybody else. (As a slight optimization of
[CT96], we do not send the proposal to ourselves, and also we do not send an
acknowledgment to ourselves, assuming that we agree with our own proposal.)
Remembering the just proposed value, we then move to phase 4.

In the 3rd phase, we (P3r,v,s,L
i) are waiting for the proposal from the coor-

dinator of our current round r. As soon as it arrives, we positively acknowledge
it, and (try to) restart and move to the next round. As long as it has not yet
arrived, we may also have the possibility to suspect the coordinator in order to
move on; in this case, we continue with our old value and stamp.

In the 4th phase, we (P4r,v,s,L
i) wait for sufficiently many 3rd-phase acknowl-

edgment messages for our current round r. Once we have them, we check whether
they are all positive. If yes, then we launch reliable broadcast by sending our
decision value v on all bk; it becomes reliable only through the definition of Dk

on the receiver side of the bk. If no, then we simply try to restart.
If we (Rr,v,s,L

i) want to restart, we must get the explicit permission from our
broadcast controller process Di along the local synchronous channel undecidedi.
This permission will never again be given as soon as we (at site i) have “deliv-
ered”, i.e., received the broadcast along bi and subsequently have decided.

10 Uwe Nestmann, Rachele Fuzzati, Massimo Merro

When halting a coordinator, we do not just let it become 0 or disappear,
but use a specific constant Zi to denote the final state. The reason is that we
can keep accessibly within the term the final information of halted processes
(Zr,v,s,L

i), which would otherwise disappear as well.

Data Structures The parameter L∈L is a heterogeneous list of elements in L1 for
1st-phase messages, L2 for 2nd-phase messages, and L3 for 3rd-phase messages.
By L1 ,L2 ,L3 , we denote the various homogeneous sublists of L for the corre-
sponding phases. By |L|, we denote the length of a list L. By l::L, we denote the
addition of element l to L. For each homogeneous type of sublist, we provide some
more notation. For convenience, we allow ourselves to use component access via
“logical” names rather than “physical” projections. For example, in all types,
one component represents a round number. By Lr := { l∈L | round(l)=r }, we
extract all elements of list L that apparently belong to round r. Similarly, the
function val(l) extracts the value field of list element l.

Elements of L1 ({1}×I×N×V×N), like 1st-phase messages, consist of a site
identifier (∈I), a round number (∈N), an estimate value (∈V), and a stamp
(∈N). Let L∈L

∗
1 . By max s(L) := max{ stamp(l) | l∈L } we extract the max-

imal stamp occurring in the elements of L. By best(L) := val(min i{ l∈L |
stamp(l)=max s(L) }), we extract among all the elements of L that have the
highest stamp the one element that is smallest with respect to the site identifier,
and return the value of it.

Elements of L2 ({2}×I×N×V), like 2nd-phase messages, consist of a site
identifier (∈I), a round number (∈N), and an estimated value (∈V).

Elements of L3 ({3}×I×N×B), like 3rd-phase messages, consist of a sender
site identifier (∈I), a round number (∈N), and a boolean value (∈B). Let l∈L3 .
By bool(l), we extract the boolean component of list element l.

4 A Global Message-Oriented View: Matrices

By analysis of Chandra and Toueg’s proofs of the Consensus properties [CT96],
we observe that they become feasible only if we manage to argue formally and
globally about the contributions of processes to individual rounds. To this aim,
we design an alternative representation of the reachable state of Consensus:
message matrices M. In fact, matrices contains precisely the same information as
terms: we can freely move between the two representations via formal mappings:

N

M[[]] using Et()
//

M
N [[]] using E−1()

oo

It is for this tight connection that we augmented the definition of Consensus in
Table 4 with book-keeping data, never forgetting any message ever received.

M[[]]: From Networks to Matrices With any state reachable starting from Con-
sensus, we associate a matrix structure containing all the asynchronous messages

Modeling Consensus in a Process Calculus 11

M := E−1
M (x) l := E−1

L (x) snd rcv rnd Et(M) =: x := Et(l) tag(x)

c1crd(r)〈i, r, v, s〉 (1, i, r, v, s) i crd(r) r (i, r)
1
7→ (v, s, t) t

c2i〈i, r, v〉 (2, i, r, v) crd(r) i r (i, r)
2
7→ (v, t) t

c3crd(r)〈i, r, z〉 (3, i, r, z) i crd(r) r (i, r)
3
7→ (z, t) t

bi〈j, i, m, r, v〉 j i r (i, j, m)
b
7→ (r, v, t) t

decidei〈j, i, m, r, v〉 i − r (i)
d
7→ (j, m, r, v, t) t

Table 5. From Messages M to Matrix Entries x . . . and back

that have been sent “up to now”, organized according to the round in which they
were sent. For the 1st-, 2nd-, and 3rd-phase messages, the resulting structure
is a specific kind of two-dimensional matrix (see column six of Table 5): one
dimension for process ids (variable i ranging from 1 to n), one dimension for
round numbers (variable r ranging unboundedly over natural numbers starting
at 1). For broadcast- and decision-messages, which may only eventually occur
for a single round per process, the format is slightly different.

For each message, we distinguish three transmission states:

– being sent, but not yet having left the sender site (
√

)
– being in transit, i.e., having left the sender site, but not yet arrived (

√√
)

– being received, i.e., appearing in the list L (
√√√

)

We usually let t range over the elements of the ordered set {√<
√√

<
√√√}. For

d-entries, aka: decision messages, there is no receiver and thus always t 6= √√√
.

Networks can be mapped into matrices because our process representation
memorizes the required information on past messages (

√√√
) in the state param-

eters L; messages that are sent and not yet received (
√

,
√√

) can be analyzed
“directly” from the respective system state component. Table 5 lists the vari-
ous entry types of matrices, and how they correspond to the formats found in
networks, namely messages M and list entries l∈L. For better orientation, we
include columns snd and rcv that indicate the respective sender and receiver.

We may view a matrix M as the heterogeneous superposition of five homo-
geneous parts. Each part can be regarded either as a set of elements M.x as in
column six of Table 5, or as a function according to the domain of x, ranging
over {M.1r

i ,M.2r
i ,M.3r

i ,M.bm
ij ,M.di}; we use > and ⊥ to denote defined and

undefined images. Matrix update M{x := ṽ} is overriding.

Matrix Semantics The initial matrix of Consensus is denoted by

Consensus(v1..,vn) := M[[Consensus(v1..,vn)]] = ∅{ ∀i : 11
i := (vi, 0,

√
) }

In order to simulate the behavior of networks at the level of matrices, we propose
an operational semantics that manipulates matrices precisely mimicking the be-
havior of their corresponding networks. As with networks, the rules in Tables 2

12 Uwe Nestmann, Rachele Fuzzati, Massimo Merro

Rounds Processes

Number Phase 1 2 3 4 5

1 (v1,0,
√

) (v2,0,
√√

) (v3,0,
√√√

) (v4,0,
√√√

) (v5,0,
√√√

)
1 2 — (v3,

√
) (v3,

√
) (v3,

√√
) (v3,

√√√
)

3 — (f ,
√√√

) (f ,
√√√

) (t,
√√

)

1 (v3,1,
√

) (v3,0,
√√

) (v4,0,
√

) (v3,1,
√√

)
2 2 —

3 — (f ,
√√

) (f ,
√

) (f ,
√√

)

1 (v3,0,
√√√

) (v4,0,
√√√

) (v3,1,
√√√

)
3 2 (v3,

√√
) (v3,

√
) — (v3,

√√
) (v3,

√√√
)

3 — (f ,
√√√

) (f ,
√√√

)

1 (v3,3,
√

) (v4,0,
√√√

) (v3,1,
√√

)
4 2 —

3 (f ,
√

) —
Table 6. Example Matrix

and 3, where networks and their transitions are replaced by matrices and their
(equally labeled) transitions, allow us to completely separate the treatment of
behavior in the context of crashes from the description of the behavior of mes-
sages in the matrix. The rules are given in the full paper. Here, we just look
at an example of a matrix for n = 5 (Table 6) that is reachable by using the
matrix semantics. For instance, to be a valid matrix, coordinators can only have
proceeded to the next round if they received (

√√√
) a majority−1 of 3rd-phase

messages; c.f. the coordinators of rounds 1 and 3. Also, participants proceed with
the value of the previous round if they nack (f), or with the proposed value of
the previous coordinator if they ack (t); c.f. process 5 in its rounds 2 and 4.

Some transitions that are enabled from within the example matrix are: mes-
sages with tag

√
may be released to the network and get tag

√√
; process 4 may

receive 1st-phase messages from process 5, from either round 2 or 4. Many other
requirements like these are represented by the 12 rules of the matrix semantics.

N [[]]: From Matrices to Networks We only note here that the presence of all pre-
viously sent messages, distinguishing all their transmission states, allows us to
uniquely reconstruct the term counterpart, i.e., for every site i we may uniquely
determine its phase phsi(M):=Yi ∈ {P1i,P2i,P3i,P4i,Ri,Zi } with accompany-
ing parameters r:= rndi(M), v, s, L and its decision state deci(M) ∈ {Di,0 }.

The matrix semantics mimics the network semantics very closely.

Proposition 1 (Operational Correspondence). Let Consensusn −→∗
n N .

1. If N
µ@i−−−−→n N ′, then M[[N]]

µ@i−−−−→ M[[N ′]].

2. If M[[N]]
µ@i−−−−→ M, then N

µ@i−−−−→n〈≡〉 N [[M]].

Normalized network runs can then straightforwardly be translated step-by-
step into matrix runs using M[[]], and vice versa using N [[]]. If a network run
is infinite, then its corresponding matrix run is infinite as well. Or, conversely,
if a corresponding matrix run is finite, then the original network run must have

Modeling Consensus in a Process Calculus 13

r

1

r

ŝp

p h
permutation of {1..n}

ŝh

^

v

3-majority : t

 1-majority

*

r+n

r

j i

r+n+1

max_rnd
!

^
!

crd(r) ����

=

permutation of {1..n}
�� �

min_rnd

(I) Pre-Agreement (II) Ω-Finiteness (III) Termination

Table 7. Matrix Proofs

been finite as well. Furthermore, since we produce system runs—where the dis-
tributed algorithm is embedded into our failure-sensitive environments—with
either networks or matrices, the correspondence carries over also to the system
level. Therefore, we may use the matrix semantics instead of the original network
semantics to reason about the Consensus algorithm and its properties.

5 Properties of the Algorithm: Consensus

In this section, we prove the three required Consensus properties—validity, agree-
ment, and termination—using the matrix structures. As the graphical sketches
in Table 7 show, we heavily exploit the fact that the matrix abstraction allows
us to analyze message patterns that have been sent in the past. We do not need
to know precisely in which order all the messages have been sent, but we do need
to have some information about the order in which they cannot have been sent.
Our formal matrix semantics provides us with precisely this kind of information.

We conclude this section by transferring the results back to networks.

Validity From the definition, every decided value has initially been proposed.

Proposition 2 (Validity). Let Consensus(v1..,vn) −→∗
M.

If M.di = (j,m, r, v, t), then there is k ∈ { 1.., n } with v = vk.

Agreement We call valr(M) the value that the coordinator of round r in M

tried to impose in its second phase; it may be undefined. In the Introduction,
we said that a value gets locked as soon as enough processes have, in the same
round, positively acknowledged to the coordinator of this round. This condition
translates into matrix terminology, as follows:

14 Uwe Nestmann, Rachele Fuzzati, Massimo Merro

Definition 2. A value v is called locked for round r in matrix M,
written M

r7→ v, if #{ j | M.3r
j = (t, ·) } ≥ dn+1

2 e−1.

Note the convenience of the matrix abstraction to access the messages that were
sent in the past, without having to look at the run leading to the current state.
Now, if M

r7→ v then v = valr(M). Also, broadcast is always for a locked value.

Lemma 2. If M.bm
ij = (r, v, ·), then M

r7→ v.

Lemma 3. If M
r7→ v1 and M

r7→ v2, then v1 = v2.

The key idea is to compare lockings in two different rounds.

Proposition 3 (Pre-Agreement). If M
r17→ v1 and M

r27→ v2, then v1 = v2.

Note that both lockings have already happened in the past of M.

Proof (Sketch). Suppose that M
r7→ v, so v = valr(M). We prove by course-of-

value induction that for all r̂ > r, if M
r̂7→ v̂, then v = v̂.

First, in both rounds r and r̂, a majority is responsible for the locking.
In Table 7(I), we make explicit (by permutation) that there is a process p that
belongs to both majorities. Then, let h be the process that won the first phase of
round r̂ in that crd(r̂) chose h’s estimate as its round-proposal. Using the matrix
semantics, we identify the rounds ŝp and ŝh, in which p and h acknowledged the
estimate that they still believe in at round r̂. By a number of of auxiliary lemmas
on matrices we conclude that r≤ŝp≤ŝh<r̂.

Now, if r=r̂, then trivially valr(M) = valr̂(M) (Lemma 3).
If r̂>r then, by induction, we have valr(M) = valŝh(M), and since h preserves

the value it adopted in ŝh until it reaches r̂, where it “wins”, also valŝh(M) =
v = valr̂(M), we conclude valr(M) = valr̂(M). ut

Theorem 1 (Agreement). If M.di = (·, ·, ·, vi, ·) and M.dj = (·, ·, ·, vj , ·), then
vi = vj.

Proof (Sketch). If M.di = (ki,mi, ri, vi, ·), then by the only matrix rule to
generate di-entries there must (have) be(en) ri with M.bmi

iki
= (ri, vi, ·). Anal-

ogously for j: if M.dj = (kj ,mj , rj , vj , ·), there must (have) be(en) rj with

M.b
mj

jkj
= (rj ,j , ·). By Lemma 2, both M

ri7→ vi and M
rj7→ vj . By Proposition 3,

we conclude vi = vj . ut

Termination In an infinite run, every round is reached.

Lemma 4 (Infinity). Let R denote an infinite system run of Consensus.
Then, for all r > 0, there is a prefix of R of the form

(∅, ∅)`Consensus −→∗ Γ `M

where M.1r
i = > for some i.

Modeling Consensus in a Process Calculus 15

Proof (Sketch). By combinatorics on the number of steps per round. ut
Theorem 2 (Ω-Finiteness). All Ω-runs of Consensus are finite.

Proof (Sketch). Assume, by contradiction, to have an infinite Ω-run. The bold
line M in Table 7(II), marks the global state at instant t, when process i becomes
∈ TI. Call max rnd the greatest round at time t, and r > max rnd the first
round in which i = crd(r). Since the run is infinite, with Lemma 4 there is

a time t̂ > t, where we reach state M̂, where round r+n+1 is populated by
some j. Since i ∈ TI, j can reach r+n+1 only by positively acknowledging i
in round r+n. So i was in r+n, therefore also in r. Since i was in r and has
gone further, it has been suspected. But here we get a contradiction because
in round r already i ∈ TI and no process was allowed to suspect it, while the
matrix M evolved into M̂. So, no Ω-run can be infinite. ut
Theorem 3 (Termination). All Ω-runs of Consensus are of the form

(∅, ∅)`Consensus −→∗ (TI,C)`M 6−→
with TI] C = { 1.., n } and i ∈ TI 6= ∅ implies that M.di = >.

Proof (Sketch). We first show that if there was i ∈ TI with M.di = ⊥, then
actually M.dj = ⊥ for all j ∈ TI. Since M 6−→, we may thus call all processes in j ∈
TI as being in deadlock. Then, we proceed by contradiction. We concentrate on
the non-empty set Min ⊆ TI of processes in the currently minimal round. The
contradiction arises, as in Table 7(III), by using the matrix semantics to show
that Min must be empty, otherwise contradicting that M 6−→. ut

Back to the Process Calculus With Table 5, we observe that the definedness of an
entry M.di = > corresponds to a message decidei〈· · ·〉 having been sent. There-
fore, and with the operational correspondence (Proposition 1), which closely
resembles strong bisimulation, all the previous results carry over to networks.

References

[BH00] M. Berger and K. Honda. The Two-Phase Commitment Protocol in an Ex-
tended pi-Calculus. In L. Aceto and B. Victor, eds, Proceedings of EXPRESS

’00, volume 39.1 of ENTCS. Elsevier Science Publishers, 2000.
[CHT96] T. D. Chandra, V. Hadzilacos and S. Toueg. The Weakest Failure Detector

for Solving Consensus. Journal of the ACM, 43(4):685–722, 1996.
[CT96] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable

Distributed Systems. Journal of the ACM, 43(2):225–267, 1996.
[FLP85] M. J. Fisher, N. Lynch and M. Patterson. Impossibility of Distributed Con-

census with One Faulty Process. Journal of the ACM, 32(2):374–382, 1985.
[PSL00] A. Pogosyants, R. Segala and N. Lynch. Verification of the Randomized

Consensus Algorithm of Aspnes and Herlihy: a Case Study. Distributed

Computing, 13(3):155–186, 2000.
[RH01] J. Riely and M. Hennessy. Distributed Processes and Location Failures.

Theoretical Computer Science, 226:693–735, 2001.
[WS00] P. Wojciechowski and P. Sewell. Nomadic Pict: Language and Infrastructure

Design for Mobile Agents. IEEE Concurrency, 8(2):42–52, 2000.

