
Information and Computation 200 (2005) 149–214

www.elsevier.com/locate/ic

Comparative branching-time semantics for Markov chains

Christel Baier a, Joost-Pieter Katoen b,c,∗ , Holger Hermanns d,c , Verena Wolf e

aUniversity of Bonn, Römerstraße 164, D-53117 Bonn, Germany
bRWTH Aachen, Ahornstraße 55, D-52074 Aachen, Germany

cUniversity of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
dSaarland University, D-66123 Saarbrücken, Germany
eUniversity of Mannheim, D-68131 Mannheim, Germany

Received 28 July 2004; revised 6 January 2005
Available online 4 May 2005

Abstract

This paper presents various semantics in the branching-time spectrumof discrete-time and continuous-time
Markov chains (DTMCs and CTMCs). Strong and weak bisimulation equivalence and simulation pre-orders
are covered and are logically characterized in terms of the temporal logics Probabilistic Computation Tree
Logic (PCTL) and Continuous Stochastic Logic (CSL). Apart from presenting various existing branching-
time relations in a uniform manner, this paper presents the following new results: (i) strong simulation for
CTMCs, (ii) weak simulation for CTMCs andDTMCs, (iii) logical characterizations thereof (including weak
bisimulation for DTMCs), (iv) a relation between weak bisimulation and weak simulation equivalence, and
(v) various connections between equivalences and pre-orders in the continuous- and discrete-time setting. The
results are summarized in a branching-time spectrum for DTMCs and CTMCs elucidating their semantics
as well as their relationship.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Comparative semantics; Markov chain; (weak) Simulation; (weak) Bisimulation; Temporal logic

∗ Corresponding author.
E-mail addresses: katoen@cs.utwente.nl (J.-P. Katoen).

0890-5401/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2005.03.001

150 C. Baier et al. / Information and Computation 200 (2005) 149–214

1. Introduction

To compare the stepwise behaviour of states in labeled transition systems, simulation (�) and
bisimulation relations (∼) have been widely considered. Bisimulation relations are equivalences
requiring two bisimilar states to exhibit identical stepwise behaviour [52–54]. On the contrary, sim-
ulation relations are preorders on the state space requiring that whenever s� s′ (“s′ simulates s”)
state s′ can mimic all stepwise behaviour of s; the converse, i.e., s′ � s is not guaranteed, so state s′
may perform steps that cannot bematched by s. Thus, if s′ simulates s then every successor of s has a
corresponding, i.e., related successor of s′, but the reverse does not necessarily hold. Simulation can
be lifted to entire transition systems by comparing (according to �) their initial states. Simulation
relations are often used for verification purposes to show that one system correctly implements an-
other, more abstract system [1,44,36,51,53]. One of the interesting aspects of simulation relations is
that they allow a verification by “local” reasoning. The transitivity of � allows a stepwise verifica-
tion inwhich the correctness is established via several intermediate systems. Simulation relations are
therefore used as a basis for abstraction techniques where the rough idea is to replace the model to
be verified by a smaller abstract model and to verify the latter instead of the original one. Typically,
strong andweak bisimulation and simulation relations are distinguished.Whereas in strong (bi)sim-
ulations, each individual step needs to be mimicked, in weak (bi)simulations this is only required
for observable steps but not for internal computations. Weak relations thus allow for stuttering.
A plethora of strong and weak (bi)simulations for labeled transition systems has been defined in

the literature, and their relationshiphas extensivelybeen studiedbyprocess algebraists,mostnotably
by van Glabbeek [29,30]. These “comparative” semantics have been extended with logical charac-
terizations that are of importance for verification purposes. Here, bisimulation relations possess the
so-called strong preservation property, whereas simulation possessesweak preservation. Strong pres-
ervationmeans: if s ∼ s′, then for all formulas� it follows s |= � iff s′ |= �. This property holds, for
instance, for CTL (and CTL∗) and strong bisimulation [18]. The use of simulation relies on the pres-
ervation of certain classes of formulas, not of all formulas (such as for∼). For instance, if s� s′ then
for all safety (or even∀CTL∗ [20]) formulas� it follows that s′ |= � implies s |= �. Note that the con-
verse, s′ �|= �, cannot be used to deduce that� does not hold in the simulated state s; hence, the name
weak preservation. Similar characterization results hold for branching (bi)simulation with diver-
gence, a special type ofweak (bi)simulationwhere typically the next operator is omitted, which is not
compatible with stuttering. As simulation equivalence—defined as mutual simulation of states—is
coarser than bisimulation equivalence it yields a “better abstraction,” i.e., a smaller quotient.
For probabilistic systems, the situation is similar. Based on the seminal works of Jonsson and

Larsen [45] and Larsen and Skou [50], notions of (bi)simulation (see e.g., [3,9,15,17,31,37,39,46,56,58,
60,62] for models with and without non-determinism have been defined during the last decade, and
various logics to reason about such systems have been proposed (see e.g., [2,5,13,35]). This holds
for both discrete probabilistic systems and variants thereof, as well as systems that describe con-
tinuous-time stochastic phenomena. In particular, in the discrete setting several slight variants of
(bi)simulations have been defined, and their logical characterizations studied, e.g., [4,24,27,28,58].
Although the relationship between (bi)simulations is fragmentarily known, a clear, concise classifi-
cation is lacking. To the best of our knowledge, simulation relations for the continuous-time setting
have not been studied. Moreover, continuous-time and discrete-time semantics have largely been
developed in isolation, and their connection has received scant attention, if at all.

C. Baier et al. / Information and Computation 200 (2005) 149–214 151

This paper studies the comparative semantics of branching-time relations for probabilistic sys-
tems that do not exhibit any non-determinism. In particular, time-abstract (or discrete-time) fully
probabilistic systems (DTMCs) and continuous-time Markov chains (CTMCs) are considered.
CTMCs are an important class of stochastic processes that are widely used in practice to determine
system performance and dependability characteristics. Strong and weak (bi)simulation relations
are covered together with their characterization in terms of the temporal logics Probabilistic Com-
putation Tree Logic (PCTL [35]) and Continuous Stochastic Logic (CSL [5,13]) for the discrete and
continuous setting, respectively. PCTL is a discrete-probabilistic variant of CTL inwhich existential
and universal path quantification have been replaced by a probabilistic path operator. PCTL allows
one to specify properties like “the probability to reach a set of goal states via a restricted set of states
is at least 0.74,” and is supported by efficient model-checking algorithms. CSL is a continuous prob-
abilistic variant of CTL and includes means to express both transient and steady-state performance
measures. For instance, it allows one to stipulate that the probability of reaching a certain set of goal-
states within a specified real-valued time bound, provided that all paths to these states obey certain
properties, is at least/atmost some probability value.Model-checking algorithms forCSLhave been
presented in [8], and prototypical software implementations are available: for instance, one based
on sparse matrices [38] and a symbolic tool based on multi-terminal binary decision diagrams [47].
Apart from presenting various existing branching-time relations and their connection in a uni-

form manner, this paper provides several new results:

• We propose a notion of weak simulation for CTMCs and show that this pre-order preserves
(among others) probabilities on timed reachability properties.More precisely, the preorderweak-
ly preserves a safe (live) fragment of CSL without next.

• As a side result, notions of strong simulation for CTMCs and weak simulation for DTMCs are
established. These notions are shown to strongly preserve a safe fragment of CSL and weakly
preserve a safe fragment of PCTL without next, respectively.

• Weak bisimulation [9] for DTMCs is shown to coincide with equivalence for PCTLwithout next,
and weak bisimulation [17] for CTMCs is shown to coincide with equivalence for CSL without
next.

• Weak (bi)simulation on CTMCs is shown to be invariant under uniformization [33,41], and
• weak probabilistic bisimulation and weak simulation equivalence are shown to coincide, both
for CTMCs and DTMCs.

Finally, several new relations are established between pre-orders and equivalences in the continu-
ous-time and the discrete-time setting yielding a branching-time spectrum for CTMCs andDTMCs
in the style of van Glabbeek.

1.1. Organization of the paper

The paper is further organized as follows. Section 2 provides the necessary background onMar-
kov chains. Section 3 defines strong and weak (bi)simulations. Section 4 introduces PCTL and
CSL and presents the logical characterizations. Section 5 summarizes the resulting branching-time
spectrum and concludes the paper.
This paper is an extended version of the conference papers [12] and [11].

152 C. Baier et al. / Information and Computation 200 (2005) 149–214

2. Markov chains

This section introduces the basic concepts of the Markov models considered within this paper;
for a more elaborate treatment on such model see e.g., the textbooks [34,48,49].

2.1. Discrete-time probabilistic systems

Let AP be a fixed, finite set of atomic propositions. A fully probabilistic system is a Kripke
structure where each transition is labeled with a discrete probability. Formally,

Definition 1. A fully probabilistic system (FPS) is a tuple D = (S ,P ,L) where:

• S is a countable set of states
• P : S × S → [0, 1] is a probability matrix satisfying∑s′∈S P(s, s′) ∈ [0, 1] for all s ∈ S

• L : S → 2AP is a labeling function which assigns to each state s ∈ S the set L(s) of atomic prop-
ositions that are (assumed to be) valid in s.

If
∑

s′∈ S P(s, s′) = 1, state s is called stochastic; if this sum equals zero, i.e., if P(s, s′) = 0 for all
s′, state s is called absorbing; otherwise, s is called sub-stochastic. A discrete-time Markov chain
(DTMC) is an FPS such that for any state the sum of the probabilities of its emanating transitions
is either zero or one.

Definition 2. A (labeled) DTMC is an FPS where any state is either stochastic or absorbing, i.e.,∑
s′∈ S P(s, s′) ∈ { 0, 1 } for all s ∈ S .

For C ⊆ S , P(s,C) = ∑
s′∈C P(s, s′) denotes the probability for s to move to a state in C . For

technical reasons, P(s,⊥) = 1− P(s, S). Intuitively, P(s,⊥) denotes the probability to stay forever
in s without performing any transition; although ⊥ is not a “real” state (i.e., ⊥ /∈ S), it may be
regarded as a deadlock. In the context of simulation relations later on, ⊥ is treated as an auxiliary
state that is simulated by any other state. Let S⊥ = S ∪ {⊥ }. Post(s) = { s′ | P(s, s′) > 0 } denotes
the set of direct successor states of s, and

Post⊥(s) = { s′ ∈ S⊥ | P(s, s′) > 0 } = Post(s) ∪ {⊥ | P(s,⊥) > 0 }.
Note that the following statements hold:

s is stochastic iff ⊥ �∈ Post⊥(s) iff P(s,⊥) = 0 iff P(s, S) = 1 and

s is absorbing iff Post⊥(s) = {⊥ } iff P(s,⊥) = 1 iff P(s, S) = 0.

2.2. Continuous-time Markov chains

We consider FPSs and therefore also DTMCs as time-abstract models. The name DTMC has
historical reasons. A (discrete-)timed interpretation is appropriate in settingswhere all state changes
occur at equidistant time points. In contrast, CTMCs are considered as time-aware, as they have an
explicit reference to time, in the form of transition rates which determine the stochastic evolution
of the system in time.

C. Baier et al. / Information and Computation 200 (2005) 149–214 153

Definition 3. A (labeled) CTMC is a tuple C = (S ,R,L) with S and L as before, and rate matrix
R : S × S → IR�0 such that

∑
s′∈S R(s, s′) converges. The value E(s) = ∑

s′∈S R(s, s′) is called the
exit rate of state s.

As in the discrete case, Post(s) = { s′ | R(s, s′) > 0 } denotes the set of direct successor states of
s, and for C ⊆ S ,R(s,C) = ∑

s′∈C R(s, s′) denotes the rate of moving from state s to a state in C via
a single transition. Note E(s) = R(s, S). State s in a CTMC is called absorbing if E(s) = 0.
Intuitively, the rates specify the average delays of the transitions. More precisely, the meaning

of R(s, s′) = � > 0 is that with probability 1− e−�·t the transition s → s′ is enabled within the next
t time units provided that the current state is s. If R(s, s′) > 0 for more than one state s′, a race
between the outgoing transitions from s exists. The probability of s′ winning this race before time t
is determined as follows:

Pr
{
s → s′ wins the race before time t | the system is in state s at time 0

}
=
∫ t

0
R(s, s′) · e−R(s,s′)·x︸ ︷︷ ︸
density function of

the distribution for s → s′

·
∏

s′′∈ Post(s)\{s′}
e−R(s,s′′)·x

︸ ︷︷ ︸
probability that the earliest time
at which s → s′′ can fire exceeds x

dx

=
∫ t

0
R(s, s′) · e−E(s)·x dx = R(s, s′)

E(s)
· (1− e−E(s)·t).

With t → ∞ we get from the above calculations that R(s, s′)/E(s) denotes the probability that the
delay of going from s to s′ “finishes before” the delays of any other outgoing transition from s.
Summing over all states s′ ∈ Post(s) (i.e., independent outcomes) we obtain:

∑
s′∈S

R(s, s′)
E(s)

· (1− e−E(s)·t) = E(s)

E(s)
· (1− e−E(s)·t) = 1− e−E(s)·t

is the probability to take an outgoing transition from state s within the next t time units.1

The time-abstract probabilistic behaviour of CTMC C is described by its so-called embedded
DTMC:

Definition 4. The embedded DTMC of CTMC C = (S ,R,L) is given by emb(C) = (S ,P ,L), where
P(s, s′) = R(s, s′)/E(s) if E(s) > 0 and P(s, s′) = 0 otherwise.

Note that, by definition, the embedded DTMC emb(C) of any CTMC C does not contain sub-
stochastic states.
ACTMC is called uniformized if all its states have the same exit rate, i.e., E(s) = E(s′) for all states

s, s′. The embedded DTMC of a uniformized CTMC does not contain absorbing states (except if
E = 0). Each CTMC can be transformed into a uniformized CTMCs by adding self-loops [57]:

1 This explains the notion “exit rate” E. However, as we allow for self-loops (i.e., states swithR(s, s) > 0) as e.g., in [57,8],
“leaving” state s includes that the self-loop s → s (if any) maybe taken.

154 C. Baier et al. / Information and Computation 200 (2005) 149–214

Definition 5. Let C = (S ,R,L) be a CTMC and let (uniformization rate) E be a real such that
E � maxs∈S E(s). Then, unif (C) = (S ,R ,L) is a uniformized CTMC with R (s, s′) = R (s, s′) for
s /= s′, and R (s, s) = R (s, s) + E − E(s).

The minimal appropriate value of E is determined by the state in C with the shortest mean res-
idence time. (Strictly speaking, we should write unif E(C) as the uniformization depends on E.) In
unif (C) all rates of self-loops are “normalized” with respect to E. As a result, state transitions occur
with an average “pace” of E, uniform for all states of the chain. We will later see that C and unif (C)
are related by weak bisimulation. Note that in the literature [33,41], uniformization is often defined
as a transformation of CTMC C into the DTMC emb(unif (C)). For technical convenience, we here
define uniformization as a CTMC-to-CTMC transformation (as e.g., in [57]) by basically adding
self-loops to “slower” states.

Example 6.

Thefigure just above illustrates aCTMCthatmodels aqueuing systemwithabuffer capacityof three
items and where the arrival and departure rate of items is 6 and 2, respectively. State si represents
the configuration in which the queue contains i jobs (0 � i < 4). The shadings indicate the labeling
of states, e.g., we assume thatAP = { empty, full } and that L(s0) = { empty }, L(s1) = L(s2) = ∅, and
L(s3) = { full }.
The embedded DTMC of this queuing system is:

For instance, for state s1, we have E(s1) = 6+2 = 8 and

P(s1, s2) = R(s1, s2)/E(s1) = 6/8 = 3/4,

P(s1, s0) = R(s1, s0)/E(s1) = 2/8 = 1/4.

For state s3, we have E(s3) = 2 and P(s3, s2) = R(s3, s2)/E(s3) = 2/2 = 1.
The uniformized CTMC of the queuing system for E=8 is:

As E(s0) < E and E(s3) < E, states s0 and s3 in the original CTMCare left with a lower frequency
than 1

E , and are therefore equipped with a self-loop. According to the same principle, states s1 and
s2 would be also equipped with a self-loop if E > 8.

C. Baier et al. / Information and Computation 200 (2005) 149–214 155

3. Bisimulation and simulation

This section defines simulation pre-orders and bisimulation equivalences on FPSs and CTMCs,
presents several basic results of these relations, and characterizes their relation. Strong relations are
presented prior to their weak variants. We will use the subscript “d” to identify relations defined in
the discrete setting (FPSs or DTMCs), and “c” for the continuous setting (CTMCs).

3.1. Strong bisimulation

One of themost elementary equivalence relations on discrete-time probabilistic systems is proba-
bilistic bisimulation [50]. This variant of strong bisimulation for labeled transition systems considers
two states to be equivalent if the cumulative probability to move to any of the equivalence classes
that this relation induces is the same. We consider a slight variant of the original notion in which
we require in addition that equivalent states are equally labeled. This is exploited later to establish
logical characterizations.

Definition 7 (see [48,50,46,31]). Let D = (S ,P ,L) be a FPS and R an equivalence relation on S . R is
a strong bisimulation on D if for s1 R s2:

L(s1) = L(s2) and P(s1,C) = P(s2,C) for all C in S/R.

s1 and s2 in D are strongly bisimilar, denoted s1 ∼d s2, if there exists a strong bisimulation R on D
with s1 R s2.

Note that in any FPS we have: s1 ∼d s2 implies P(s1,⊥) = P(s2,⊥).

Example 8. States s1 and s2 of the FPS depicted just above (where equally shaded states are la-
beled with the same atomic propositions) are strongly bisimilar. To prove this, it suffices to show
that the equivalence R which identifies the two s-states, the three u-states, the three v-states and
the two w-states, satisfies the conditions in Definition 7. The labeling condition is obviously ful-
filled as R identifies equally labeled states. Furthermore, note that all u- and w-states are absorbing,
and hence, P(ui,C) = P(wj ,C) = 0 (for 0 < i � 3 and 0 < j � 2) for each R-equivalence class C .
For the s-states, we have: P(s1, { u1, u2, u3 }) = 1

2 = P(s2, { u1, u2, u3 }) and P(s1, { v1, v2, v3 }) = 1
3 =

P(s2, { v1, v2, v3 }). Moreover, P(vi, {w1,w2 }) = 1 (for 0 < i � 2). Thus, R is a strong bisimulation
containing (s1, s2), and hence s1 ∼d s2.

156 C. Baier et al. / Information and Computation 200 (2005) 149–214

Strong bisimulation for CTMCs, also known as ordinary lumpability, is a mild variant of the no-
tion for the discrete-time probabilistic setting where it is required that the cumulative rate (instead
of the discrete probability) for two equivalent states to move to any of the induced equivalence
classes is equal.

Definition 9 (see [19,39]). Let C = (S ,R,L) be a CTMC and R an equivalence relation on S . R is a
strong bisimulation on C if for s1 R s2:

L(s1) = L(s2) and R(s1,C) = R(s2,C) for all C in S/R.

s1 and s2 in C are strongly bisimilar, denoted s1 ∼c s2, if there exists a strong bisimulation R on C
with s1 R s2.

Example 10. Consider the CTMC depicted below. The relation R identifying the two s-states, the
three u-states and the two v-states, is a strong bisimulation on CTMCs, as R(s1, { u1, u2 }) = 4
= R(s2, { u3 }), R(s1, { v1, v2 }) = 2 = R(s2, { v3 }), the u-states are absorbing, and R(vi, { v1, v2, v3 }) =
7 for 0 < i � 3. As (s1, s2) ∈ R, it follows s1 ∼c s2.

As R(s,C) = P(s,C) · E(s), the condition on the cumulative rates can be reformulated as
P(s1,C) = P(s2,C) for all C ∈ S/R and E(s1) = E(s2).

Hence, ∼c agrees with ∼d in the embedded DTMC provided that the exit rates are treated as
additional atomic propositions. From these observations it directly follows:

Proposition 11. For CTMC C = (S ,R,L):

1. s1 ∼c s2 implies s1 ∼d s2 in emb(C), for any state s1, s2 ∈ S.
2. if C is uniformized then ∼c coincides with ∼d in emb(C).

By the standard construction for bisimulation on labeled transition systems, it can be shown that
∼d and ∼c are the coarsest strong bisimulations.

3.2. Strong simulation

3.2.1. Weight functions
Definition 12. A distribution on set S is a function � : S → [0, 1] with∑s∈S �(s) � 1.

We put �(⊥) = 1−∑
s∈S �(s). Let Distr(S) denote the set of all distributions on S . Distribution

� on S is called stochastic if �(⊥) = 0. For labeled transition systems, state s′ simulates state s if for

C. Baier et al. / Information and Computation 200 (2005) 149–214 157

each successor state t of s there is a one-step successor state t′ of s′ that simulates t. Simulation of two
states is thus defined in terms of simulation of their successor states. (It is therefore sometimes called
forward simulation.) In the probabilistic setting, the target of a transition is in fact a probability
distribution, and thus, the simulation relation �needs to be lifted from states to distributions. In
fact, strong bisimulation on FPSs was defined as an equivalence on S such that all R-equivalent
states s1 and s2 are equally labeled and

P(s1, ·) ≡R P(s2, ·),

where ≡R denotes the lifting of R on Distr(S) defined as:

� ≡R �′ iff �(C) = �′(C) for all C ∈ S/R.

(It is easy to see that ≡R is an equivalence.) The rough idea behind the definition of simulation
relations is to replace the equivalence ≡R by a non-symmetric relation �R which is obtained using
the concept of weight functions.

Definition 13 (see [43,45]). Let S be a set, R ⊆ S × S , and �,�′ ∈ Distr(S). A weight function for �

and �′ with respect to R is a function � : S⊥ × S⊥ → [0, 1] such that:

1. �(s, s′) > 0 implies s R s′ or s = ⊥,
2. �(s) = ∑

s′∈S⊥ �(s, s′) for any s ∈ S⊥.

3. �′(s′) = ∑
s∈S⊥ �(s, s′) for any s′ ∈ S⊥.

We write � �R �′ (or simply �, if R is clear from the context) iff there exists a weight function for
� and �′ with respect to R. �R is the lift of R to distributions.

Intuitively, � distributes a probability distribution over a set X to a distribution over a set Y
such that the total probability assigned by � to y ∈ Y equals the original probability �′(y) on Y .
In a similar way, the total probability mass of x ∈ X that is assigned by � must coincide with the
probability �(x) on X . � is a probability distribution on X × Y such that the probability to select
(x, y) with x R y is one. In addition, the probability to select an element in R whose first component
is x equals �(x), and the probability to select an element in R whose second component is y equals
�′(y). For any state y , � may assign a positive probability to ⊥. Hence, the deadlock symbol ⊥ is
treated as a “bottom state” that is simulated by any other state (independent of the labeling).

Example 14.Let S = { s, t, u, v,w }with�(s) = 2
9 ,�(t) = 5

9 , and�′(u) = 1
3 ,�

′(v) = 4
9 ,�

′(w) = 1
9 , and

�(·) = �′(·) = 0 for the remaining cases. Note that � and �′ are both sub-stochastic. Let

R = {
(s, u), (t, u), (t, v)

}
.

Wehave� �R �′, as, e.g., weight function� (see picture belowwhere, for convenience,⊥ is depicted
as a state) defined by�(s, u) = 2

9 ,�(t, u) = 1
9 ,�(t, v) = 4

9 ,�(⊥,w) = 1
9 , and�(⊥,⊥) = 1

9 satisfies the
constraints of Definition 13.

158 C. Baier et al. / Information and Computation 200 (2005) 149–214

Note that �(s,⊥) = 0 for all states s ∈ S whereas �(⊥,⊥) may be positive. Moreover:

�(S) =
∑
s∈S

∑
s′∈S

�(s, s′) =
∑
s′∈S

∑
s∈S

�(s, s′) �
∑
s′∈S

∑
s∈S⊥

�(s, s′) = �′(S).

From this, it follows that whenever � is stochastic then so is �′, i.e., if �(S) = 1 then �′(S) = 1 and
�(⊥, s′) = 0 for all s′ ∈ S⊥. Hence, in this case � can be viewed as a stochastic distribution on S × S .
In particular, for stochastic distributions the concept of weight functions is symmetric, provided R

is symmetric. The same holds for distributions �, �′ where �(S) = �′(S) � 1. This yields the second
part of the following proposition. The proof of the third part can be provided with the help of flow
functions in networks [42,23,7]. The proof of the first part is straightforward.

Proposition 15 (see [45,6,23]). Let S be a set and R ⊆ S× S.

1. If R is reflexive (transitive) then so is �R.
2. If R is symmetric and �,�′ ∈ Distr(S) with �(S) = �′(S) then

� �R �′ iff �′ �R �.

3. If R is an equivalence on S and �,�′ ∈ Distr(S) with �(S) = �′(S) then
� ≡R �′ iff � �R �′.

In particular, �R as a binary relation on the set of stochastic distributions is an equivalence and
agrees with ≡R.

3.2.2. The discrete-time setting
Given the notion of weight functions, we now will present how such functions can be used to

define simulation relations. In the discrete-time setting, simulating states need to be equally labeled,
and a weight function must exist that relates their one-step probabilities. Formally,

Definition 16 (see [45]). Let D = (S ,P ,L) be a FPS and R ⊆ S × S . R is a strong simulation on D if
for all s1 R s2:

L(s1) = L(s2) and P(s1, ·) �R P(s2, ·).
s2 strongly simulates s1 in D, denoted s1 �d s2, iff there exists a strong simulation R on D such that
s1 R s2.

C. Baier et al. / Information and Computation 200 (2005) 149–214 159

Example 17.

In the FPS depicted above, s1 �d s2 as the relation

R = {
(s1, s2), (s, u), (t, u), (t, v), (w1,w2), (w1,w3)

}
is a strong simulation.Aweight function for the one-step successors of s1 and s2 w.r.t.Rwaspresented
in Example 14.

From Proposition 15.1 it follows that �d is a preorder.

Remark. It can be shown that �d is the coarsest strong simulation on D. In particular, if s1 �d s2
then P(s1, ·) � P(s2, ·) where � denotes the lifting of �d to distributions. The same will hold for
the other simulation relations we define on FPSs and CTMCs. This will not be explicitly stated
anymore.

By Proposition 15.3 we directly obtain:

Proposition 18 (see [45]).

1. s1 ∼d s2 implies s1 �d s2.
2. For any DTMC without absorbing states, �d is symmetric and coincides with ∼d .

Note that �d is non-symmetric for DTMCs that may have absorbing states, as, e.g, any ab-
sorbing state s1 is strongly simulated by any state s2 with L(s1) = L(s2) while the converse does not
hold. However, strong simulation equivalence (i.e., the kernel of �d) agrees with ∼d . This result
can be shown using an alternative characterization of strong simulations by means of the upward-
or downward closure of subsets of states. These closures are defined as follows.

Definition 19. Let S be a set, C ⊆ S , and R ⊆ S × S be a pre-order. Then:

C ↑R = {
s′ ∈ S | s R s′ for some s ∈ C

}
,

C ↓R = {
s′ ∈ S | s′ R s for some s ∈ C

}
.

C is R-downward-closed iff C = C↓R, and C is R-upward-closed iff C = C↑R.

C↑R denotes the R-upward closure of C , whereas C↓R stands for the R-downward closure of C .
For C = { s }, we simply write s↑R and s↓R. If R is understood from the context, we simply write C↓
and C↑. Note that if R is an equivalence relation, then s↑ = s↓ = [s]R, i.e., the equivalence class of
s under R.

160 C. Baier et al. / Information and Computation 200 (2005) 149–214

Proposition 20 (see [14,6,23]). For any FPS, �d is the coarsest binary relation R on the state space S

such that for all s1Rs2:

L(s1) = L(s2) and P(s1,C↑R) � P(s2,C↑R) for all C ⊆ S.

For C ⊆ S , C is downward-closed iff S \ C is upward-closed. Moreover,

P(s,C) = P(s, S) − P(s, S \ C) = 1− P(s,⊥) − P(s, S \ C).

Hence, the secondconjunct inProposition20maybe replacedbyP(s1,C↓R ∪ {⊥ }) � P(s2,C↓R ∪
{⊥ }) for all C ⊆ S .

Proposition 21 (see [6,23]). �d ∩ �−1
d coincides with ∼d .

Proof. By Proposition 18.1, ∼d contains �d ∩ �−1
d . We now show that �d ∩ �−1

d contains ∼d .
Let s1 and s2 be two strong simulation equivalent states of FPS D = (S ,P ,L). Let B be the strong
simulation equivalence class of s1 (and s2) and let C1 = B↑�d

and C2 = C1 \ B. Then, C1 and C2 are
upward-closed w.r.t. �d ; hence, by Proposition 20, P(s1,C1) = P(s2,C1) and P(s1,C2) = P(s2,C2).
Moreover, P(si,C1) = P(si,C2) + P(si,B) (for i=1, 2). Hence, P(s1,B) = P(s2,B). So, �d ∩ �−1

d is
a strong bisimulation and s1 ∼d s2. �

3.2.3. The continuous-time setting
The intention of a simulation preorder on CTMCs is to ensure that state s2 simulates s1 if and

only if (i) s2 is “faster than” s1 and (ii) the time-abstract behaviour of s2 simulates that of s1. Note
that compared to the discrete-time setting, the only extra requirement is the “faster than” constraint,
the other constraints are identical. It therefore directly follows that this notion is a pre-order. Its
formal definition is:

Definition 22. Let C = (S ,R,L) be a CTMC and R ⊆ S × S . R is a strong simulation on C if for all
s1 R s2:

L(s1) = L(s2), P(s1, ·) �R P(s2, ·), and E(s1) � E(s2).

s2 strongly simulates s1 in C, denoted s1 �c s2, iff there exists a strong simulation R on C such that
s1 R s2.

Example 23.

C. Baier et al. / Information and Computation 200 (2005) 149–214 161

The above picture illustrates a CTMC where s1 �c s2 and s2 ��c s3. This can be seen by check-
ing the conditions of being a strong simulation. First, observe that these states are equally labeled
(as indicated by their shading). Consider s1 and s2. The rate condition, i.e., the third condition of
Definition 22, is obviously fulfilled as E(s1) = 2 � 4 = E(s2). The weight function condition, i.e., the
second condition, is fulfilled as

R = {
(s1, s2), (u1, u2), (u1, u3), (v1, v2), (w1,w2), (w1,w3)

}
can be shown to be a strong simulation. For (s1, s2), an appropriate weight function is: �(u1, u2)
= �(u1, u3) = 1

4 ,�(v1, v2) = 1
2 , and�(·) = 0 otherwise. Accordingly, s1 �c s2. Consider s2 and s3. The

rate condition for these states is fulfilled as E(s2) = 4 � 6 = E(s3), but the distribution to move to
the u- and v-states is different, e.g., P(s2, { u2, u3 }) = 1

2 /= 1
3 = P(s3, { u4, u5 }). So, s2 ��c s3.

Example 24.

In the above depicted CTMC we have s1 �c s2 and s2 �c s3, but s2 ��c s1 and s3 ��c s2. (Note that
all states are equally labeled.) To see s1 �c s2 note that E(s1) = 0 < 1 = E(s2), and the relation
R = { (s1, s2) }with theweight function�(⊥,w) = 1will do. s2 ��c s1 asE(s2) �� E(s1).Wehave s2 �c s3
but s3 ��c s2 as w �c s3 but s3 ��c w.

Proposition 25. For any CTMC C:

1. s1 ∼c s2 implies s1 �c s2, for any state s1, s2 ∈ S.
2. s1 �c s2 implies s1 �d s2 in emb(C), for any state s1, s2 ∈ S.
3. �c ∩ �−1

c coincides with ∼c.
4. If C is uniformized then �c is symmetric and coincides with ∼c.

Proof.

1. Similar to the proof of Proposition 18.
2. Straightforward.
3. Given the first part of this proposition, it remains to show that strong simulation equivalence
contains ∼c. This is done by showing that �c ∩ �−1

c is a strong bisimulation. The labeling
condition is obviously fulfilled. Suppose s1 and s2 are strongly simulation equivalent. By the
same arguments as in the proof of Proposition 21, it follows P(s1,C) = P(s2,C) for any strong
simulation equivalence class C . By the rate condition for �c, we obtain that E(s1) = E(s2).

Thus,

R(s1,C) = E(s1) · P(s1,C) = E(s2) · P(s2,C) = R(s2,C)

for all strong simulation equivalence classes C .
4. Follows by straightforward verification from Proposition 18.2. �

162 C. Baier et al. / Information and Computation 200 (2005) 149–214

Summarizing the results presented so far yields the two-dimensional spectrum of strong relations
on Markov chains depicted below.

R −→ R′ means that R is coarser than R′. The dashed arrows in the continuous setting refer to
uniformized CTMCs, i.e., if there is a dashed arrow from R to R′, R contains R′ for uniformized
CTMCs. In the discrete-time setting the dashed arrows refer to DTMCs without absorbing states.
Arrows connecting the continuous setting (on the left) with the discrete setting (on the right) relate
CTMCs and their embedded DTMCs. Note that for uniformized CTMC C we have that emb(C)
is a DTMC without absorbing states (except for the pathological case where all exit rates in the C
equal zero, in which case all depicted relations agree).

3.3. Weak bisimulation

We consider weak bisimulation which relies on branching bisimulation in the style of van Glab-
beek and Weijland [32]. Note that this is not a restriction: whereas for labeled transition systems
branching bisimulation is strictly finer thanMilner’s observational equivalence, they agree for FPSs
[9], and thus for DTMCs.

3.3.1. The discrete-time setting
Branching bisimulation [32] only abstracts from stutter-steps inside the equivalence classes, i.e.,

the only observable moves are those that change the equivalence class. For the probabilistic case
this works as follows. Let D = (S ,P ,L) be a DTMC and R ⊆ S × S an equivalence relation. Any
transition from s to s′ (i.e., P(s, s′) > 0) where s and s′ are R-equivalent is considered an R-silent
move. Let SilentR denote the set of states s ∈ S for which P(s, [s]R) = 1, i.e., all stochastic states
that do not have a successor state outside their R-equivalence class. These states thus can only
perform R-silent moves. Stochastic states outside SilentR thus may leave their R-equivalence class
with positive probability by a single transition. Note, in particular, if s is a sub-stochastic state with
Post(s) = { s } or an absorbing state s (i.e., Post(s) = { s }) then s does not belong to SilentR. For
any state s �∈ SilentR, C ⊆ S with C ∩ [s]R = ∅:

P(s,C)

1− P(s, [s]R)
denotes the conditional probability to move from s to some state in C (which is outside [s]R) via a
single transition under the condition that from s no transition inside [s]R is taken.

C. Baier et al. / Information and Computation 200 (2005) 149–214 163

Definition 26 (see [9]). Let D = (S ,P ,L) be an FPS and R an equivalence relation on S . R is a weak
bisimulation on D if for all s1 R s2:

1. L(s1) = L(s2).
2. If P(si, [si]R) < 1 for i=1, 2 then for all C ∈ S/R, C /= [s1]R = [s2]R:

P(s1,C)

1− P(s1, [s1]R)
= P(s2,C)

1− P(s2, [s2]R)
.

3. s1 can reach a state outside [s1]R iff s2 can reach a state outside [s2]R.

s1 and s2 in D are weakly bisimilar, denoted s1 ≈d s2, iff there exists a weak bisimulation R on D
such that s1 R s2.

Weakly bisimilar states are equally labeled and their conditional probability to move to another
equivalence class (given that they do not stay in their own equivalence class) coincide. Furthermore,
by the third condition, for anyR-equivalence classC , either all states inC areR-silent (i.e.,P(s,C) = 1
for all s ∈ C) or for all s ∈ C there is a sequence of states s = s0, s1, . . . , sn with P(si, si+1) > 0 that
ends in an equivalence class that differs from C (i.e., sn /∈ C).

Example 27.

Consider the FPS depicted above. The equivalence relation R with

S/R = { {s1, s2, s3, s4}, {u1, u2, u3}
}

is a weak bisimulation. This can be seen as follows. For C = { u1, u2, u3 } and s1, s2, s4 /∈ SilentR we
have:

P(s1,C)

1− P(s1, [s1])
= 1/8

1−5/8
= 1/4

1−1/4
= P(s2,C)

1− P(s2, [s2])
= 1/3

1
= P(s4,C)

1− P(s4, [s4])
.

Note that s3 ∈ SilentR. Since s3 can reach a state outside [s3] as s1, s2 and s4, it follows that s1 ≈d

s2 ≈d s3 ≈d s4.

Example 28. For the following DTMC, the reachability condition is needed to distinguish states s1
and s2 of the following picture from absorbing states with the same label.

164 C. Baier et al. / Information and Computation 200 (2005) 149–214

It is not difficult to establish s1 ≈d s2. Note that s1 is ≈d -silent while s2 is not. The reachability
condition for s1 and s2 is obviously fulfilled. This condition is essential to establish s1 ≈d s2 and
cannot be dropped: otherwise s1 and s2 would be weakly bisimilar to an equally labeled absorbing
state.

3.3.2. The continuous-time setting
The intuition behind weak bisimulation on CTMCs is that the time-abstract behaviour of equiv-

alent states is weakly bisimilar (in the sense of the first two conditions of≈d), and that the “relative
speed” of these states to move to another equivalence class is equal. The following result shows that
this formulation can be simplified considerably.

Proposition 29. Let C = (S ,R,L) be a CTMC and R an equivalence relation on S with s1 R s2. The
statements 1 and 2 are equivalent:

1. If s1, s2 /∈ SilentR then for all C ∈ S/R, C /= [s1]R = [s2]R:
P(s1,C)

1− P(s1, [s1]R)
= P(s2,C)

1− P(s2, [s2]R)
and R(s1, S \ [s1]R) = R(s2, S \ [s2]R).

2. R(s1,C) = R(s2,C) for all C ∈ S/R with C /= [s1]R = [s2]R.

Proof. By showing implication in both directions.

1. Assume that R is an equivalence relation satisfying condition 1. Let s1 R s2 and B = [s1]R = [s2]R.
We derive:

R(s1,C) = E(s1)·P(s1,C)

= E(s1)·P(s1,C)·P(s1, S \ B)

P(s1, S \ B)

1= E(s1)·P(s2,C)·P(s1, S \ B)

P(s2, S \ B)

def. R= R(s1, S \ B)·P(s2,C)

P(s2, S \ B)

1= R(s2, S \ B)·P(s2,C)

P(s2, S \ B)

= E(s2)·P(s2, S \ B)·P(s2,C)

P(s2, S \ B)

= R(s2,C).

We conclude that R is an equivalence relation satisfying condition 2.

C. Baier et al. / Information and Computation 200 (2005) 149–214 165

2. Assume that R is an equivalence relation satisfying condition 2. Let s1 R s2 and B = [s1]R =
[s2]R. As R satisfies condition 2 and s1Rs2, R(s1,C) = R(s2,C) for all C ∈ S/R with C /= B.
Hence,

R(s1, S \ B) =
∑

C∈S/R,C /=B

R(s1,C) =
∑

C∈S/R,C /=B

R(s2,C) = R(s2, S \ B)

and, in particular also E(s1) − R(s1,B) = E(s2) − R(s2,B) (*). If neither s1 nor s2 is R-silent, i.e.,
P(si,B) < 1, for i=1, 2, we derive for any C ∈ S/R with C /= B:

P(s1,C)

1− P(s1,B)
= E(s1) · P(s1,C)

E(s1) − E(s1) · P(s1,B)

def .R= R(s1,C)

E(s1)−R(s1,B)

(∗),2= R(s2,C)

E(s2)−R(s2,B)
= P(s2,C)

1−P(s2,B)
.

We conclude that R is an equivalence relation satisfying condition 1. �
This result justifies the following definition of weak bisimulation on CTMCs.

Definition 30 (see [17]). Let C = (S ,R,L) be a CTMC and R an equivalence relation on S . R is a weak
bisimulation on C if for all s1 R s2:

L(s1) = L(s2) and R(s1,C) = R(s2,C) for all C in S/R with C /= [s1]R.

s1 and s2 in C are weakly bisimilar, denoted s1 ≈c s2, iff there exists a weak bisimulation R on C such
that s1 R s2.

Corollary 31. For CTMC C with s1, s2 ∈ S :

s1 ≈c s2 implies s1 ≈d s2 in emb(C).

Proof. Follows directly from Proposition 29. �

Example 32.

166 C. Baier et al. / Information and Computation 200 (2005) 149–214

The equivalence relation R with

S/R = { {s1, s2, s3, s4, s5, s6}, {u1, u2, u3, u4, u5}
}

is a weak bisimulation on the CTMC depicted above. This can be seen as follows. For
C = { u1, u2, u3, u4, u5 }, we have that all s-states enter C with rate 2. Note that the rates between
the s-states are not relevant.

Proposition 33. For any CTMC C:

1. ∼c is strictly finer than ≈c.
2. If C is uniformized then ≈c coincides with ∼c.
3. ≈c coincides with ≈c in unif (C).

Proof.

1. This follows directly from the definitions of ∼c and ≈c.
2. For weak bisimulation relation R and s1Rs2 we have R(s1,C) = R(s2,C) for all C ∈ S/R,

C �= [s1]R = [s2]R. As theCTMC is uniformized,E(s1) = E(s2). From these facts it directly follows
that R(s1, [s1]R) = R(s2, [s1]R), and thus s1 ∼c s2.

3. Follows directly from the fact that CTMC C and unif (C) only differ in the rates from a state to
itself. �

The last result can be strengthened as follows. Any state s in C is weakly bisimilar to s considered
as a state in unif (C). (For this, consider the disjoint union of C and unif (C) as a single CTMC.)

Remark. Proposition 11.2 states that for a uniformized CTMC, ∼c coincides with ∼d on the em-
bedded DTMC. The analogue for ≈c does not hold, as, e.g., in the uniformized CTMC of Example
28 we have s1 ≈d s2 but s1 �≈c s2 as R(s1, [u]) /= R(s2, [u]). Intuitively, although s1 and s2 have the
same time-abstract behaviour (up to stuttering) they have distinct timing behaviour. s1 is “slower
than” s2 as it has to perform a stutter step prior to an observable step (from s2 to u) while s2 can
immediately perform the latter step. Note that by Propositions 33.2 and 11.2, ≈c coincides with ∼d

for uniformized CTMCs.

3.4. Weak simulation

In this subsection, we define notions of weak simulation (denoted �) for CTMCs and FPSs
that can be considered as “one-sided” weak bisimulations. Roughly speaking, s1 � s2 if the suc-
cessor states of s1 and s2 can be grouped into subsets Ui and Vi, for i=1, 2 (assume, for simplicity,
Ui ∩ Vi = ∅). All transitions from si to Vi are viewed as stutter-steps, i.e., internal transitions that
do not change the labeling and that respect �. To that end, any state in V1 is required to be simu-
lated by s2 and, symmetrically, any state in V2 simulates s1. Transitions from si to Ui are regarded
as visible steps. Accordingly, we require that the distributions for the conditional probabilities
u1 �→ P(s1, u1)/K1 and u2 �→ P(s2, u2)/K2 to move from si to Ui are related via a weight function
(as for �d). Ki denotes the total probability to move from si to a state in Ui—the states that are
not simulated by the other – in a single step. The following picture shows the situation for FPSs

C. Baier et al. / Information and Computation 200 (2005) 149–214 167

where in state si (i=1, 2) a transition to some state in Vi is made with probability 1−Ki . Note the
correspondence with ≈d (cf. Definition 26), where [s1]R plays the role of V1, while the successors
outside [s1]R play the role of U1, and the same for s2, V2, and U2.

For FPSs with sub-stochastic states, we have to consider the deadlock probabilities. This is done
as for the strong simulation relations where ⊥ was treated as a state which is simulated by any
other state. For technical reasons we allow ⊥ ∈ Ui and ⊥ ∈ Vi . The possibility of deadlock justifies
the need for a reachability condition as for ≈d (cf. condition 3 of Definition 26). In the continuous
setting later on, we deal with a stronger requirement than the reachability condition and require
that s2 is faster than s1 in the sense that the total rate for s2 to move to a U2-state is at least the total
rate for s1 to move to a U1-state.

3.4.1. The discrete-time setting
We start by defining weak simulation for FPSs. At first reading, consider i as the characteristic

function of Ui, and hence, Ui ∩ Vi = ∅. Later on we explain why in fact we need to be more liberal
allow for the fragmentation of states, i.e., states that partly belong to Ui and partly to Vi .

Definition 34. Let D = (S ,P ,L) be a FPS and R ⊆ S × S . R is a weak simulation on D iff for s1 R s2:
L(s1) = L(s2) and there exist functions i : S⊥ → [0, 1] and sets Ui, Vi ⊆ S⊥ (i=1, 2) with

Ui = { ui ∈ Post⊥(si) | i(ui) > 0 } and Vi = { vi ∈ Post⊥(si) | i(vi) < 1 }
such that:

1. (a) v1 R s2 for all v1 ∈ V1 \ {⊥ }, and (b) s1 R v2 for all v2 ∈ V2 \ {⊥ };
2. There exists a function � : S⊥ × S⊥ → [0, 1] such that:
(a) �(u1, u2) > 0 implies u1 ∈ U1, u2 ∈ U2 and either u1 R u2 or u1 = ⊥,
(b) if K1 > 0 and K2 > 0 then for all states w ∈ S⊥:

K1·
∑

u2∈U2

�(w, u2) = 1(w)·P(s1,w), K2·
∑
u1∈U1

�(u1,w) = 2(w)·P(s2,w),

where Ki = ∑
ui∈Ui

 i(ui) · P(si, ui) for i=1, 2.

168 C. Baier et al. / Information and Computation 200 (2005) 149–214

3. For u1 ∈ U1 \ {⊥ } there exists a path fragment2 s2,w1, . . . ,wn, u2 such that n � 0, s1 Rwj ,
0 < j � n, and u1 R u2.

s2 weakly simulates s1 in D, denoted s1 �d s2, iff there exists a weak simulation R on D such that
s1 R s2.

Example 35. In the following FPS we have s1 �d s2:

First, observe thatw1 �d w2 sinceR = { (q1, q2), (w1,w2) } is aweak simulation, aswemaydealwith

• 1, the characteristic function of U1 = { q1,⊥} (and, thus, V1 = ∅ and K1 = 1).
• 2, the characteristic function of U2 = { r2, q2,⊥} (and V2 = ∅ and K2 = 1).

and the weight function �(q1, q2) = �(⊥, q2) = 1
6 ,�(⊥, r2) = �(⊥,⊥) = 1

3 .

To establish a weak simulation for (s1, s2) consider the relation:

R = { (s1, s2), (u1, u2), (w1,w2), (q1, q2) }
and put V1 = {⊥, s1 } and V2 = ∅ while Ui = { ui,wi,⊥} where 1(⊥) = 1/2, i(ui) = i(wi)

= 2(⊥) = 1. Then, K1 = 1
8 + 1

8 + 1
2 · 1

2 = 1
2 , K2 = 1

4 + 1
4 + 1

2 = 1. This yields the following condi-
tional probabilities i(·)·P(si, ·)/Ki for the U -successors of s1 and s2:

u1 : 1
4
, w1 : 1

4
, ⊥ : 1

2
, u2 : 1

4
, w2 : 1

4
, and ⊥ : 1

2
.

Note that, e.g., 1(u1)·P(s1,u1)
K1

= 1
4 and 1(⊥)·P(s1,⊥)

K1
= 1

2 . Hence, an appropriate weight function is:
�(u1, u2) = �(w1,w2) = 1

4 , �(⊥,⊥) = 1
2 , and �(·) = 0 for the remaining cases. Thus, according to

Definition 34, R is a weak simulation, and as s1 R s2, it follows s1 �d s2.

Remark. Definition 34 allows the case U1 = ∅ (i.e., K1=0) or symmetrically U2 = ∅ (i.e., K2=0). A
few remarks on these special cases are in order.

• IfU1 = ∅ then Post(s1) ⊆ s2↓�d
, i.e., all successors of s1 areweakly simulatedby s2. In this case, no

further requirements are made (i.e., condition 3 of Definition 34 is vacuously true). For condition

2 For a formal definition of a path fragment, see page 181.

C. Baier et al. / Information and Computation 200 (2005) 149–214 169

2 we may put �(⊥, u2) = P(s2, u2) for all u2 ∈ S⊥. In particular, any state s1 with Post(s1) ⊆ { s1 }
is weakly simulated by any equally labeled state s2. This corresponds to the view that the self-loop
s1 → s1 is invisible, i.e., a stutter step.

• Note that the reachability condition is redundant when U2 �= ∅. If U1 = ∅ then this condi-
tion holds. Otherwise, if K1 > 0 and K2 > 0, the weight function conditions (cf. condition 2 of
Definition 34) ensure that any visible transition s1 → u1 ∈ U1 is matched by a visible transition
s2 → u2 ∈ U2 where �(u1, u2) > 0 (and hence, u1Ru2).

• If U2 = ∅ and U1 �= ∅ then the reachability condition (cf. condition 3 of Definition 34) ensures
that for any visible step s1 → u1 (with u1 ∈ U1), s2 can reach a state u2 that simulates u1 via a path
fragment through states that simulate s1. The intuition behind this condition is that s1 is able to
perform a visible move which has to be matched by path fragments that start with stutter-steps
s2 → w1 → · · · → wn followed by a move wn → u2 which can be viewed as being visible and as
mimicking the transition s1 → u1.

In the previous example, we have used the special case where i(s) ∈ { 0, 1 } for any state s /= ⊥.
In this case, i is the characteristic function of Ui, and the sets Ui and Vi are disjoint. In general,
though, things are more complicated and we need to construct Ui and Vi using fragments of states.
That is, we deal with functions i where 0 � i(s) � 1 for state s. Intuitively, the i(s)-fragment of
state s belongs to Ui, while the remaining part (the (1− i(s))-part) of s belongs to Vi . The use of
fragments of states is exemplified in the following example.

Example 36. In the following FPS, we have s1 �d s2 and s2 �d s3.

To establish weak simulations for (s1, s2) and (s2, s3), we do not need to consider fragments of
states. For (s1, s2), we can deal with the partitioning V

1,2
1 = V

1,2
2 = ∅, K 1,2

1 = K
1,2
2 = 1 and

�1,2(u1, u2) = 1
2
, �1,2(w1,w2) = �1,2(w1,w′

2) = 1
4

and �1,2(·) = 0 otherwise. For (s2, s3) we may deal with V
2,3
1 = {w′

2 }, V 2,3
2 = ∅, K2,3

1 = 1
2 + 1

4 = 3
4

and K
2,3
2 = 1 and the weight function

�2,3(u2, u3) = 2
3
, �2,3(w2,w3) = 1

3
and �2,3(·) = 0 in all other cases.
If, however, we do not consider fragments of states, a weak simulation between s1 and s3 can-

not be established: as s1 ��d w3, s3 → w3 cannot be considered a stutter step and, hence, w3 ∈ U
1,3
2

170 C. Baier et al. / Information and Computation 200 (2005) 149–214

(and V
1,3
2 = ∅). For s1 there are two possible partitionings: (I) V

1,3
1 = ∅ and U

1,3
1 = { u1,w1 }, or (II)

V
1,3
1 = {w1} andU

1,3
1 = { u1 }. For (I) we obtain the distribution 1/2–1/2 for the dark and white states,

while in case (II) we obtain the distribution 1–0 for the “visible” successors of s1 and the distri-
bution 2/3–1/3 for the white and dark successors of s3. More precisely, in case (I) we have to deal
with K

1,3
1 = K

1,3
2 = 1 and

1,3
1 (·) = 1, 1,32 (·) = 1. But then, there are no weights �(u1, u3), �(w1,w3)

satisfying condition 2.(ii) which would require �(u1, u3) = P(s1, u1) = 1
2 , �(w1,w3) = P(s1,w1) = 1

2 ,
and �(u1, u3) = P(s1, u1) = 2

3 , �(w1,w3) = P(s1,w1) = 1
3 . Similar arguments show the impossibility

of case (II). In none of these cases, condition 2 of Definition 34 is satisfied.
By considering fragments of states (using i), it is possible to “split” w1 into two fragments: e.g.,

one half belonging to V
1,3
1 and the other half to U

1,3
1 , i.e.,

1,3
1 (w1) = 1

2
,

1,3
1 (u1) = 1

while
1,3
2 (u3) =

1,3
2 (w3) = 1. Then, K

1,3
2 = 1 and K

1,3
1 = 1

2 + 1
2 · 12 = 3

4 . With the weight function
�1,3(u1, u2) = 2

3 and �1,3(w1,w3) = 1
3 we establish s1 �d s3.

Remark.Due to the reachability condition (condition 3 in Definition 34),�d is not symmetric, even
for DTMCs without absorbing states. The reason is that the reachability condition is one-sided and
treats s1 and s2 in a different way.

The above figure illustrates a DTMC without absorbing state where s1 �d s2 but s2 ��d s1. Recall
that �d coincides with ∼d for DTMCs without absorbing states. Due to the non-symmetry of �d
such result cannot be established for �d .

The proof of the next result shows that considering state-fragments is necessary in order to
establish the transitivity of �d .

Proposition 37. �d is a preorder.

Proof.Reflexivity directly follows fromDefinition 34. Transitivity is proven as follows. Let R1,2 and
R2,3 be weak simulations on FPS D = (S ,P ,L). We show that:

R = R1,2 ◦ R2,3 = {
(s1, s3) | ∃s2 ∈ S. (s1 R1,2 s2 ∧ s2 R2,3 s3)

}
is a weak simulation. Assume s1Rs3. Then there exists a state s2 such that s1 R1,2 s2 and s2 R2,3 s3.

We check the conditions of Definition 34 for R. Let 1,21 , 1,22 , U 1,2
1 , U 1,2

2 , V 1,2
1 , V 1,2

2 , K 1,2
1 , K 1,2

2 , and
�1,2 be the components as in Definition 34 for establishing s1 R1,2 s2. For the sake of simplicity, we
assume that each one-step successor state of s1 either belongs to U

1,2
1 or to V

1,2
1 but not to both,

i.e., the function
1,2
1 is the characteristic function of U

1,2
1 .3 Then, K 1,2

1 = P(s1,U
1,2
1). The same is

3 The justification for this simplification is as follows. For the proof of the general case we have to replace any occurrence
of P(s1, u1) for u1 ∈ U

1,2
1 by

1,2
1 (u1) · P(s1, u1) and, similarly, P(s1, v1) for v1 ∈ V

1,2
1 by (1−

1,2
1 (v1)) · P(s1, v1).

C. Baier et al. / Information and Computation 200 (2005) 149–214 171

assumed for states s2 and s3, and we use the notationsU
2,3
1 ,U 2,3

2 , etc. with the obvious meaning. Let
U2 = U

1,2
2 ∩ U

2,3
1 and

U1 = { u1 ∈ U
1,2
1 | �1,2(u1, u2) > 0 for some u2 ∈ U2 },

U3 = { u3 ∈ U
2,3
2 | �2,3(u2, u3) > 0 for some u2 ∈ U2 }.

Note that ui ∈ Ui implies P(si, ui) > 0 for i=1, 3. For u1 ∈ U1 and u3 ∈ U3 let:

 1(u1) =
∑

u2∈U2

�1,2(u1, u2) · K
1,2
1

P(s1, u1)
,

 3(u3) =
∑

u2∈U2

�2,3(u2, u3) · K
2,3
2

P(s3, u3)
.

Let 1(w) = 0 if w ∈ S \ U1, 3(w) = 0 if w ∈ S \ U3, and:

K1 =
∑
u1∈U1

 1(u1) · P(s1, u1) =
∑

u1∈U1,u2∈U2

�1,2(u1, u2) · K 1,2
1 ,

K3 =
∑

u3∈U3

 3(u3) · P(s3, u3) =
∑

u2∈U2,u3∈U3

�2,3(u2, u3) · K2,3
2 ,

K2 =
∑

u2∈U2

P(s2, u2).

V1 denotes the set of one-step successors v1 ∈ S⊥ of s1 such that 1(v1) < 1. V3 has the corresponding
meaning for state s3.
We check the conditions of Definition 34. We first show that 0 < i(ui) � 1 for all ui ∈ S . The

fact that i(ui) > 0 is clear. i(ui) � 1 follows from:∑
u2∈U2

�1,2(u1, u2) · K 1,2
1 �

∑
u2∈S

�1,2(u1, u2) · K 1,2
1 = P(s1, u1)

for any state u1 ∈ U1. Note that K
1,2
1 ·∑u1∈U1

�1,2(u1, u2) < P(s1, u1) is possible because there might
be states u2 ∈ U

1,2
2 \ U

2,3
1 . A similar observation holds for u3 ∈ U3. We now check the conditions of

Definition 34.

1. (a) Let v1 ∈ V1 \ {⊥ }. Distinguish two cases: (i) v1 �∈ U
1,2
1 and (ii) v1 ∈ U

1,2
1 . For case (i),

v1 ∈ V
1,2
1 , and by the fact that s1 �d s2, it follows v1 R1,2 s2. Since s2 R2,3 s3 it follows from

the definition of R that v1 R s3. Case (ii): let v1 ∈ V1 \ {⊥ } ∩ U
1,2
1 . Note that v1 ∈ V1 implies

 1(v1) < 1. Hence,

K
1,2
1 ·

∑
u2∈U2

�1,2(v1, u2) < P(s1, v1).

172 C. Baier et al. / Information and Computation 200 (2005) 149–214

On the other hand,

P(s1, v1) = K
1,2
1 ·

∑
u2∈U

1,2
2

�1,2(v1, u2)

= K
1,2
1 ·

∑
u2∈U2

�1,2(v1, u2) + K
1,2
1 ·

∑
u2∈U

1,2
2 \U2

�1,2(v1, u2).

Hence, there exists u2 ∈ U
1,2
2 \ U2 with �1,2(v1, u2) > 0. Then, u2 ∈ U

1,2
2 \ U

2,3
1 and therefore

u2 ∈ V
2,3
1 . We directly obtain from the fact that s1 R s3 that v1 R1,2 u2 R2,3 s3, and, hence, v1 R s3.

(b) In a similar way, we obtain s1 R v3 for v3 ∈ V3 \ {⊥ }.
2. Assume U1,U3 /= ∅. Hence, K1 > 0 and min{K2,3

1 ,K 1,2
2 } � K2 > 0. We will define a function

� such that with the above definitions of 1, 3,U1,U3, V1, V3,K1, and K3, conditions 2.(i) and
2.(ii) of Definition 34 are satisfied. We first make the following two observations:

(a) K1 · K 1,2
2 = K

1,2
1 · K2 and K3 · K2,3

1 = K
2,3
2 · K2.

For the first equation this can be seen as follows:

K1 · K 1,2
2 =

∑
u1∈U1

∑
u2∈U2

�1,2(u1, u2) · K 1,2
1 · K 1,2

2 ,

K
1,2
1 · K2 = K

1,2
1 ·

∑
u2∈U2

P(s2, u2) = K
1,2
1 ·

∑
u2∈U2

∑
u1∈U1

�1,2(u1, u2) · K 1,2
2 .

(b) If �2,3(u2, u3) > 0 and u2 ∈ U2 then u3 ∈ U3. Hence, for any state u2 ∈ U2:∑
u3∈U3

�2,3(u2, u3) =
∑
u3∈S

�2,3(u2, u3) = P(s2, u2)/K
2,3
1 .

Similarly, we have for all states u2 ∈ U2:∑
u1∈U1

�1,2(u1, u2) =
∑
u1∈S

�1,2(u1, u2) = P(s2, u2)/K
1,2
2 .

These two observations provide us the means to check condition 2. of Definition 34:
(i) Let � : U1 × U3 → [0, 1] be given by:

�(u1, u3) =
∑

u2∈U2

�1,2(u1, u2) · �2,3(u2, u3) · K
1,2
2 · K2,3

1

P(s2, u2) · K2
(1)

If �(u1, u3) > 0 then there exists some u2 ∈ S with

�1,2(u1, u2) > 0 and �2,3(u2, u3) > 0.

Hence, u2 ∈ U2 and u1 R1,2 u2 and u2 R2,3 u3, and by definition of R, u1 R u3.

C. Baier et al. / Information and Computation 200 (2005) 149–214 173

(ii) Using the definition of � (cf. Eq. (1)), we derive for state u1 ∈ U1:

K1 ·
∑

u3∈U3

�(u1, u3)

= K1 ·
∑

u3∈U3

∑
u2∈U2

�1,2(u1, u2) · �2,3(u2, u3) · K
1,2
2 · K2,3

1

P(s2, u2) · K2

= K1 ·
∑

u2∈U2

�1,2(u1, u2) · K
1,2
2 · K2,3

1

P(s2, u2) · K2
·
∑

u3∈U3

�2,3(u2, u3)︸ ︷︷ ︸
= P(s2, u2)/K

2,3
1 , see (b)

= K1 · K 1,2
2

K2︸ ︷︷ ︸
= K

1,2
1 , see (a)

·
∑

u2∈U2

�1,2(u1, u2)

= K
1,2
1 ·

∑
u2∈U2

�1,2(u1, u2)

= 1(u1) · P(s1, u1).

Similarly, we get K3 ·∑u1∈U1
�(u1, u3) = 3(u3) · P(s3, u3).

3. Let u1 ∈ U1. By definition of U1, there exists u2 ∈ U2 such that �1,2(u1, u2) > 0. Condition 3 of
Definition 34 applied to s2 R2,3 s3 and the successor state u2 ∈ U

2,3
1 implies the existence of a

path fragment s3,w1, . . . ,wn, u3 with n � 0 such that s2 R2,3 wj (for 0 < j � n) and u2 R2,3 u3.
Since s1 R1,2 s2, we obtain s1 Rwj (for 0 < j � n). Because �1,2(u1, u2) > 0, u1 R1,2 u2 and, hence,
by definition of R, u1 R u3. �

Proposition 38. For any FPS D:

s1 ≈d s2 implies s1 �d s2, and s1 �d s2 implies s1 �d s2.

Proof.As the second conjunct follows by easy verification (put V1 = V2 = ∅ and let i be the charac-
teristic function ofUi = Post⊥(si)) we concentrate on the proof of the first part. Let [s] = [s]≈d and
s1 ≈d s2 inD with B = [s1] = [s2]. We considerUi and Vi given by i as the characteristic function of
the set consisting of all successor states of si outsideB, i.e.,Ui = Post⊥(si) \ B, and Vi = Post⊥(si) ∩
B. Then, Ki = 1− P(si,B). By Proposition 15 the existence of a weight function for the distributions

u1 �→ P(s1, u1)

1− P(s1,B)
, u2 �→ P(s2, u2)

1− P(s2,B)

(where P(si,B) < 1) for the Ui-states can be established. Distinguish two cases.

• If P(s1,B) = 1 then U1 = Post⊥(s1) \ B = ∅ and K1 = 0. Thus, s1 �d s2.
• IfP(s1,B) < 1 andP(s2,B) = 1 thenK2 = 0 andK1 > 0 and by the reachability condition of≈d , s2
canreachsomes′2 ∈ BwithP(s′2,B) < 1.BythelastconditionofDefinition34itfollowss1 �d s2. �

174 C. Baier et al. / Information and Computation 200 (2005) 149–214

3.4.2. The continuous-time setting
Definition 39.Let C = (S ,R,L) be a CTMC and R ⊆ S × S . R is aweak simulation on C iff for s1 R s2:
L(s1) = L(s2) and there exist i : S → [0, 1] and Ui, Vi ⊆ S (i=1, 2) satisfying conditions 1. and 2. of
Definition 34 (ignoring ⊥) and the rate condition:

∑
u1∈U1

 1(u1) · R(s1, u1) �
∑

u2∈U2

 2(u2) · R(s2, u2).

s2 weakly simulates s1 in C, denoted s1 �c s2, iff there exists a weak simulation R on C such that
s1 R s2.

The rate conditionwhich replaces the reachability condition in FPSs states that s2 is “faster than”
s1 in the sense that the total rate to move from s2 to (the 2-part of) the U2-states is at least the
total rate to move from s1 to (the 1-part of) theU1-states. s2 can thus carry out visible transitions at
least as fast as s1 can. Note that Ki · E(si) = ∑

ui∈Ui
 i(ui) · R(si, ui). Hence, the rate condition can

be rewritten as K1·E(s1) � K2·E(s2). In particular, K2 = 0 implies K1 = 0. Therefore, a reachability
condition as for weak simulation on FPSs is not needed here.

Example 40.

Consider the three CTMCs depicted above. We have s1 �c s
′
1, since there exists a relation

� = { (s1, s′1), (s3, s′2), (s′2, s3), (s2, s′1) }

with U1 = { s3 }, V1 = { s1, s2 }, 1(s3) = 1 and 0 otherwise, U2 = { s′2 }, V2 = ∅, 2(s′2) = 1 and 0 oth-
erwise, and �(s3, s′2) = �(s′2, s3) = 1 and 0 otherwise. It follows that K1 = 1

9 and K2 = 1. It is not
difficult to check that indeed all constraints of Definition 39 are fulfilled, e.g., for the rate condition
we obtain 1

9 ·9 � 1·2. Note that s1 ��c s2 if R(s2, s3) > 2 (rather than being equal to 2), since then
s2� s′1 can no longer be established.
We further have s′1 �c s

′′
1 since there exists a relation

� = { (s′1, s′′1), (s′1, s′′2), (s′2, s′′3), (s′′3, s′2), (s′2, s′′4), (s′′4, s′2) }

with U1 = { s′2 }, V1 = ∅, K1 = 1, and 1(s
′
2) = 1 and 0 otherwise, U2 = { s′′3 }, V2 = { s′′2 }, 2(s′′3) = 1

and 0 otherwise, K2 = 2
3 and �(s′′3, s

′
2) = �(s′2, s

′′
3) = 1. It is straightforward to check that indeed all

constraints of Definition 39 are fulfilled.

C. Baier et al. / Information and Computation 200 (2005) 149–214 175

Example 41. The following figure illustrates a CTMC where s3 �c s2 �c s1 while s1 ��c s2 and
s2 ��c s3.

The relation R2,1 = { (s2, s1), (v2, s1), (u2, u1) } is a weak simulation as s2 → v2 can be viewed as a
stutter step. The fact that s3 �c s2 follows from R3,2 = { (s3, s2), (v3, v2), (u3, u2) } being a weak (and
even strong) simulation. As s2 is slower than s1 and s3 is slower than s2, intuitively, s1 ��c s2 and
s2 ��c s3. That this indeed is the case can be seen as follows.

1. For (s1, s2), a weak simulation cannot be established as (due to the labeling condition) the only
possibility would be to let v2 ∈ V2 and u1 ∈ U1. But then, the rate condition would be violated as
K1·E(s1) = 1 > 0 = K2·E(s2).

2. To see why s2 ��c s3, assume that there is a weak simulation R containing (s2, s3). As in (1),
v2 ��c s3 and hence, (v2, s3) �∈ R, i.e., v2 cannot be put into V1 and we have to deal with 1(v2) = 1,
U1 = { v2 } andK1 = 1. But then, the rate condition is invalidated:K1 · E(s2) = 1 · 100 � K2 · E(s3)
= K2 ∈ [0, 1].

Remark. If one of the states s1 or s2 with s1 �c s2 is absorbing, a simplified characterization of �c
can be obtained.

1. If s1 is absorbing then s1 �c s2 if and only if L(s1) = L(s2). The implication from right to left
immediately follows from the labeling condition (cf. condition 1 in Definition 39). For the other
direction, the choices U1 = V1 = ∅, K1 = 0, U2 = Post(s2), and V2 = ∅ fulfill the conditions of
Definition 39.

2. If s2 is absorbing then s1 �c s2 if and only if all states (including s1) reachable from s1 have the same
labeling as s2. The “only if” part can be seen as follows. When s2 is absorbing and s1 �c s2 then
U2 = ∅. By the rate condition, we obtain thatK1·E(s1) � K2·E(s2) = 0. Thus,K1 = 0 or E(s1) = 0.
If E(s1) = 0 then s1 is absorbing and the claim is obvious as s1 is the only state reachable from s1
and L(s1) = L(s2). If E(s1) > 0 and K1 = 0 then U1 = ∅ and

Post(s1) = V1 ⊆ s2↓R ⊆ {
s′ ∈ S | L(s′) = L(s2)

}
.

All states reachable from s1 thus have the same labeling as s2.
Vice versa, if s2 is absorbing and L(s′) = L(s2) for any state s′ reachable from s1 then the relation
R consisting of all pairs (s′, s2) is a weak simulation.

Proposition 42. �c is a preorder.

Proof. The proof is the same as that of Proposition 37, except that we have to check the rate con-
dition instead of the reachability condition. Using the notations as in the proof of Proposition 37,

176 C. Baier et al. / Information and Computation 200 (2005) 149–214

we have:

K2 · E(s2) =
∑

u2∈U2

P(s2, u2) · E(s2)

=
∑

u2∈U2

∑
u3∈S

�2,3(u2, u3) · K2,3
1 · E(s2)

=
∑

u2∈U2

∑
u3∈U3

�2,3(u2, u3) · K2,3
1 · E(s2)︸ ︷︷ ︸

�K
2,3
2 ·E(s3)

�
∑

u2∈U2

∑
u3∈U3

�2,3(u2, u3) · K2,3
2 · E(s3)

= K3 · E(s3)

With the same arguments, we can show that K1 · E(s1) � K2 · E(s2). This yields

K1 · E(s1) � K2 · E(s2) � K3 · E(s3). �

Proposition 43. For CTMC C and states s1, s2 ∈ S:

1. s1 �c s2 implies s1 �d s2 in emb(C).
2. s1 ≈c s2 implies s1 �c s2.
3.�c coincides with �c in unif (C).

Proof.

1. Easy verification.
2. Using Proposition 31, this proof goes along similar lines as the proof of ≈d ⊆ �d .
3. (⇒) Let s1 �c s2 in C and let R, i, Ui, Vi, Ki (for i=1, 2) and � as in Definition 39. The same
componentsUi, Vi and � can be used to show that R is a weak simulation on unif (C) = (S , R ,L).
Let 1(s) = 1(s) if s /= s1 and

 1(s1) = 1(s1) · R(s1, s1)

R (s1, s1)
,

and 2 be defined similarly. We show that R is a weak simulation on unif (C) by checking the
conditions of Definition 39. It suffices to check conditions 2.(ii) and the rate condition; the other
constraints are clear.
2.(ii). Let

Ki =
∑
ui∈Ui

 i(ui) · P (si, ui),

C. Baier et al. / Information and Computation 200 (2005) 149–214 177

where P (si, ui) = R (si, ui)/E are the transition probabilities from state si in unif(C). For
u1 ∈ U1 \ { s1 }, we have:

K1 ·
∑

u2∈U2

�(u1, u2) = E(s1)

E
· K1 ·

∑
u2∈U2

�(u1, u2)

= E(s1)

E
· 1(u1) · P(s1, u1)

= 1(u1) · R(s1, u1)
E

= 1(u1) · P (s1, u1).

For s1 ∈ U1 it follows by easy verification that:

K1 ·
∑

u2∈U2

�(s1, u2) = 1(s1) · R(s1, s1)
E

= 1(s1) · P (s1, s1).

In the same way, condition 2.(ii) can be proven for state s2.
Rate condition. We have:

K1 · E =
∑
u1∈U1

 1(u1) · R (s1, u1)

=
∑
u1∈U1
u1 �=s1

 1(u1) · R(s1, u1) + 1(s1) · R(s1, s1)

R (s1, s1)
· R (s1, s1)

=
∑
u1∈U1
u1 �=s1

 1(u1) · R(s1, u1) + 1(s1) · R(s1, s1)

=
∑
u1∈U1

 1(u1) · R(s1, u1) = K1 · E(s1)

By a similar argument it follows that K2 · E = K2 · E(s2). Since K1 · E(s1) � K2 · E(s2) we thus
have K1 · E � K2 · E.
(⇐) The converse direction can be shown in a similar way. �
Note that the proof of the last part of the previous proposition (as well as the proof for the

transitivity of �c) relies on the fact that sets Ui and Vi may overlap. A few further remarks are in
order.
Although �c and �d coincide for uniformized CTMCs (as �c agrees with ∼c, ∼c agrees with

∼d , and ∼d agrees with �d), this does not hold for �d and �c . For example, in:

178 C. Baier et al. / Information and Computation 200 (2005) 149–214

s2 �d s1 in the embedded DTMC (on the right), but s2 ��c s1 in the uniformized CTMC (on the left),
as the rate condition in Definition 39 is violated: K2·E(s2) = 2 �� 1 = K1·E(s1).
Second, note that the analogue of Proposition 43.3 (i.e., �c in C and �c in unif (C) coincide) does

not hold for the strong simulation preorder �c. This can be seen by considering the CTMC C and its
uniformized CTMC unif (C) in the picture below. Here, we have s1 �cs2 in C, but s1 ��cs2 in unif (C).

Finally, we note that although for uniformized CTMCs, ∼c and ≈c agree, a similar result for the
simulation preorders does not hold. An example CTMC for which s1 �c s2 but s1 ��c s2 is:

The fact that s1 ��c s2 follows from the weight function condition in Definition 22, e.g., the distri-
bution to move to the u- and v-states are different P(s1, { u }) = 1

3 /= 2
3 = P(s2, { u }). To see that

s1 �c s2, consider the reflexive closure R of { (s1, s2) } and the partitioning V1 = { s2 }, V2 = { s1 } and
U1 = U2 = { u } for which the conditions of a weak simulation are fulfilled.

3.5. Weak simulation equivalence

For the strong relations on FPSs or CTMCs, simulation equivalence agrees with bisimulation
equivalence. For the equivalences �d ∩ �−1

d and �c ∩ �−1
c , also denoted by ∼=d and ∼=c, respec-

tively, a similar relationship with ≈d and ≈c can be established. Recall that due to the reachability

C. Baier et al. / Information and Computation 200 (2005) 149–214 179

(and rate) condition, the weak simulation preorder on FPSs (or DTMCs) and CTMCs is non-sym-
metric. In particular, �∗ is strictly coarser than weak simulation equivalence ∼=∗ and ≈∗ where
∗ ∈ {c, d}. The latter, however, coincide by the following theorem. We first consider the following
proposition:

Proposition 44. For CTMC C with s1 �c s2 and s2 �c s1:(
s1, s2 �∈ U ⊆ S and (U = U↑ or U = U↓)) implies R(s1,U) = R(s2,U).

Here, ↓=↓�c
and ↑=↑�c

, i.e., U is downward- or upward-closed with respect to �c.

Proof.Assume U = U↑. (The proof for U = U↓ goes along the same lines.) In the sequel, we write
∼=c to denote the weak simulation equivalence, i.e., ∼=c = �c ∩ �−1

c . Let s1, s2 ∈ S \ U with s1 ∼=c s2.
Note U ∩ [s1]∼=c = ∅. We show that R(s1,U) � R(s2,U). By symmetry, R(s2,U) � R(s1,U), and
thusR(s1,U) = R(s2,U). In case Post(s1) ⊆ s2↓ (i.e.,K1 = 0) we have Post(s1) ∩ U = ∅; otherwise
s2 ∈ U↑ = U which contradicts the assumption that s2 �∈ U . Hence, R(s1,U) = 0 � R(s2,U). In
other cases, there exist i, Ui, Vi, Ki, �, as in Definition 39 where K1 > 0. Then, also K2 > 0, since
K1·E(s1) � K2·E(s2). Moreover, we have:

v ∈ V1 &⇒ v R s2 &⇒ v�cs2 &⇒ v /∈ U

because v ∈ V1 ∩ U would imply that s2 ∈ U = U↑. Hence, Post(s1) ∩ U ⊆ U1 and 1(u) = 1 for
all u ∈ Post(s1) ∩ U . We now derive:

R(s1,U) = E(s1) ·∑u∈U P(s1, u)

= E(s1) ·∑u∈U K1 ·∑u2∈S �(u, u2)︸ ︷︷ ︸
= 0, if u2 /∈ U

= E(s1) · K1 ·∑u∈U

∑
u2∈U �(u, u2)

= E(s1) · K1 ·∑u2∈U

∑
u∈U �(u, u2)

� E(s1) · K1 ·∑u2∈U

∑
u∈S �(u, u2)

= E(s1) · K1 ·∑u2∈U 2(u2)︸ ︷︷ ︸
�1

·P(s2,u2)
K2

� E(s1) · K1

K2︸ ︷︷ ︸
�E(s2)

·
∑
u2∈U

P(s2, u2)︸ ︷︷ ︸
=P(s2,U)

� E(s2) · P(s2,U) = R(s2,U). �

Similarly, for FPS D we obtain: if s1 ∼=d s2 and U ⊆ S is downward- or upward-closed w.r.t. �d ,
then

P(s1,U)

1− P(s1,B)
= P(s2,U)

1− P(s2,B)
,

180 C. Baier et al. / Information and Computation 200 (2005) 149–214

where B = [s1]∼=d = [s2]∼=d , and where we assume that P(si,B) < 1 for i=1, 2. In addition, the reach-
ability condition for �d (cf. Definition 34) ensures that for any weak simulation equivalence class
B either all states in B can reach a state outside B or none of them can.

Theorem 45.

1. For any FPS, weak simulation equivalence �d ∩ �−1
d coincides with ≈d .

2. For any CTMC, weak simulation equivalence �c ∩ �−1
c coincides with ≈c .

Proof. We prove the latter statement; the proof of the first statement is conducted similarly. Let
C = (S ,R,L) be a CTMC. As before, we write ∼=c to denote the weak simulation equivalence, i.e.,
∼=c = �c ∩ �−1

c . By Proposition 43.2, ∼=c is coarser than ≈c. It remains to prove the reverse, i.e., ∼=c

is a weak bisimulation on C. Let s1 ∼=c s2. Clearly, L(s1) = L(s2). We show:

R(s1,C) = R(s2,C) for all C ∈ S/∼=c with C /= [s1]∼=c = [s2]∼=c .

Let B,C ∈ S/∼=c, B /= C and B = [s1]∼=c = [s2]∼=c . Distinguish the following cases:

• C ��cB, i.e., no state in C is weakly simulated by some state in B. Then, s1, s2 �∈ C↑ and s1, s2 �∈
C↑ \ C . We derive using Proposition 44:

R(s1,C↑) − R(s1,C) = R(s1,C↑ \ C) = R(s2,C↑ \ C) = R(s2,C↑) − R(s2,C).

As, by Proposition 44, R(s1,C↑) = R(s2,C↑), it follows R(s1,C) = R(s2,C).
• C�cB, i.e., there do exist states in C that are weakly simulated by a state in B. Then C↓ ∩ B = ∅,
as C ∩ B = ∅. The proof of R(s1,C) = R(s2,C) is conducted as in the previous case using C↓
rather than C↑. �
Summarizing the results for the (bi)simulation equivalences and simulation preorders yields the

following spectrum for the continuous-time setting. For the discrete-time setting, a similar figure is
obtained.

C. Baier et al. / Information and Computation 200 (2005) 149–214 181

Recall that an arrow from relation R to R′ means that R is finer than R′ whereas a “negated”
arrow denotes that R′ is not finer than R. The dashed arrows refer to uniformized CTMCs; note
that for this special class of CTMCs all relations except �c coincide.

4. Logical characterizations

In the previous section, strong and weak (bi) simulation relations have been introduced for the
discrete- and continuous-time setting, and their relationship has been studied. The focus of this
section is on establishing logical characterizations of these relations. This will be done using the
logics PCTL (Probabilistic CTL [35]) and CSL (Continuous Stochastic Logic [5,8]) for the discrete
and continuous case, respectively. PCTL and CSL are both extensions of the branching-time tem-
poral logic CTL (Computation Tree Logic). As these logics are widely used for model checking
of probabilistic systems, establishing logical characterizations of the (bi)simulation relations is of
particular interest. For instance, for the bisimulation relations it will be shown that they coincide
with logical equivalence on either PCTL or CSL (or a fragment thereof). On the one hand, these
results can be exploited for model checking by reducing (according to the appropriate bisimulation
relation) the probabilistic models under consideration prior to carrying out the verification. This
may speed up the verification as (mostly) a smaller model needs to be checked. On the other hand,
this result allows for demonstrating that two probabilistic models are not bisimilar by providing a
single PCTL- or CSL-formula that holds for one of the models but not for the other. For simula-
tion relations, weak preservation results will be established that formalize the intuition that when
s′ simulates s, then s′ is more “safe” than s. The notion of more “safe” is defined by a preorder on a
(safe) fragment of the logic at hand.We start by defining some preliminary concepts that are needed
to establish these results.

4.1. Computation paths

Paths in FPSs. A path corresponds to an execution or run of the system. Intuitively, a path in
an FPS is a maximal sequence of states obtained by traversing the edge relation of the underly-
ing graph of the FPS. Maximality means that the path is either infinite or finite and ends in an
absorbing or sub-stochastic state. To distinguish the prefix s0, s1, . . . , sn of a path that continues in
sub-stochastic state sn from the path that stays forever in state sn, any finite path is required to end
with the symbol ⊥.

Definition 46. Let D = (S ,P ,L) be a FPS.

• An infinite path # in D is an infinite sequence s0, s1, s2, . . . of states such that P(si, si+1) > 0 for all
i � 0.

• A finite path # in D is a sequence s0, s1, . . . , sn,⊥ such that P(si, si+1) > 0 for 0 � i < n, and
P(sn,⊥) > 0.

• A path fragment is a (possibly non-maximal) portion of a path in D, i.e., a sequence s0, s1, . . . , sn
such that sn ∈ S⊥ and P(si, si+1) > 0 for 0 � i < n.

Path(s) denotes the set of all (finite and infinite) paths that start in state s.

182 C. Baier et al. / Information and Computation 200 (2005) 149–214

Note that any path in a DTMC (i.e., FPS with only stochastic states) is infinite. Let |#| denote
the length of a path or path fragment #, i.e., |s0, s1, . . . , sn| = |s0, s1, . . . , sn,⊥| = n and |#| = ∞ for
infinite #. For i � |#|, #[i] = si denotes the (i+1)-st state in #.
Any FPS D enriched with a start state s induces a probability space. The underlying sigma-al-

gebra is generated from the basic cylinders induced by the finite path fragments starting in s. The
probability measure PrDs (briefly Pr) induced by (D, s) is the unique measure on this sigma-algebra
where

Pr
{
∈ Path(s) | s = s0, s1, . . . , sn is a prefix of #︸ ︷︷ ︸

basic cylinder of the
path fragment s, s1, . . . , sn

} =
∏
0�i<n

P(si, si+1).

Observe that if sn = ⊥, the basic cylinder induced by # = s, s1, . . . , sn−1, sn just consists of #.
Paths in CTMCs. A path in a CTMC is similar to a path in an FPS except that for each visited

state its residence time is recorded. Formally, paths in a CTMC are maximal alternating sequences
s0, t0, s1, t1, s2, . . . that are either infinite or end in an absorbing state.

Definition 47. Let C = (S ,R,L) be a CTMC.

• An infinite path # in C is an infinite sequence s0
t0→ s1

t1→ s2
t2→· · · with si ∈ S and ti ∈ IR>0 such

that R(si, si+1) > 0 for all i � 0.

• A finite path# in C is a sequence s0 t0→ s1
t1→· · · sn−1

tn−1→ sn such that sn is absorbing, andR(si, si+1) >

0 for 0 � i < n.

The notations Path(s), #[i] and |#| are as for paths in FPSs. For infinite path # and i � 0, let
 (#, i) = ti, the time spent in si . For t ∈ IR�0 and i the smallest index with t <

∑i
j=0 tj let #@t = #[i],

the state in # occupied at time t. For finite # that ends in sn, #[i] and (#, i) are only defined for
i � n; they are defined for i < n in the above way, and (#, n) = ∞. For t >

∑n−1
j=0 tj let #@t = sn;

otherwise, #@t is as above.
Similar to the discrete-time case, basic cylinders, a sigma-algebra, and a unique probability mea-

sure over paths can be defined; for details, see [8]. In the sequel, PrCs , or simply Pr, denotes the unique
probability measure on sets of paths in CTMC C (that start in a state s).

4.2. Probabilistic computation tree logic

Probabilistic CTL (PCTL) [35] is a probabilistic extension of CTL in which state-formulae are
interpreted over states of an FPS and path-formulae are interpreted over paths in an FPS. In
PCTL, the universal and existential path quantifiers of (fair) CTL are replaced by a single prob-
ability operator, denoted P , which allows to refer to the probability of the occurrence of par-
ticular paths. For example, for path-formula ϕ, the state-formula P>p(ϕ) holds in state s if and
only if the probability of all paths satisfying ϕ that start in s exceeds probability p . A P-for-
mula thus has three parameters: a path-formula characterizing the paths of interest, a proba-
bility, and a comparison operator. Path-formulae are constructed using the standard next- and

C. Baier et al. / Information and Computation 200 (2005) 149–214 183

until-operator. 4 To simplify the definition of a safe fragment of PCTL later on, we consid-
er here formulae in positive normal form, which means that negation only occurs on the level
of literals. To retain the power of PCTL with “full” negation, for the temporal operators X

(next step) and U (until), we insert the weak variants X̃ (weak next step) and Ũ (weak un-
til).

Syntax. Let probability p ∈ [0, 1] and � a binary comparison operator, i.e., � ∈ {<,�,�,> }.
Recall thatAP denotes a fixed, finite set of atomic propositions ranged over by a, b, c, . . .The syntax
of PCTL state-formulae (in positive normal form) is defined as follows:

� :: = tt
∣∣∣ a

∣∣∣ ¬ a
∣∣∣ � ∧ �

∣∣∣ � ∨ �
∣∣∣ P�p (ϕ),

where ϕ is a path-formula defined according to the following grammar:

ϕ :: = X�
∣∣∣ X̃ �

∣∣∣ � U �
∣∣∣ � Ũ � .

The propositional fragment of PCTL has the usual interpretation. P�p (ϕ) asserts that the prob-
ability measure of the paths satisfying ϕ meets the bound given by � p . The intuitive meaning of
X� is that � will hold in the next state. X̃ is its weak counterpart, and does not the existence of
a next step. For instance, P�0.9(X̃ a) states that with at least probability 0.9, either no next state is
reached or a next state not satisfying a is reached. Stated differently, with probability less than 0.1
the next state does satisfy a. Thus, P�0.9(X̃ a) is equivalent to P>0.1(Xa). The path-formula � U �
asserts that � eventually holds and that at all preceding states � holds (strong until). For instance,
the formula P�0.91(green U red) states that the probability to eventually reach a red state via a path
of green states is at least 0.91. Ũ is its weak counterpart and does not require � to eventually
become true. For instance, P�0.91(green Ũ red) asserts that the probability of either staying green
forever, or reaching a red state via a green path, is at least 0.91. Stated differently, with probability
less than 0.09, a state is reached that is neither red nor green via a path that does not contain a red
state.
As for CTL, temporal operators like ♦ (eventually) and � (always) can be derived, e.g.,

P�p (♦ �) = P�p (ttU �) and P�p (� �) = P�p (� Ũ ff),

where ff equals a ∧ ¬a. For instance, if error is an atomic proposition that characterizes all states
where a system error has occurred then P�0.001(♦error) asserts that the probability for a system
error to occur eventually is at most 10−3.

Semantics. Let FPS D = (S ,P ,L). The semantics of PCTL is defined by a satisfaction relation,
denoted |=, which is characterized as the least relation over the states in S (paths in D, respectively)
and the state formulae (path formulae). The semantics of the propositional fragment is identical to
that for CTL. Themeaning of the probabilistic operator is formalized as follows [35]. The semantics
of PCTL state-formulae thus is defined for path-formula ϕ as:

4 In this paper, the bounded until-operator [35] is omitted. Although the logical characterization results for the strong
(bi)simulation relations also hold when this operator is incorporated, for the weak relations this is not the case as these
relations allow for stuttering.

184 C. Baier et al. / Information and Computation 200 (2005) 149–214

s |= tt s |= � ∧ � iff s |= � and s |= �,
s |= a iff a ∈ L(s) s |= � ∨ � iff s |= � or s |= �,
s |= ¬a iff a �∈ L(s) s |= P�p (ϕ) iff Pr(s,ϕ)�p .

Here, Pr(s,ϕ) = Pr{ # ∈ Path(s) | # |= ϕ } denotes the probability of the set of paths satisfying ϕ that
start in s. The meaning of the path-operators is as for CTL. Let # be a path in D. The semantics of
the PCTL path-formulae is defined as:

|= X� iff |#| � 1 and #[1] |= �,
|= X̃ � iff either |#| < 1 or #[1] �|= �,
|= � U � iff #[i] |= �, i = 0, 1, . . . , n−1, and #[n] |= � for some n � |#|,
|= � Ũ � iff either # |= � U � or #[i] |= � for all i � |#|.

Recall that in FPSs, paths are either infinite or of the form # = s0, s1, . . . , sn,⊥. In the latter case,
|#| = n and # |= � Ũ � iff either there exists j � n such that sj |= � and si |= � for 0 � i < j, or
si |= � for 0 � i � n.
The next (until)-operator and the weak next (until)-operator are closely related. This follows

from the following equations where for the sake of comparison we allow arbitrary state-formula to
be negated. For any state s and all PCTL-formulae � and � we have:

Pr(s,X�) = 1 − Pr(s, X̃ ¬�), (2)

Pr(s, X̃ �) = 1 − Pr(s,X¬�), (3)

Pr(s,� U �) = 1 − Pr
(
s, (¬�) Ũ ¬(� ∨ �)

)
, (4)

Pr(s,� Ũ �) = 1 − Pr(s, (¬�)U ¬(� ∨ �)) . (5)

Hence, the following pairs of formulae are equivalent:

P�p (X�) ≡ P�1−p (X̃ ¬�),
P�p (X̃ �) ≡ P�1−p (X¬�),
P�p (� Ũ �) ≡ P�1−p ((¬�)U ¬(� ∨ �)),
P�p (¬� U ¬�) ≡ P�1−p (� Ũ (� ∧ �)).

In particular, these equivalences show how any PCTL-formula (with “full” negation) can be trans-
formed into positive normal form.

4.3. Continuous stochastic logic

Continuous stochastic logic (CSL) [8] is a variant of the (identically named) logic by Aziz et al. [5]
and extends PCTL by path operators that reflect the real-time nature of CTMCs: a time-bounded
next- and until-operator. To be able to reason about the equilibrium behaviour of a CTMC, a
steady-state operator S is introduced.5 For example, for state-formula �, S>p(�) holds in state s

5 In a similar way, PCTL could be extended with a long-run operator that allows the specification of properties about
the long-run behaviour of FPSs.

C. Baier et al. / Information and Computation 200 (2005) 149–214 185

if and only if the probability to be in the long run in some �-state when started in s exceeds p . We
focus here on a fragment of CSL where the time bounds of (weak) until are of the form “� t”; other
time bounds can be handled by mappings on this case [8].

Syntax. Let p and � as before. The syntax of CSL state-formulae (in positive normal form) is
defined as follows.

� ::= tt
∣∣∣ a

∣∣∣ ¬ a
∣∣∣ � ∧ �

∣∣∣ � ∨ �
∣∣∣ S�p (�)

∣∣∣ P�p (ϕ),

where ϕ is a path-formula defined, for t a non-negative real number or∞, according to the following
grammar:

ϕ ::= X �t�
∣∣∣ X̃ �t�

∣∣∣ � U�t �
∣∣∣ � Ũ�t � .

Compared to PCTL, the next- and until-operators are equipped with a time bound. The intuitive
meaning of X �t� is that � holds in the next state and is reached within t time units. Similarly, the
path-formula � U�t � asserts that � is satisfied at some time instant before or equal to t and that
at all preceding time instants � holds. The connection between the until-operator and the weak
until-operator is as in PCTL. As for PCTL, temporal operators like ♦�t (eventually within time t)
and ��t can be derived.

Semantics. CSL state-formulas are interpreted over the states of a CTMC. Let C = (S ,R,L) with
labels in AP, and Sat(�) = { s ∈ S | s |= � } the set of states satisfying the state-formula �. The
semantics of CSL state-formulae is defined for path-formula ϕ as:

s |= tt s |= � ∧ � iff s |= � and s |= �,

s |= a iff a ∈ L(s) s |= � ∨ � iff s |= � or s |= �,

s |= ¬a iff a �∈ L(s) s |= S�p (�) iff ((s,Sat(�))�p ,

s |= P�p (ϕ) iff Pr(s,ϕ)�p .

Here, Pr(s,ϕ) is as defined for PCTL (referring to paths in C, of course), and ((s, S ′) for S ′ ⊆ S

denotes the steady-state probability [34,49,61] for S ′ when starting in state s, i.e.,

((s, S ′) = lim
t→∞ Pr{ # ∈ Path(s) | #@t ∈ S ′ }.

For path # in C, the satisfaction relation for CSL path-formulae is defined as:

|= X �t� iff #[1] is defined and #[1] |= � and (#, 0) � t,

|= X̃ �t� iff either |#| < 1 or #[1] �|= � or (#, 0) > t,

|= � U�t � iff #@x |= � for some x � t and #@y |= � for all y < x,

|= � Ũ�t � iff either # |= � U�t � or #@x |= � for all x � t.

Note that � U � can be interpreted as an abbreviation of � U�∞ �. The relationship between the
next (until)-operator and their weak counterparts is the same as for PCTL.

186 C. Baier et al. / Information and Computation 200 (2005) 149–214

4.4. Logical characterization of weak bisimulation

In both the discrete and the continuous setting, strong bisimulation (∼d and ∼c) coincide with
logical equivalence (in PCTL and CSL, respectively). The latter are denoted ≡PCTL and ≡CSL, respec-
tively. That is, s1 ≡PCTL s2 iff s1 and s2 satisfy exactly the same PCTL formulae. Similarly, s1 ≡CSL s2
iff s1 and s2 satisfy exactly the same CSL formulae.

Theorem 48 (see [4]). For any FPS: ∼d coincides with ≡PCTL.

Note that [4] shows that ∼d coincides with PCTL∗-equivalence where PCTL∗ is a logic that
subsumes PCTL and allows for, for instance, the conjunction of path formulae and arbitrary com-
bination of modalities. In order to establish a logical characterization of ∼d , it turns out that a
fragment of PCTL without the until-operators is sufficient. Desharnais et al. [25] have shown that
even conjunction and probabilistic next suffice for that purpose.

Theorem 49 (see [8,28]). For any CTMC: ∼c coincides with ≡CSL.

The paper [28] shows that∼c and≡CSL not only coincide for CTMCs with a countable state space
but also for continuous-state processes.
In the rest of this section, we focus on establishing strong preservation results for weak bisim-

ulation and the fragments of the logics PCTL and CSL without next (and weak next). The next-
operators are omitted as they are not stutter-invariant, and thus it is impossible to establish a strong
preservation result for weak (bi)simulation in the presence of these operators. Let PCTL\X denote
the fragment of PCTL without the next-step and the weak next-step operator; similarly, CSL\X is
defined. PCTL\X -equivalence, denoted≡PCTL\X , and CSL\X -equivalence, denoted≡CSL\X , are defined
in the obvious way.

Theorem 50. For any FPS: ≈d coincides with ≡PCTL\X .

Proof. (Soundness). The fact that≈d implies≡PCTL\X is proven by structural induction on the syntax
of PCTL\X -formulae. Let s ≈d s′. The base cases tt, a and ¬a are straightforward: all states satisfy
tt (and thus s and s′), and a (¬a) holds iff a ∈ L(s) = L(s′) (a �∈ L(s) = L(s′)). For conjunction (and
disjunction) the proof directly follows from the induction hypotheses on the conjuncts (disjuncts,
respectively). It remains to consider the until operator. The proof for the weak-until operator can
be conducted in a similar way as for until and is omitted. Let ϕ = � U �. For s ≈d s′ we aim to
establish that Pr(s,ϕ) = Pr(s′,ϕ), and thus s |= P�p (ϕ) iff s′ |= P�p (ϕ). By the induction hypothesis
it follows that both Sat(�) and Sat(�) are a disjoint union of equivalence classes under ≈d . Let
B = [s]≈d . Then, B ∩ Sat(�) = ∅ or B ⊆ Sat(�) (and similar for �). Only the cases B ⊆ Sat(�)

and B ∩ Sat(�) = ∅ are of interest; for all other cases, Pr(s,ϕ) = Pr(s′,ϕ) ∈ { 0, 1 } and the theorem
directly follows. Let S ′ be the set of states that can reach a �-state via a (non-empty) �-path, i.e.,
S ′ = { s | Pr(s,ϕ) > 0 } \ Sat(�). As Sat(�) and Sat(�) are disjoint unions of equivalence classes
under ≈, S ′ can be viewed as such a disjoint union too.
For s �∈ S ′, Pr(s,ϕ) ∈ { 0, 1 }. For s ∈ S ′, the vector

(
Pr(s,ϕ)

)
s∈S ′ is the unique solution of the linear

equation system:

xs = P(s,Sat(�)) +
∑
s′∈S ′

P(s, s′) · xs′ . (6)

C. Baier et al. / Information and Computation 200 (2005) 149–214 187

The first summand denotes the probability to go from state s to a �-state in one step, whereas the
second summand denotes the probability to go from s to a �-state via at least one �-state. For any
≈d -equivalence class B ⊆ S ′, select sB ∈ B such that P(sB,B) < 1, i.e., sB is a state via which B can
be directly left. Stated differently, sB �∈ Silent≈d . Such state is guaranteed to exist, since if P(s,B)
would equal 1 for all states s ∈ B then none of the B-states can reach a�-state, contradicting B ⊆ S ′.
Now consider the unique solution (xB)B∈S/≈d ,B⊆S ′ of the linear equation system:

xB = P(sB,Sat(�)) +
∑

C∈S/≈d
C⊆S ′

P(sB,C) · xC.

We now show that xs = xB for all states s ∈ B. For this, we prove that the vector (ys)s∈S ′ is a solution
to (6) where ys = xB if s ∈ B and B ranges over all ≈d -equivalence classes B ⊆ S ′.
We first consider the case s ∈ B and P(s,B) = 1 and show that Eq. (6) for state s holds for the

values ys′ rather than xs′ . As P(s, s′) = 0 for all states s′ ∈ S \ B, the sum on the right-hand side of
Eq. (6) with ys′ rather than xs′ reduces to:∑

s′∈B

P(s, s′) · ys′︸︷︷︸
=xB

= xB ·
∑
s′∈B

P(s, s′)︸ ︷︷ ︸
=P(s,B)=1

= xB = ys.

Next we consider Eq. (6) for the states s ∈ B where P(s,B) < 1. By definition of ≈d , we have

P(s,C)

1− P(s,B)
= P(sB,C)

1− P(sB,B)

for all states s ∈ B and equivalence classes C ∈ S/ ≈d with C �= B. Hence:

P(s,C) = 1− P(s,B)

1− P(sB,B)
· P(sB,C).

As Sat(�) is the union of equivalence classes under ≈d , we obtain:

P(s,Sat(�)) = 1− P(s,B)

1− P(sB,B)
· P(sB,Sat(�)).

Thus, the sum on the right-hand side of Eq. (6) with ys′ = xC for s′ ∈ C rather than xs′ can be
rewritten as follows:

P(s,Sat(�)) +
∑
s′∈S ′

P(s, s′) · ys′

= P(s,Sat(�)) +
∑

C∈S/≈d
C⊆S ′

P(s,C) · xC

188 C. Baier et al. / Information and Computation 200 (2005) 149–214

= 1− P(s,B)

1− P(sB,B)
· P(sB,Sat(�)) +

∑
C∈S/≈d

C �=B,C⊆S ′

1− P(s,B)

1− P(sB,B)
P(sB,C) · xC + P(s,B) · xB

= 1− P(s,B)

1− P(sB,B)

P(sB,Sat(�)) +
∑

C∈S/≈d
C �=B,C⊆S ′

P(sB,C) · xC

︸ ︷︷ ︸

=xB−P(sB,B)·xB

+ P(s,B) · xB

= 1− P(s,B)

1− P(sB,B)
(xB − P(sB,B) · xB) + P(s,B) · xB

= (1− P(s,B)) · xB + P(s,B) · xB = xB

Hence, ys = xB = xs = Pr(s,ϕ) for all states s ∈ B and B ∈ S/ ≈d . Consequently, s |= P�p (ϕ) iff
s′ |= P�p (ϕ) for any state s′ ∈ B = [s].
(Completeness). The fact that ≡PCTL\X implies ≈d is proven by using so-called master formulae

for the equivalence classes induced by ≡PCTL\X . These formulae are defined as follows. If the FPS is
finite-state then the state-formula

�C =
∧
D/=C

�C ,D

uniquely characterizes all C-states where �C ,D is defined by

C ⊆ Sat(�C ,D) and D ∩ Sat(�C ,D) = ∅

for different equivalence classes C and D under≡PCTL\X . (For infinite-state FPSs, approximations of
master-formulae can be used [24]; for simplicity we consider the finite-state case only). Assume S

to be finite and that any equivalence class C under≡PCTL\X is represented by a PCTL\X -formula �C .
We now check the conditions of ≈d (cf. Definition 26). Let s1 ≡PCTL\X s2, and B = [s1] = [s2] under
≡PCTL\X .

1. For set of atomic propositions A ⊆ AP consider the propositional PCTL\X -formula:

�A =
∧
a∈A

a ∧
∧
b�∈A

¬ b

s1 ≡PCTL\X s2 implies s1 |= �A iff s2 |= �A, and, hence, by definition of �A, L(s1) = L(s2).
2. For PCTL\X equivalence class C with B /= C , let ϕ = �B U �C . As s1 ≡PCTL\X s2, we have
Pr(s1,ϕ) = Pr(s2,ϕ). If P(si,B) < 1 for i=1, 2, then:

Pr(si,ϕ) = P(si,C)

1− P(si,B)
.

C. Baier et al. / Information and Computation 200 (2005) 149–214 189

This is justified as follows. If Pr(si,ϕ) = 0, then P(si,C) = 0. Otherwise, by instantiating the
equation system in (6) with S ′ = B, �2 = �C , and �1 = �B, it can be verified that the vector
with the values xs = P(s,C)

1−P(s,B)
(for s ∈ B) is a solution.

3. s1 can reach a state outside B iff s1 |= P>0()¬�B), which is equivalent – as s1 ≡PCTL\X s2 – to
s2 |= P>0()¬�B), or equivalently, to the statement that s2 can reach a state outside B.

Hence, we conclude that s1 ≈d s2. �
The next objective is to establish a strong preservation result for ≈c and ≡CSL\X . To that end, we

use the observation (cf. Proposition 52) that≈c in CTMCs C and unif (C) coincides. This allows for
replacing C by its uniformized counterpart. Using the facts that≈c and∼c coincide for uniformized
CTMCs, and that ∼c coincides with ≡CSL gives the desired result.

Proposition 51. For CTMC C, s in C, and CSL\X -formula �:

s |= � iff s |= � in unif (C).
Proof.By induction on the syntax of�. For the propositional fragment the result is obvious. For the
S- andP-operator, we exploit the fact that steady-state and transient distributions in C and unif (C)
are identical (cf. [57]), and that the semantics of U�t and Ũ�t agrees with transient distributions
[8]. �
Proposition 52. For any uniformized CTMC: ≡CSL coincides with ≡CSL\X .

Proof. The direction “⇒” is obvious.We prove the other direction. AssumeCTMC C is uniformized
and let s1, s2 be states in C. From Proposition 11.2 and the logical characterizations of ∼c and ∼d it
follows:

s1 ≡CSL s2 iff s1 ∼c s2 iff s1 ∼d s2 iff s1 ≡PCTL s2.

By showing that≡CSL\X implies≡PCTL (for uniformizedCTMC)we thus obtain the desired result. This
is done by structural induction on the syntax of PCTL-formulae. Clearly, only the next step operator
is of interest (the proof for weak next goes along similar lines and is omitted here). As in the proof of
Theorem50weassumeafinitestatespaceandthatany≡CSL\X -equivalenceclassC canbecharacterized
by CSL\X formula�C . Consider PCTL-path formula ϕ = X�. By induction hypothesis, Sat(�) is a
(countable) union of equivalence classes of≡CSL\X . In the following, we establish for s1 ≡CSL\X s2:

P(s1,Sat(�)) = P(s2,Sat(�)) that is Pr(s1,X�) = Pr(s2,X�).

Let B = [s1]≡CSL\X = [s2]≡CSL\X . First observe that P(s1,B) = P(s2,B); otherwise, if, e.g., P(s1,B) <

P(s2,B) one would have Pr(s1,♦�t¬�B) < Pr(s2,♦�t¬�B) for some sufficiently small t, contradict-
ing s1 ≡CSL\X s2. Distinguish:

• P(s1,B) = P(s2,B) < 1. As s1 ≡CSL\X s2 and �B U � is a CSL\X -path formula: Pr(s1,�B U �) =
Pr(s2,�B U �). Using the same arguments as in the proof of Theorem 50 we obtain:

Pr(si,�B U �) = P(si,Sat(�))

1− P(si,B)
, i = 1, 2.

190 C. Baier et al. / Information and Computation 200 (2005) 149–214

Since P(s1,B) = P(s2,B), it follows P(s1,Sat(�)) = P(s2,Sat(�)).
• P(s1,B) = P(s2,B) = 1. As Sat(�) is the union of equivalence classes under ≡CSL\X , the intersec-
tion with B is either empty or equals B. For i = 1, 2: P(si,Sat(�)) = 1 if B ⊆ Sat(�) and 0 if
B ∩ Sat(�) = ∅. Hence, P(s1,Sat(�)) = P(s2,Sat(�)).

Thus, s1 ≡PCTL s2. �
Theorem 53. For any CTMC: ≈c coincides with ≡CSL\X .

Proof.We derive:

s1 ≈C
c s2

iff s1 ≈unif(C)
c s2 (by Proposition 33.3)

iff s1 ∼unif(C)
c s2 (by Proposition 33.2)

iff s1 ≡unif(C)
CSL s2 (by Theorem 49)

iff s1 ≡unif(C)
CSL\X s2 (by Proposition 52)

iff s1 ≡C
CSL\X s2 (by Proposition 51) �

Remark. The proof of the preservation property for CSL\X and ≈c seems to be simpler than for
the discrete setting (cf. Theorem 50). An alternative proof of Theorem 50 could, however, be giv-
en which uses roughly the same arguments that we applied for the continuous case. For this, the
concept of uniformization has to be adapted to FPSs (which amounts to just adding self-loops
while keeping the relative probabilities for the original transitions unchanged) such that ≈d in the
original FPS agrees with ∼d in the modified FPS. The remaining argumentation follows then as in
the continuous case.

4.5. Safe and live fragments of PCTL and CSL

For the logical characterizations of the simulation relations, we distinguish between safety
(“something bad never happens”) and liveness (“something good will eventually happen”) proper-
ties. In analogy to the universal and existential fragments of CTL, safe and live fragments of PCTL
and CSL are defined as follows.

Safe and live PCTL. We consider only a restricted class of probability bounds in the probabilistic
operator P . The syntax of PCTL-safety formulae is as follows:

� ::= tt
∣∣∣ a ∣∣∣ ¬a

∣∣∣ � ∧ �
∣∣∣ � ∨ �

∣∣∣ P�p (X̃ �)
∣∣∣ P�p (� Ũ �).

A typical safety property is P�0.99(�¬ error) stating that with probability at least 0.99 the system
will never be subject to an error. Using the duality of weak and strong until,P�0.001(♦error) is also a

C. Baier et al. / Information and Computation 200 (2005) 149–214 191

safety-formula and expresses that with probability atmost 10−3 the systemwill eventually be subject
to an error. Note that P�p (� Ũ (� ∧ �)) = P�1−p (¬� U ¬�); henceforth the latter formulae are
also safety properties.
PCTL-liveness formulae are defined as follows:

� ::= tt
∣∣∣ a ∣∣∣ ¬a

∣∣∣ � ∧ �
∣∣∣ � ∨ �

∣∣∣ P�p (X�)
∣∣∣ P�p (� U �).

Note that the weak next- and weak until-operator as allowed in safety-formulae, are replace by the
traditional next- and until-operators. There is a duality between safety and liveness properties for
PCTL, i.e., for any safety formula � there is a liveness property equivalent to ¬�, and the same
applies to liveness property �. This can easily be verified using structural induction on the syntax
of safety PCTL-formulae.

Remark. In the context of safety formulae, next steps are viewed to be “dangerous” as they might
violate safety. For instance, the safety formula P�1−ε(X̃ safe) (which is equivalent to P�ε(X¬ safe))
states that with sufficiently small probability the next state is unsafe. This is opposed to liveness
properties such as P�1−ε(X good) stating that with large probability a “good” next state occurs.

Safe and live CSL. The syntax of CSL-safety formulae is defined similar to that of safe PCTL:

� ::= tt
∣∣∣ a ∣∣∣ ¬a

∣∣∣ � ∧ �
∣∣∣ � ∨ �

∣∣∣ P�p (X̃
�t�)

∣∣∣ P�p (� Ũ�t �).

A typical safety property isP�0.99(��100¬ error) stating that with probability at least 0.99 the system
will not exhibit an error for the next 100 time units.
CSL-liveness formulae are defined as follows:

� ::= tt
∣∣∣ a ∣∣∣ ¬a

∣∣∣ � ∧ �
∣∣∣ � ∨ �

∣∣∣ P�p (X
�t�)

∣∣∣ P�p (� U�t �).

There is a duality between safety and liveness properties for CSL like for PCTL.

Remark. The steady-state operator S�p (�) cannot be part of a CSL-fragment that enables a weak
preservation result for �c. This is shown by the following example where we have s1 �c s2 and
u1 �c u2.

The steady-state (or long-run) probabilities ((s1, s1) and ((s1, u1) are equal because the transitions
s1 → u1 and u1 → s1 have the same speed. On the other hand, s2 → u2 is twice as fast as u2 → s2,
hence, on the long run, the average time spent in u2 is twice as that spent in s2. Concretely,

((s1, s1) = ((s1, u1) = 1
2
but ((s2, s2) = 1

3
and ((s2, u2) = 2

3
.

192 C. Baier et al. / Information and Computation 200 (2005) 149–214

As a consequence,

s1 |= S�0.5(a), but s2 �|= S�0.5(a),

where we assume that L(s1) = L(s2) = { a } and L(u1) = L(u2) = ∅. Vice versa,

s2 |= S�0.5(¬a), while s1 �|= S�0.5(¬a).

This example shows that there is no chance to find a comparison operator � such that a preser-
vation result for S-formulae and �c can be established. The fact that the steady-state operator is
not compatible with our simulation relation can be viewed as a specific instance of the well-known
phenomenon that CTMCs cannot be ordered according to their steady-state performance [59,16].

4.6. Logical characterization of simulation

For DTMCs without absorbing states, �d equals ∼d [45], and hence, equals ≡PCTL. For FPS
where �d is non-symmetric and strictly coarser than ∼d , a logical characterization is obtained by
considering a fragment of PCTL in the sense that s�d s′ iff all PCTL-safety properties that hold for
s′ also hold for s. In this sense, �d can be read as: s�d s′ iff “s′ is safer than s.” For an action-labeled
version of PCTL (in fact, a simpler modal logic with conjunction, disjunction and a next-step oper-
ator), such result was first presented by Desharnais et al. [24,26]. A similar result can be established
for �c and a safe fragment of CSL, as we will show below. The main results of this section are
the weak preservation property for � stating that if s� s′ then all PCTL\X -safety formulas that
hold for state s′ are also satisfied by s. A similar new result is obtained for the continuous case.
For convenience, we introduce the following notation: let s�safe

PCTL
s′ if and only if for all PCTL-

safety formulae �: s′ |= � implies s |= �. Likewise, s�safe

PCTL\X s′ if and only if this implication holds
for all PCTL\X -safety formulae. Let s�live

PCTL
s′ if and only if for all PCTL-liveness formulae�: s |= �

implies s′ |= �. The preorder�live

PCTL\X is defined similarly, and the same applies for the preorders
corresponding to the safe and live fragments of CSL and CSL\X .

Theorem 54. For any FPS: �d coincides with �safe

PCTL
and with �live

PCTL
.

Proof. The equivalence of �safe

PCTL
and �live

PCTL
follows from the duality of safety and liveness formulae.

We will now prove that �d coincides with �live

PCTL
.

1. (⇒). Let s�d s′. We prove that s�live

PCTL
s′ by showing that the sets Sat(�) for PCTL-live formula

� are upward-closed w.r.t. �d , i.e., Sat(�) equals the set of states that simulate some �-state:

Sat(�) = Sat(�) ↑ = {
s ∈ S | s′ �d s for some s′ ∈ Sat(�)

}
.

This is proven by structural induction on �. We only consider the until operator – the proofs for
the other cases are similar and simpler – and show that for PCTL-live formulae � and � with
Sat(�) = Sat(�)↑ and Sat(�) = Sat(�)↑ then for all s, s′ ∈ S:

s�d s′ ⇒ Pr(s,� U �) � Pr(s′,� U �).

C. Baier et al. / Information and Computation 200 (2005) 149–214 193

From this it follows from the semantics of PCTL that

s�d s′ ⇒ (
s |= P�p (� U �) ⇒ s′ |= P�p (� U �)

)
.

For convenience let p(s) abbreviate Pr(s,� U �). We have:

p(s) = lim
n→∞ p(s, n),

where p(s, n) for natural n denotes the probability for a path fragment of length at most n which
leads from s via �-states to a �-state. Formally,

p(s, n) =

1 if s |= �,∑
s′∈Sat(�)∪Sat(�)

P(s, s′) · p(s′, n−1) if s |= � ∧ ¬� and n > 0,

0 otherwise.

Wenowprove that s�d s′ ⇒ p(s, n) � p(s′, n) for all n, and consequently, p(s) � p(s′). The proof
proceeds by induction on n. For the base step p(s, 0) ∈ { 0, 1 }. p(s, 0) = 1 if and only if s ∈ Sat(�),
but as Sat(�) is upward-closed w.r.t. �d and s�d s′ it follows s′ ∈ Sat(�), and hence p(s′, 0) =
1. The case p(s, 0) = 0 follows in a similar way. Distinguish two cases for the induction step.
Let n > 0.
(a) s′ |= �. Then, p(s′, n) = 1 � p(s, n) for all n.
(b) s′ �|= �. As Sat(�) is upward-closed, s �|= �. If s �|= � then by definition of p(s, n) we have

p(s, n) = 0 � p(s′, n), for all n. The interesting case is when s |= �, and as Sat(�) is upward-
closed, s′ |= �. Let � be a weight function w.r.t. �d for the distributions s′′ �→ P(s, s′′)
and s′′ �→ P(s′, s′′). As Sat(�) and Sat(�) are upward-closed and �(u1, u2) = 0 if u1 ��d u2
we have:

�(u1, u2) = 0 if u1 ∈ Sat(�) ∪ Sat(�) and u2 /∈ Sat(�) ∪ Sat(�). (7)

We now derive:

p(s, n+1)

=
∑

u1∈Sat(�)∪Sat(�)

P(s, u1) · p(u1, n) by definition of p(s, n)

=
∑

u1∈Sat(�)∪Sat(�)

∑
u2∈S

�(u1, u2) · p(u1, n) as s�d s′

=
∑

u1,u2∈Sat(�)∪Sat(�)

u1 �d u2

�(u1, u2) · p(u1, n) by (7)

194 C. Baier et al. / Information and Computation 200 (2005) 149–214

�
∑

u2∈Sat(�)∪Sat(�)

∑
u1∈Sat(�)∪Sat(�)

�(u1, u2) · p(u2, n) by induction hypothesis

�
∑

u2∈Sat(�)∪Sat(�)

∑
u1∈S �(u1, u2) · p(u2, n)

=
∑

u2∈Sat(�)∪Sat(�)

P(s2, u2) · p(u2, n) as � is a weight function

= p(s2, n+1) by definition of p(s, n).

2. (⇐). We prove that �live

PCTL
is a weak probabilistic simulation. From the alternative characteriza-

tion of �d (cf. Proposition 20), it suffices to show that whenever s�live

PCTL
s′ then P(s,C) � P(s′,C)

for each C ⊆ S which is upward-closed w.r.t. �live

PCTL
. Let C be such an upward-closed set. For

u ∈ S \ C and u′ ∈ C , there exists a PCTL-live formula �u′,u that distinguishes u and u′ such that

u /∈ Sat(�u′,u) and u′ ∈ Sat(�u′,u).

Note that otherwise, we have u′ �live

PCTL
u, and hence, u ∈ C (as C is upward-closed and u′ ∈ C).

Distinguish two cases.

(a) S is finite. Let

�C ,u =
∨
u′∈C

�u′,u

for u ∈ S \ C . It directly follows:

C ⊆ Sat(�C ,u) and u /∈ Sat(�C ,u).

Hence,

�C =
∧

u∈S\C
�C ,u

can be viewed as a master formula for C as Sat(�C) = C . Now consider the PCTL-live
formulae �p = P�p (X�C) where

p = P(s,Sat(�C)) = P(s,C).

Then, we have: s |= �p , and if s�live

PCTL
s′, s′ |= �p . Thus,

P(s′,C) = P(s′,Sat(�C)) � p = P(s,C).

(b) S is countable infinite. As S is countable, we may use enumerations u1, u2, . . . of S \ C and
u′
1, u

′
2, . . . of C and work with approximations of the above master formula (which cannot be

defined as above because infinite disjunctions and conjunctions are not allowed in the syntax
of PCTL). Let

C. Baier et al. / Information and Computation 200 (2005) 149–214 195

�(n)
C ,u =

∨
1�i�n

�u′
i ,u
.

Then,

�(n,m)
C =

∧
1�j�m

�(n)
C ,uj

≡
∨
1�i�n

∧
1�j�m

�u′
i ,uj

Let C(n,m) = Sat(�(n,m)
C). Then,

C =
⋃
n�1

⋂
m�1

C(n,m).

As above, we obtain:

P(s,C(n,m)) � P(s′,C(n,m)) (8)

for all naturals n, m � 1. Moreover, we have:

P(s,C) = lim
n→∞ lim

m→∞ P(s,C(n,m))

and similar for s′. By (8), we obtain P(s,C) � P(s′,C). �

Theorem 55. For any CTMC: �c coincides with �safe

CSL
and with �live

CSL
.

Proof. To a large extent, the proof of this result goes along similar lines as the proof of Theorem
54. Due to the duality of CSL-safe and live-formulae, �safe

CSL
and with �live

CSL
coincide, and, hence, it

suffices to show that �c coincides with �live

CSL
.

1. (⇐). Assume s�live

CSL
s′. With the same arguments as in the proof of Theorem 54 we obtain

L(s) = L(s′) and P(s,C) � P(s′,C) for each upward-closed C ⊆ S w.r.t. �live

CSL
. It remains (cf.

Definition 22) to prove E(s) � E(s′). Consider the CSL-liveness formulae

� = P�p (X
�ttt),

where p = 1− e−E(s)·t . As Pr(s,X �ttt) = 1− e−E(s)·t we have s |= �, and as s�live

CSL
s′, s′ |= �.

Therefore 1− e−E(s′)·t � p = 1− e−E(s)·t which yields E(s) � E(s′). Thus �live

CSL
is a strong

simulation.
2. (⇒). As for Theorem 54, the crux of the proof is to show that for CSL-live formula �, Sat(�)

is upward-closed w.r.t. �c. The main difference to the discrete setting is that p(s, n) is replaced
by p(s, n, t), denoting the probability to fulfill the path formula � U�t � via a path fragment of
length at most n:

p(s, t, n) =

1 if s |= �,∑

u∈S R(s, u) · ∫ t
0 e−E(s)·x · p(u, t−x, n−1) dx if s |= � ∧ ¬� and n > 0,

0 otherwise.

196 C. Baier et al. / Information and Computation 200 (2005) 149–214

The second clause is informally justified as follows. If s satisfies � and ¬�, the probability
of reaching a �-state from s within t time units and n steps (n > 0) equals the probability of
reaching some direct successor u of s in x time units (x � t), multiplied by the probability of
reaching a �-state from u in the remaining time t−x (along a �-path) in n−1 steps.
Let � and � be CSL-formulae such that Sat(�) and Sat(�) are upward-closed w.r.t. �c. The
interesting case is s |= � and s �|= � (and the same for s′). As s�c s

′, E(s) � E(s′). Now intro-
duce a fresh state ŝ with no incoming transitions, and with the same probabilistic structure as
s, i.e., P(ŝ,w) = P(s,w) for all states w, but E(ŝ) = E(s′). ŝ can be viewed as a “fast” copy of s.
In particular, p(s, t, n) � p(ŝ, t, n). We now prove p(ŝ, t, n) � p(s′, t, n) along similar lines as the
proof of Theorem 54:

p(ŝ, t, n+1)

=
∫ t

0

∑
u1∈Sat(�)∪Sat(�)

R(ŝ, u1) · e−E(s′)·x · p(u1, t−x, n) dx

=
∫ t

0

∑
u1∈Sat(�)∪Sat(�)

∑
u2∈S

E(s′) · �(u1, u2) · e−E(s′)·x · p(u1, t−x, n) dx

=
∫ t

0

∑
u1,u2∈Sat(�)∪Sat(�)

u1 �d u2

E(s′) · �(u1, u2) · e−E(s′)·x · p(u1, t−x, n)︸ ︷︷ ︸
� p(u2, t−x, n), by ind. hypo.

dx

�
∫ t

0

∑
u2∈Sat(�)∪Sat(�)

∑
u1∈Sat(�)∪Sat(�)

E(s′) · �(u1, u2) · e−E(s′)·x · p(u2, t−x, n) dx

�
∫ t

0

∑
u2∈Sat(�)∪Sat(�)

∑
u1∈S

E(s′) · �(u1, u2) · e−E(s′)·x · p(u2, t−x, n) dx

=
∫ t

0

∑
u2∈Sat(�)∪Sat(�)

R(s′, u2) · e−E(s′)·x · p(u2, t−x, n) dx

= p(s′, t, n+1).

With n → ∞ we obtain:

Pr(s,� U�t �) = lim
n→∞ p(s, t, n) � lim

n→∞ p(s′, t, n) = Pr(s′,� U�t �). �

The following two main results provide a relationship between the weak simulation pre-order
and a pre-order on the safe (and live) fragments of PCTL\X and CSL\X , respectively. As the proofs
of these facts are non-trivial and proceed in several steps, we first give the result, present (as a re-
mark) a first proof attempt, give a rough idea about the proof concept, and then the detailed proof.
We start with the continuous case and then deal with the discrete case.

C. Baier et al. / Information and Computation 200 (2005) 149–214 197

Theorem 56. For any CTMC: �c ⊆ �safe

CSL\X and �c ⊆ �live

CSL\X .

Let C = (S ,R,L) be a CTMC. The aim is to show (as in the proof of Theorem 54) that Sat(�) for
CSL\X -live formula� is upward-closed w.r.t. �c. This is done by structural induction on the syntax
of �. We concentrate on the time-bounded until operator, i.e., the proof obligation is to establish:

s�c s
′ implies Pr(s,� U�t �) � Pr(s′,� U�t �), (9)

given that Sat(�) and Sat(�) are upward-closed w.r.t. �c. As in the proofs of Theorems 54 and 55
the interesting case is s, s′ ∈ Sat(�) and s, s′ �∈ Sat(�).

Remark. The initial proof idea for establishing (9) is to resort to the embedded uniformized CTMC
of C, using the result that:

PrC(s,� U�t �) = e−E·t ·
∞∑
k=0

(E·t)k
k! · PrD(s,� U�k �), (10)

where D is the embedded DTMC of unif (C) and � U�k � means that � can be reached within at
most k steps via a �-path (for natural k) [35]. The advantage of this approach would be that the
remaining proof obligation:

s�c s
′ implies PrD(s,� U�k �) � PrD(s′,� U�k �), for any k (11)

could be verified by considering the discrete-time behaviour of the CTMC only. Whereas the proof
of Eq. (10) is rather straightforward, (11) turns out to be wrong. This is illustrated by the following
(uniformized) CTMC C:

where only the absorbing state is labeled by proposition b. It is not difficult to check that s�c s
′.

Indeed it follows that

PrC(s,♦�t b) � PrC(s′,♦�t b)for any real time instant t.

However, Premb(C)(s,♦�k b) = 7
16 �� 3

8 = Premb(C)(s′,♦�k b) for k = 3. This contradicts (11). Thus, this
initial proof attempt fails and we have to consider an alternative route.

We prove (9) therefore in a different way. In some sense, our argumentation is similar to the proof
technique for the preservation for CSL\X and weak bisimulation (cf. Theorem 53). The rough idea

198 C. Baier et al. / Information and Computation 200 (2005) 149–214

is to replace C by a CTMC C′ which results from C by adding self-loops.6 Given two states s1 and s2
in C with s1�c s2 and a partitioning 1, U1, V1, 2, U2, V2, � as in Definition 39 we modify s1 and s2
by adding self-loops such that

• the probability q2 for the additional self-loop at state s1 equals the probability for s2 to move to
a V2-state,

• the probability q1 for the additional self-loop at state s2 equals the probability for s1 to move to
a V1-state,

• the probabilities for s1 and s2 to move to U1 resp. U2 are the same (i.e. K1 = K2 = K for the
modified states),

• the total rate to move from s1 to a U1-state is at most the total rate to move from s2 to a U2-state.

Thus, s1 and s2 are modified such that a CTMC is obtained with the following structure:

The underlying idea behind this transformation is that the stutter-transitions s2 → v2 ∈ V2 can be
mimicked by the additional self-loop s1 → s1, and vice versa, the self-loop s2 → s2 simulates the
stutter-steps s1 → v1 ∈ V1. We then can continue similar to the proof of Theorem 55 and show by
inductive arguments that

PrC
′
(s1,� U�t �) � PrC

′
(s2,� U�t �).

On the other hand, adding a self-loop (with arbitrary rate) does not change the weak bisimulation
equivalence class, and hence, does not change the probabilities of the CSL\X -path formulae (cf.
Theorem 53):

PrC(s,� U�t �) = PrC
′
(s,� U�t �)

6 This step can be seen as the analogue to the switch from C to unif (C). However, the definition of C′ is much more
complicated than unif (C).

C. Baier et al. / Information and Computation 200 (2005) 149–214 199

for all states s. Putting things together, we obtain

PrC(s1,� U�t �) � PrC(s2,� U�t �).

These are the underlying proof ideas. In fact, we have to workwith several copies of the states and
work with transitions leading from a copy of s1 to several copies of s1 (instead of simply adding self-
loops). Before we present the details of these transformations, we make the following simplifying
assumptions:

(A1) As CSL\X -satisfaction on C and on unif (C) agrees (cf. Proposition 51), we may assume that
the exit rate of any state in C equals E. For the sake of simplicity let

E = E(s) = 1 for all states s ∈ S

in the sequel. (In particular, C does not have absorbing states.)
(A2) For technical reasons, we assume that CTMC C does not have any self-loops, i.e., R(s, s) = 0

for all states s. This assumption just simplifies the formulae for the rates in themodifiedCTMC
C′ and is not a real restriction: any self-loop s → s in C can be replaced by s → s′ and s′ → s

where s′ is a fresh copy of s. This transformation does not affect [s]∼c .
(A3) For any pair 〈s1, s2〉 of states in C with s1 �c s2, we fix functions 1 =

〈s1,s2〉
1 , 2 =

〈s1,s2〉
2 and a

weight function � = �〈s1,s2〉 as in Definition 39. Furthermore, U1, U2, V1, V2, K1, K2 are as in
Definition 39. In particular, we have:

K1 � K2

because C is uniformized.7

To simplify the formulae for the transition probabilities and rates in the modified CTMC
C′, we assume that i is the characteristic function of Ui . In particular, Ui ∩ Vi = ∅. Again,
this is a harmless restriction because we may split any state w ∈ Ui ∩ Vi into two copies: one
copy wU belongs to Ui, the other copy wV one to Vi . Then, the incoming transition si → w

has to be split into the transitions si → wU with rate i(w) · R(si,w) and si → wV with rate
(1− i(w)) · R(si,w). This transformation does not affect [si]∼c .

Let C = (S ,R,L) be the original CTMC as before. We replace C by a “state-wise” weakly bisim-
ulation equivalent uniformized CTMC C′ = (S ′,R′,L′). The states of this transformed CTMC C′
are of the form 〈s1, s2, i〉 with i = 1, 2 and s1�c s2. Intuitively, the new state 〈s1, s2, i〉 is a copy of the
original state si up to additional transitions inside [si]≈c . For technical reasons, also the original
states of C belong to C′. Thus, we define the state space S ′ by:

S ′ = {〈s1, s2〉 | s1, s2 ∈ S. s1�c s2
}× { 1, 2 } ∪ S

(where we assume that none of the states in S has the form 〈s1, s2, i〉 for i=1, 2). The labeling function
L′ in C′ labels state 〈s1, s2, 1〉 with the same atomic propositions as s1, while the labeling of 〈s1, s2, 2〉
agrees with the labeling of s2:

7 The sets U1, U2, V1, V2 as well as K1, K2 depend on 〈s1, s2〉. Thus, it would be more precise to write U 〈s1,s2〉
1 , U 〈s1,s2〉

2 , etc.
Because in the sequel, we only use these components for a fixed pair 〈s1, s2〉, we omit these parameters.

200 C. Baier et al. / Information and Computation 200 (2005) 149–214

L′(〈s1, s2, i〉) = L(s1) = L(s2), i = 1, 2.

The original states are unchanged, i.e., L′(s) = L(s) for all states s ∈ S .
Below, the structure of the outgoing transitions from the states 〈s1, s2, 1〉 and 〈s1, s2, 2〉 is depicted:

The total rate for the transitions of state 〈s1, s2, 1〉 to the auxiliary copies of s1 for the V2-states
(i.e., the states 〈s1, v2, 1〉) is given by:

� =
{(

1
K2

− 1
)

· K1 if K2 /= 0,

0 otherwise.

The total rate for the transitions from 〈s1, s2, 2〉 to the states 〈v1, s2, 2〉 is defined as:

� =
{(

1
K1

− 1
)

· K2 if K1 /= 0,

0 otherwise.

Here, Ki = K
<s1,s2>
i as in assumption (A3). Note that � = � = 0 if K1 = 0.

The rates of the original states s ∈ S are as in C, i.e., R′(s,w) = R(s,w) for all s, w ∈ S and
R′(s, 〈w1,w2, i〉) = 0 for all s ∈ S and 〈w1,w2, i〉 ∈ S ′ \ S . The rates of the outgoing transitions from
states 〈s1, s2, 1〉 and 〈s1, s2, 2〉 are defined with the help of the componentsUi, Vi,Ki,� (cf. assumption
(A3)). The rates for state 〈s1, s2, 2〉 are defined as follows:

• For K1 = 0 (i.e., U1 = ∅), we depart from the informal explanations above and define 〈s1, s2, 2〉
to be a proper copy of s2, i.e., for all w ∈ S ′:

R′(〈s1, s2, 2〉,w) = R′(s2,w).

C. Baier et al. / Information and Computation 200 (2005) 149–214 201

• For K1 > 0 (i.e., U1 �= ∅) let ui ∈ Ui, vi ∈ Vi, i = 1, 2, and:

R′
(
〈s1, s2, 2〉, 〈u1, u2, 2〉

)
= K2 · �(u1, u2),

R′
(
〈s1, s2, 2〉, 〈s1, v2, 2〉

)
= P(s2, v2).

If K1 = 1 then V1 = ∅ and there is no need to insert auxiliary transitions from state 〈s1, s2, 2〉. For
0 < K1 < 1, let:8

R′(〈s1, s2, 2〉, 〈v1, s2, 2〉) = � · P(s1, v1)
1−K1

, for v1 ∈ V1.

In all remaining cases, let R′(〈s1, s2, 2〉,w) = 0.

The rates for state 〈s1, s2, 1〉 are defined as follows:

• For K1 > 0, u1 ∈ U1, u2 ∈ U2 and v1 ∈ V1 let:

R′
(
〈s1, s2, 1〉, 〈u1, u2, 1〉

)
= K1 · �(u1, u2).

R′
(
〈s1, s2, 1〉, 〈v1, s2, 1〉

)
= P(s1, v1).

If K1 > 0 and K2 < 1:

R′(〈s1, s2, 1〉, 〈s1, v2, 1〉) = � · P(s2, v2)
1−K2

, for v2 ∈ V2.

Let R′(〈s1, s2, 1〉,w) = 0 in all cases not mentioned so far. For K2 = 1 we have V2 = ∅, and hence,
no auxiliary stutter transitions from 〈s1, s2, 1〉 are needed.

• If K1 = 0, let

R′(〈s1, s2, 1〉, 〈v1, s2, 1〉) = P(s1, v1)

for all v1 ∈ V1 and R′(〈s1, s2, 1〉,w) = 0 for all other states w.

As K1 � K2, the cases K2 = 0 ∧ K1 > 0 and K2 < 1 ∧ K1 = 1 are impossible. This explains the
asymmetry in the definition of the rate matrix of C′.
The following two lemmas determine the exit rates in C′, and the transition probabilities, respec-

tively.

Lemma 57. The exit-rates of states 〈s1, s2, 1〉 and 〈s1, s2, 2〉 in C′ are:
E′(〈s1, s2, 1〉) = 1+ � � 1+ � = E′(〈s1, s2, 2〉)

8 Note that only the following formula has to be modified if C contains self-loops: the rate for the self-loop s1 → s1 if
v1 = s1 needs to be added.

202 C. Baier et al. / Information and Computation 200 (2005) 149–214

Proof. If K1 = 0 then, by definition of � and �, � = � = 0. In this case, the total rates of 〈s1, s2, i〉
agree: E(s1) = E(s2) = 1. (Recall that all states in C have the total rate E = 1.) Assume K1 > 0. For
K2 < 1 we derive:

E′(〈s1, s2, 1〉) =
∑
v2∈V2

� · P(s2, v2)
1− K2

+
∑

u1∈U1,u2∈U2

K1 · �(u1, u2)︸ ︷︷ ︸
=P(s1,U1)=K1

+
∑
v1∈V1

P(s1, v1)︸ ︷︷ ︸
=P(s1,V1)=1−K1

= � · 1
1− K2

·
∑
v2∈V2

P(s2, v2)︸ ︷︷ ︸
=P(s2,V2)=1−K2

+ K1 + (1− K1)

= � · 1
1− K2

· (1− K2) + 1

= � + 1.

For K2 = 1 we immediately obtain that

E′(〈s1, s2, 1〉) = P(s1,U1) + P(s1, V1) = 1 = 1+ �

as � = 0. Similarly, we get: E′(〈s1, s2, 2〉) = 1+ �.
Because of the rate condition we have K1 � K2, and hence, 1/K2 � 1/K1, if K1 > 0. Therefore

� =
(1

K2︸︷︷︸
� 1

K1

−1
)

· K1︸︷︷︸
�K2

�
(1
K1

− 1
)

· K2 = �. �

We now show that there is a state-wise correspondence between the successors of 〈s1, s2, 1〉 and
〈s1, s2, 2〉.
Lemma 58. For all states 〈s1, s2, i〉 and 〈w1,w2, i〉 with i=1, 2 in C′ where K1 = K

<s1,s2>
1 > 0 :

P ′(〈s1, s2, 1〉, 〈w1,w2, 1〉) = P ′(〈s1, s2, 2〉, 〈w1,w2, 2〉).

Proof. By assumption K1 > 0, and hence (as K1 � K2), K2 > 0. We first consider the stutter-transi-
tions to the V -states. The total probability for 〈s1, s2, 1〉 to move to 〈v1, s2, 1〉 is:

P ′(〈s1, s2, 1〉, 〈v1, s2, 1〉) = P(s1, v1)
1+ �

= P(s1, v1)
1+ (1/K2 − 1)K1

= K2 · P(s1, v1)
K2 + (1− K2)K1

= K2 · P(s1, v1)
K2 + K1 − K2 · K1

C. Baier et al. / Information and Computation 200 (2005) 149–214 203

This equals the probability for moving from 〈s1, s2, 2〉 to 〈v1, s2, 2〉, as for 0 < K1 < 1:

P ′(〈s1, s2, 2〉, 〈v1, s2, 2〉) = P(s1, v1)
1− K1

· �

1+ �
= P(s1, v1)

1− K1
· (1− K1)K2

K1 + (1− K1)K2

= P(s1, v1) · K2

K1 + (1− K1)K2
= K2 · P(s1, v1)

K1 + K2 − K1 · K2
.

Note that the assumption v1 ∈ V1 implies V1 �= ∅, and hence, K1 < 1. Similarly, the probability for
the auxiliary transition from 〈s1, s2, 1〉 to 〈s1, v2, 1〉 coincides with the probability for 〈s1, s2, 2〉 tomove
to 〈s1, v2, 2〉. Thus, for all v1 ∈ V1 and v2 ∈ V2:

P ′(〈s1, s2, 1〉, 〈v1, s2, 1〉) = P ′(〈s1, s2, 2〉, 〈v1, s2, 2〉),

P ′(〈s1, s2, 1〉, 〈s1, v2, 1〉) = P ′(〈s1, s2, 2〉, 〈s1, v2, 2〉).
Now consider the “visible” transitions to theU -states. The probability for 〈s1, s2, 1〉 to move to state
〈u1, u2, 1〉 (where ui ∈ Ui) is:

P ′(〈s1, s2, 1〉, 〈u1, u2, 1〉) = K1 · �(u1, u2)
1+ �

= K1 · �(u1, u2)
1+ (1/K2 − 1)K1

,

= K1 · K2 · �(u1, u2)
K2 + (1− K2)K1

= K1 · K2 · �(u1, u2)
K2 + K1 − K2 · K1

.

The probability for 〈s1, s2, 2〉 to go to 〈u1, u2, 2〉 (where u1 ∈ U1 and u2 ∈ U2) is:

P ′(〈s1, s2, 2〉, 〈u1, u2, 2〉) = K2 · �(u1, u2)
1+ �

= K2 · �(u1, u2)
1+ (1/K1 − 1)K2

= K1 · K2 · �(u1, u2)
K1 + (1− K1)K2

= K1 · K2 · �(u1, u2)
K1 + K2 − K1 · K2

.

So, P ′(〈s1, s2, 1〉, 〈u1, u2, 1〉) = P ′(〈s1, s2, 2〉, 〈u1, u2, 2〉). Note that implicitlyU1,U2 /= ∅ as we assumed
u1 ∈ U1 and u2 ∈ U2. Hence, K1 > 0 and K2 > 0. �
According to the following result, the original CTMC C and its transformed variant C′ are weak

bisimilar (≈c):

Lemma 59. For all s1, s2 in C with s1�c s2 : si ≈c 〈s1, s2, i〉 for i=1, 2.

Proof. Let R be the coarsest equivalence on S ′ which identifies the states si and 〈s1, s2, i〉. We show
that R is a weak bisimulation on C′. (Recall that C is a sub-CTMC of C′.)
The labeling condition is clear. It remains to show the rate condition. For this, it suffices to prove

that for all equivalence classes C ∈ S ′/R:

(I) If s1, s2 ∈ S with s1 /∈ C and s1�c s2 then R′(s1,C) = R′(〈s1, s2, 1〉,C).

204 C. Baier et al. / Information and Computation 200 (2005) 149–214

(II) If s1, s2 ∈ S with s2 /∈ C and s1�c s2 then R′(s2,C) = R′(〈s1, s2, 2〉,C).

We provide the proof of (I). (II) can be shown with similar arguments. As s1 /∈ C and as R identifies
all states of the form 〈s1,w, 1〉 with s1, none of the states 〈s1, v2, 1〉 belongs to C . Hence,

R′(〈s1, s2, 1〉,C)

=
∑

u1∈U1,u2∈U2〈u1,u2,1〉∈C

R′(〈s1, s2, 1〉, 〈u1, u2, 1〉) +
∑
v1∈V1〈v1,s2,1〉∈C

R′(〈s1, s2, 1〉, 〈v1, s2, 1〉)

=
∑

u1∈U1,u2∈U2〈u1,u2,1〉∈C

K1 · �(u1, u2) +
∑
v1∈V1〈v1,s2,1〉∈C

P(s1, v1)

=
∑

u1∈U1∩C

u2∈U2

K1 · �(u1, u2) +
∑

v1∈V1∩C

P(s1, v1)

=
∑

u1∈U1∩C

K1 ·
∑

u2∈U2

�(u1, u2)︸ ︷︷ ︸
=P(s1,u1)=R(s1,u1)

+ P(s1, V1 ∩ C)︸ ︷︷ ︸
=R(s1,V1∩C)

= R(s1,U1 ∩ C) + R(s1, V1 ∩ C)

= R(s1,C) = R′(s1,C).

Recall that E(s1) = 1. Hence, R(s1,w) = P(s1,w). Moreover, R(s1,w) = R′(s1,w) for all states
w ∈ S . �
By the preservation result for CSL\X and ≈c (cf. Theorem 53), the transformation from C to C′

leaves the probabilities for time-bounded until-formulae invariant:

Lemma 60. For all s1, s2 in C with s1 �c s2 :
PrC(si,� U�t �) = PrC

′
(〈s1, s2, i〉,� U�t �).

Due to this result, it suffices to establish

PrC
′
(〈s1, s2, 1〉,� U�t �) � PrC

′
(〈s1, s2, 2〉,� U�t �).

in order to prove the obligation (9).

Remark. If K<s1,s2>
1 > 0 for all s1, s2 in C with s1 �c s2, we have 〈s1, s2, 1〉�c 〈s1, s2, 2〉. This follows

from the observation that the relation

R = {
(〈s1, s2, 1〉, 〈s1, s2, 2〉) | s1, s2 ∈ S. s1�c s2

}

C. Baier et al. / Information and Computation 200 (2005) 149–214 205

is a strong simulation for C′ (provided that all Ki’s are non-zero!). This can be seen as follows. The
labeling condition is obvious. A weight function for (〈s1, s2, 1〉, 〈s1, s2, 2〉) is obtained by

�(〈w1,w2, 1〉, 〈w1,w2, 2〉) = P ′(〈s1, s2, 1〉, 〈w1,w2, 1〉)
Lemma 58= P ′(〈s1, s2, 2〉, 〈w1,w2, 2〉)

The rate condition was shown in Lemma 57. Hence, in this particular case, we may apply the pres-
ervation result for CSL-liveness formulae and strong simulation (cf. Theorem 55) to obtain that

PrC
′
(〈s1, s2, 1〉,� U�t �) � PrC

′
(〈s1, s2, 2〉,� U�t �).

However, as we allow for K<s1,s2>
1 = 0, in general, state 〈s1, s2, 1〉 does not strongly simulate 〈s1, s2, 2〉

(we only have 〈s1, s2, 1〉�c 〈s1, s2, 2〉). Thus, we cannot simply apply Theorem 55 to prove the fol-
lowing lemma.

Lemma 61. For all s1, s2 in C with s1 �c s2 and CSL\X -live formulae � and � such that Sat(�) and
Sat(�) are upward-closed w.r.t. �c :

PrC
′
(〈s1, s2, 1〉,� U�t �) � PrC

′
(〈s1, s2, 2〉,� U�t �).

Proof. In essence, our argumentation is similar to the proof of Theorem 55. However, there are
some technical differences.
For s in C′, let p(s, t, n) denotes the probability to reach a �-state via �-states within n (n � 0)

steps and time-bound t from state s. And let

p(s, t,∞) = lim
n→∞ p(s, t, n) = PrC

′
(s,� U�t �).

Instead of proving p(〈s1, s2, 1〉, t, n) � p(〈s1, s2, 2〉, t, n) as in the proof of Theorem 55, we establish

p(〈s1, s2, 1〉, t, n) � p(〈s1, s2, 2〉, t,∞) (12)

for all states s1, s2 in the original CTMC C with s1�c s2. As in the proof of Theorem 55 the case
〈s1, s2, i〉 ∈ Sat(�) \ Sat(�) (for i=1, 2) is of interest. The proof is by induction on n. The basis of
induction is clear, as

p(〈s1, s2, 1〉, t, 0) = 0 � p(〈s1, s2, 2〉, t,∞).

Consider the induction step n &⇒ n+1. We first consider the case where

K1 = K
<s1,s2>
1 > 0.

Similar to the argumentation in the proof of Theorem 55, we first replace the faster state 〈s1, s2, 2〉
by a slower copy 〈s1, s2, 2, slow 〉 with total rate9

E′(〈s1, s2, 2, slow 〉) = E′(〈s1, s2, 1〉) = 1+ �

9 In the proof of Theorem 55 we did the converse and replaced the slower state by a faster copy, but this is not relevant.

206 C. Baier et al. / Information and Computation 200 (2005) 149–214

and, for all states w ∈ S ′,

P ′(〈s1, s2, 2, slow〉,w) = P ′(〈s1, s2, 2〉,w).

As state 〈s1, s2, 2, slow〉 is slower than 〈s1, s2, 2〉 (but has the same transition probabilities), we obtain:

p(〈s1, s2, 2, slow〉, t,∞) � p(〈s1, s2, 2〉, t,∞).

The induction hypothesis yields that

p(〈s1, v2, 1〉, y , n) � p(〈s1, v2, 2〉, y ,∞),
p(〈v1, s2, 1〉, y , n) � p(〈v1, s2, 2〉, y ,∞),
p(〈u1, u2, 1〉, y , n) � p(〈u1, u2, 2〉, y ,∞)

for any real number y � 0 and states v1 ∈ V1, v2 ∈ V2 and all states u1 ∈ U1, u2 ∈ U2 where�(u1, u2) >

0. Hence, we get:

p(〈s1, s2, 2〉, t,∞)

� p(〈s1, s2, 2, slow〉, t,∞)

=
∑
w∈S ′

E′(〈s1, s2, 2, slow〉)︸ ︷︷ ︸
1+�

·P ′(〈s1, s2, 2〉,w) ·
∫ t

0
e−(1+�)x · p(w, t−x,∞) dx

=
∑
v1∈V1

(1+ �) · P ′(〈s1, s2, 2〉, 〈v1, s2, 2〉)︸ ︷︷ ︸
=P ′(〈s1,s2,1〉,〈v1,s2,1〉)

·
∫ t

0
e−(1+�)x · p(〈v1, s2, 2〉, t−x,∞)︸ ︷︷ ︸

�p(〈v1,s2,1〉,t−x,n)

dx

+
∑
v2∈V2

(1+ �) · P ′(〈s1, s2, 2〉, 〈s1, v2, 2〉)︸ ︷︷ ︸
=P ′(〈s1,s2,1〉,〈s1,v2,1〉)

·
∫ t

0
e−(1+�)x · p(〈s1, v2, 2〉, t−x,∞)︸ ︷︷ ︸

�p(〈s1,v2,1〉,t−x,n)

dx

+
∑
u2∈U2
u1∈U1

(1+ �) · P ′(〈s1, s2, 2〉, 〈u1, u2, 2〉)︸ ︷︷ ︸
=P ′(〈s1,s2,1〉,〈u1,u2,1〉)

·
∫ t

0
e−(1+�)x · p(〈u1, u2, 2〉, t−x,∞)︸ ︷︷ ︸

�p(〈u1,u2,1〉,t−x,n)

dx

�
∑
v1∈V1

(1+ �) · P ′(〈s1, s2, 1〉, 〈v1, s2, 1〉) ·
∫ t

0
e−(1+�)x · p(〈v1, s2, 1〉, t−x, n) dx

+
∑
v2∈V2

(1+ �) · P ′(〈s1, s2, 1〉, 〈s1, v2, 1〉) ·
∫ t

0
e−(1+�)x · p(〈s1, v2, 1〉, t−x, n) dx

+
∑
u2∈U2
u1∈U1

(1+ �) · P ′(〈s1, s2, 1〉, 〈u1, u2, 1〉) ·
∫ t

0
e−(1+�)x · p(〈u1, u2, 1〉, t−x, n) dx

= p(〈s1, s2, 1〉, t, n+1).

C. Baier et al. / Information and Computation 200 (2005) 149–214 207

It remains to discuss the case K1 = K
〈s1,s2〉
1 = 0. Then, we have � = 0, U1 = ∅ and Post(s1) = V1.

Hence,

E′(〈s1, s2, 1〉) = 1. (13)

Moreover, we obtain by the induction hypothesis and by Lemma 60:

p(〈v1, s2, 1〉, t, n)
ind. hypo.

� p(〈v1, s2, 2〉, t,∞)

Lemma 60= p(s2, t,∞).

Therefore:

p(〈s1, s2, 1〉, t, n + 1)

(13)=
∫ t

0

∑
v1∈V1

P ′(〈s1, s2, 1〉, 〈v1, s2, 1〉) · e−x · p(〈v1, s2, 1〉, t, n)︸ ︷︷ ︸
� p(s2, t,∞), see above

dx

�
∫ t

0

∑
v1∈V1

P ′(〈s1, s2, 1〉, 〈v1, s2, 1〉) · e−x · p(s2, t,∞) dx

= p(s2, t,∞) ·
∑
v1∈V1

P ′(〈s1, s2, 1〉, 〈v1, s2, 1〉)︸ ︷︷ ︸
= 1, as V1 = Post(s1)

·
∫ t

0
e−x dx︸ ︷︷ ︸

= 1− e−t

= p(s2, t,∞) · (1− e−t)

� p(s2, t,∞)

Lemma 60= p(〈s1, s2, 2〉, t,∞).

With n → ∞ in (12) we get the desired result. �
Combining Lemma 61 and Lemma 60 yields the claim (9):

Lemma 62. Let � and � be CSL\X -formulae such that Sat(�) and Sat(�) are upward-closed wrt.�c.

Then, for all s1 and s2 in C :
s1�c s2 implies Pr(s1,� U�t �) � Pr(s2,� U�t �).

Proof. Using the results above and defined transformations we derive:

PrC(s1,� U�t �)

Lemma 60= PrC
′
(〈s1, s2, 1〉,� U�t �)

208 C. Baier et al. / Information and Computation 200 (2005) 149–214

Lemma 61
� PrC

′
(〈s1, s2, 2〉,� U�t �)

Lemma 60= PrC(s2,� U�t �). �

Lemma 62 completes the proof of Theorem 56.

Theorem 63. For any FPS:�d ⊆ �safe

PCTL\X and �d ⊆ �live

PCTL\X .

Proof. (Sketch). As for the continuous case, it suffices to show for s1, s2 in FPS D:

s1�d s2 implies Pr(s1,� U �) � Pr(s2,� U �),

provided that � and � are PCTL\X -formulae with upward-closed satisfaction sets w.r.t. �d .
Note that the approach for proving the correspondence between �d and �live

PCTL
(cf. Theorem 54)

does not work as – in analogy to Remark 4.6 – it is possible that

if s1�d s2 then p(s1, n) > p(s2, n),

where p(s, n) denotes the probability for paths of length at most n starting in s that fulfill � U �.
Instead, we use an argument similar to that for establishing the relation between�c and�live

CSL\X .

More precisely, we modify D = (S ,P ,L) into the FPS D′ = (S ′,P ′,L′) that is “state-wise” weakly
bisimilar to D such that for the copies s′1, s

′
2 of the states s1 and s2 in D:

s1�d s2 implies pD′
(s′1, n) � pD′

(s′2, n).

The transformation from D into D′ is similar to the transformation for CTMCs used before. Let

S ′ = { 〈s1, s2, i〉 : s1, s2 ∈ S , s1�d s2,
}× { 1, 2 } ∪ S ,

where 〈s1, s2, i〉 can be viewed as a copy of si . L′ is defined as in the continuous case, i.e., L′(〈s1, s2, i〉) =
L(si). The probability matrix P ′ of D′ is obtained as follows. Let s1, s2 ∈ D with s1 �d s2. Assume
that Ui, Vi,Ki,� are the components as in Definition 34 with R =�d . For K1 = 0, all successors of
s1 belong to V1. Hence, all states in Post(s1) are simulated by s2. In this case, no real modification is
needed and we put

P ′(〈s1, s2, 1〉, 〈v1, s2, 1〉) = P(s1, v1) and P ′(〈s1, s2, 2〉, 〈s1,w, 2〉) = P(s2,w)

for all states v1 ∈ V1 and w ∈ Post(s2) and P ′(〈s1, s2, i〉, ·) = 0 in the remaining cases. The definition
for K2 = 0 is similar and omitted here.
Now consider K1 > 0 and K2 > 0. As before, to simplify matters, let i be the characteristic

function of Ui (i.e., any successor state of si either belongs to Ui or to Vi). Let

C. Baier et al. / Information and Computation 200 (2005) 149–214 209

H = (1− K1) · K2

K1
and M = (1− K2) · K1

K2

and for v2 ∈ V2, v1 ∈ V1 and u1 ∈ U1, u2 ∈ U2:

P ′(〈s1, s2, 1〉, 〈v1, s2, 1〉) = P(s1, v1)
1+ M

,

P ′(〈s1, s2, 1〉, 〈u1, u2, 1〉) = K1 · �(u1, u2)
1+ M

,

P ′(〈s1, s2, 1〉, 〈s1, v2, 1〉) = M

1+ M
· P(s2, v2)
1− K2

.

The transition probabilities for state 〈s1, s2, 2〉 are defined similarly. Then,

P ′(〈s1, s2, 1〉,⊥) = P(s1,⊥)

1+ M
and P ′(〈s1, s2, 2〉,⊥) = P(s2,⊥)

1+ H
.

We now have:

P ′(〈s1, s2, 1〉, 〈s1, v2, 1〉) = P ′(〈s1, s2, 2〉, 〈s1, v2, 2〉)
P ′(〈s1, s2, 1〉, 〈v1, s2, 1〉) = P ′(〈s1, s2, 2〉, 〈v1, s2, 2〉)

nP ′(〈s1, s2, 1〉, 〈u1, u2, 1〉) = P ′(〈s1, s2, 2〉, 〈u1, u2, 2〉).

Moreover, state si is weakly bisimilar to state 〈s1, s2, i〉. Hence, by Theorem 50:

PrD(si,� U �) = PrD
′
(〈s1, s2, i〉,� U �).

The rest of the argument is similar to the the proof of Theorem 56 and is omitted here. �

5. Summary and conclusions

This section summarizes the main results in this paper and concludes.

5.1. The branching-time spectrum

Summarizing the results obtained and summarized in this paper yields the three-dimensional
spectrum of branching-time relations for Markov chains as depicted as follows:

210 C. Baier et al. / Information and Computation 200 (2005) 149–214

All strong bisimulation relations are clearly contained within their weak variants, i.e.,∼d ⊆ ≈d and
∼c ⊆ ≈c. The plane in the “front” (black arrows) represents the continuous-time setting, whereas
the plane in the “back” (light blue or gray arrows) represents the discrete-time setting. Arrows
connecting the two planes (red or dark gray) relate CTMCs and their embedded DTMCs. R −→ R′
means that R is finer than R′, while R �−→ R′ means that R is not finer than R′. The dashed arrows
in the continuous setting refer to uniformized CTMCs, i.e., if there is a dashed arrow from R to
R′, R is finer than R′ for uniformized CTMCs. In the discrete-time setting the dashed arrows re-
fer to DTMCs without absorbing states. Note that these models are obtained as embeddings of
uniformized CTMCs (except for the pathological CTMC where all exit rates are 0, in which case
all relations in the picture agree). If a solid arrow is labeled with a question mark, we claim the
result, but have no proof (yet). For negated dashed arrows with a question mark, we claim that the
implication does not hold even for uniformized CTMCs (respectively DTMCs without absorbing
states). The only difference between the discrete and continuous setting is that weak and strong
bisimulation equivalence agree for uniformized CTMCs, but not for DTMCs without absorbing
states.

Remark. The weak bisimulation proposed in [3] is strictly coarser than ≈d , and thus does not
preserve ≡PCTL\X . The ordinary, non-probabilistic branching-time spectrum is more diverse, be-
cause there are many different weak bisimulation-style equivalences [30]. In the setting considered
here, the spectrum spanned by Milner-style observational equivalence and branching bisimula-
tion equivalence collapses to a single “weak bisimulation equivalence” [9]. Another difference

C. Baier et al. / Information and Computation 200 (2005) 149–214 211

is that for ordinary transition systems, simulation equivalence is strictly coarser than bisimula-
tion equivalence. Further, in this non-probabilistic setting weak relations have to be augmented
with aspects of divergence to obtain a logical characterization by CTL\X [21]. In the probabilis-
tic setting, divergence occurs with probability 0 or 1, and does not need any distinguished treat-
ment.

Decision algorithms. For the sake of completeness, we briefly summarize the various decision
algorithms that exist for the (bi)simulation relations considered here. Checking strong bisimula-
tion on Markov chains can be done in time O(m· log n), where n is the number of states and m is
the number of transitions [22]. This algorithm can also be employed for ≈c. In the discrete-time
case, checking ∼d takes O(m· log n) time [40], whereas ≈d take O(n3) time [9]. The computation
of �d can be reduced to a maximum flow problem [7] and has a worst case time complexity of
O((m·n6+m2·n3)/ log n). The same technique can be applied for computing �c. A polynomial-time
algorithm for computing �c (and �d) of a finite-state Markov chain was recently presented in [10].
The crux of this algorithm is to consider the check whether a state weakly simulates another one as
a linear programming problem.

5.2. Concluding remarks

This paper has explored the spectrum of strong and weak (bi)simulation relations for countable
fully probabilistic systems as well as continuous-timeMarkov chains. Based on a cascade of defini-
tions in a uniform style, we have studied strong andweak (bi)simulations, and have provided logical
characterizations in terms of fragments of PCTL and CSL. The definitions of the (bi)simulation
relations have three ingredients: (1) a condition on the labeling of states with atomic propositions,
(2) a time-abstract condition on the probabilistic behaviour, and (3) a model-dependent condition:
a rate condition for CTMCs (on the exit rates in the strong case, and on the total rates of “visible”
moves in the weak case), and a reachability condition on the “visible” moves in the weak FPS case.
The strong FPS case does not require a third condition.
As the rate conditions imply the corresponding reachability condition, the “continuous” relations

are finer than their “discrete” counterparts, and the continuous-time setting excludes the possibility
to abstract from stuttering occurring with probability one.10 While weak bisimulation in CTMCs
(and FPSs) is a rather fine notion, it is the best abstraction preserving all properties that can be
specified in CSL (PCTL) without next.
Issues for future work are the extension of this comparative semantics study towards models that

exhibit both non-determinism and probabilities. As the models (and the (bi)simulation relations)
in this setting are more diverse, this is non-trivial. Initial attempts towards such comparative stud-
ies can be found in [55] that compare simple probabilistic automata and alternating probabilistic
transition systems. Another topic for future work is to complete the branching-time spectrum for
Markov chains by proving the following conjectures: �d coincides with �safe

PCTL\X and �live

PCTL\X , and
�c coincides with �safe

CSL\X and �live

CSL\X .

10 In process-algebraic terminology, the reachability condition guarantees the law 1.P = P for FPS. This law cannot
hold for CTMCs due to the advance of time while stuttering (performing 1).

212 C. Baier et al. / Information and Computation 200 (2005) 149–214

Acknowledgments

The authors thank an anonymous reviewer for many helpful comments. The co-operation be-
tween the research groups in Bonn, Saarbrücken and Twente takes place as part of the Validation of
Stochastic Systems (VOSS) project, funded by the Dutch NWO and the German Research Council
DFG.

References

[1] M. Abadi, L. Lamport, The existence of refinement mappings, in: IEEE Symposium on Logic in Computer Science,
1988, pp. 165–175.

[2] L. de Alfaro, Temporal logics for the specification of performance and reliability, in: Symposium on Theorical
Aspects of Computer Science,Lecture Notes in Computer Science, vol. 1200, 1997, pp. 165–176.

[3] S. Andova, J. Baeten, Abstraction in Probabilisticprocess algebra, in: Tools and Algorithms for the Construction
and Analysis of Systems, Lecture Notes in Computer Science, vol. 2031, 2001, pp. 204–219.

[4] A. Aziz, V. Singhal, F. Balarin, R. Brayton, A. Sangiovanni-Vincentelli, It usually works: the temporal logic of
stochastic systems, in: Computer-Aided Verification. Lecture Notes in Computer Science, vol. 939, 1995, pp. 155–
165.

[5] A. Aziz, K. Sanwal, V. Singhal, R. Brayton, Model checking continuous time Markov chains, ACM Trans. Comput.
Logic 1 (1) (2000) 162–170.

[6] C. Baier, On algorithmic verificationmethods for probabilistic systems. Habilitation thesis, University ofMannheim,
1998.

[7] C. Baier, B. Engelen, M. Majster-Cederbaum, Deciding bisimilarity and similarity for probabilistic processes, J.
Comp. System Sci. 60 (1) (2000) 187–231.

[8] C. Baier, B.R. Haverkort, H. Hermanns, J.-P. Katoen, Model-checking algorithms for continuous-time Markov
chains, IEEE Trans. Software Eng. 29 (6) (2003) 524–541.

[9] C. Baier,H.Hermanns,Weak bisimulation for fully probabilistic processes, in: Computer-AidedVerification, Lecture
Notes in Computer Science, vol. 1254, 1997, pp. 119–130.

[10] C. Baier, H. Hermanns, J.-P. Katoen, Probabilistic weak simulation is decidable in polynomial time, Inf. Proc. Lett.
89 (3) (2004) 123–130.

[11] C. Baier, H. Hermanns, J.-P. Katoen, V. Wolf, Comparative branching-time semantics for Markov chains, in: Con-
currency Theory, Lecture Notes in Computer Science, vol. 2761, 2003, pp. 492–508.

[12] C. Baier, J.-P. Katoen, H. Hermanns, B. Haverkort, Simulation for continuous-timeMarkov chains, in: Concurrency
Theory, Lecture Notes in Computer Science, vol. 2421, 2002, 338–354.

[13] C. Baier, J.-P. Katoen, H. Hermanns, Approximate symbolic model checking of continuous-time Markov chains,
Concurrency Theory, Lecture Notes in Computer Science, vol. 1664, 1999, pp. 146–162.

[14] C. Baier, M.Z. Kwiatkowska, Model checking for a probabilistic branching time logic with fairness, Distr. Comput.
11 (1998) 125–155.

[15] M.Bernardo,R.Gorrieri, ExtendedMarkovian process algebra, in: ConcurrencyTheory, LectureNotes inComputer
Science, vol. 1119, 1996, pp. 315–330.

[16] M. Bernardo, R. Cleaveland, A theory of testing for Markovian processes, in: Concurrency Theory, Lecture Notes
in Computer Science, vol. 1877, 2000, pp. 305–319.

[17] M. Bravetti, Revisiting interactive Markov chains. Third Workshop on Models for Time-Critical Systems, BRICS
Notes NP-02-3, 2002, pp. 68–88.

[18] M. Browne, E. Clarke, O. Grumberg, Characterizing finite Kripke structures in propositional temporal logic, Theor.
Comp. Sc. 59 (1988) 115–131.

[19] P. Buchholz, Exact and ordinary lumpability in finite Markov chains, J. Appl. Prob. 31 (1994) 59–75.
[20] E. Clarke, O. Grumberg, D.E. Long, Model checking and abstraction, ACM Trans. Progr. Lang. Sys. 16 (5) (1994)

1512–1542.

C. Baier et al. / Information and Computation 200 (2005) 149–214 213

[21] R. De Nicola, F. Vaandrager, Three logics for branching bisimulation (extended abstract), in: IEEE Symposium on
Logic in Computer Science, 1992, pp. 118–129.

[22] S. Derisavi, H. Hermanns,W.H. Sanders, Optimal state-space lumping inMarkov chains, Inf. Proc. Lett. 87 (6) (2003)
309–315.

[23] J. Desharnais, Labelled Markov Processes. PhD Thesis, McGill University, 1999.
[24] J. Desharnais, Logical characterisation of simulation for Markov chains, in: Workshop on Probabilistic Methods in

Verification , Tech. Rep. CSR-99-8, Univ. of Birmingham, 1999, pp. 33–48.
[25] J. Desharnais, A. Edalat, P. Panangaden, A logical characterisation of bisimulation for labelled Markov processes,

in: IEEE Symposium on Logic in Computer Science, 1998, pp. 478–487.
[26] J. Desharnais, V. Gupta, R. Jagadeesan, P. Panangaden, Approximating labelledMarkov processes, Inform. Comput.

184 (1) (2003) 160–200.
[27] J. Desharnais, V. Gupta, R. Jagadeesan,P. Panangaden, Weak bisimulation is sound and complete for PCTL*, in:

Concurrency Theory, Lecture Notes in Computer Science, vol. 2421, 2002, pp. 355–370.
[28] J. Desharnais, P. Panangaden, Continuous stochastic logic characterizes bisimulation of continuous-time Markov

processes, J. Logic Alg. Progr. 56 (2003) 99–115.
[29] R.J. van Glabbeek, The linear time–branching time spectrum I. The semantics of concrete, sequential processes.

Handbook of Process Algebra, 2001, pp. 3–100 (Chapter 1).
[30] R.J. van Glabbeek, The linear time–branching time spectrum II. The semantics of sequential processes with silent

moves, in: Concurrency Theory, Lecture Notes in Computer Science, vol. 715, 1993, pp. 66–81.
[31] R.J. van Glabbeek, S.A. Smolka, B. Steffen, Reactive, generative, and stratified models of probabilistic processes,

Inform. Comput. 121 (1995) 59–80.
[32] R.J. van Glabbeek, W.P. Weijland, Branching time and abstraction in bisimulation semantics, J. ACM 43 (3) (1996)

555–600.
[33] D. Gross, D.R.Miller, The randomization technique as amodeling tool and solution procedure for transientMarkov

chains, Opin. Res. 32 (2) (1984) 343–361.
[34] W. Feller, An Introduction to Probability Theory and its Applications, Wiley, New York, 1968.
[35] H. Hansson, B. Jonsson, A logic for reasoning about time and reliability, Form. Asp. Comput. 6 (1994) 512–535.
[36] M.R. Henzinger, T. Henzinger, P.W. Kopke, Computing simulations on finite and infinite graphs, in: IEEE Sympo-

sium on Foundation of Computer Science, 1995, pp. 453–462.
[37] H. Hermanns, Interactive Markov Chains, Lecture Notes in Computer Science, vol. 2428, 2002.
[38] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, M. Siegle, AMarkov chain model checker, J. Software Tools Technol.

Transfer 4 (2) (2003) 153–172.
[39] J. Hillston, A Compositional Approach to Performance Modelling, Cambridge Univ. Press, Cambridge, 1996.
[40] T. Hyunh, L. Tian, On some equivalence relations for probabilistic processes, Fund. Inf. 17 (1992) 211–234.
[41] A. Jensen, Markov chains as an aid in the study of Markov processes, Skand. Aktuarietidskrift 3 (1953) 87–91.
[42] C. Jones, Probabilistic Non-Determinism. Ph.D.Thesis, University of Edinburgh. 1990.
[43] C. Jones, G. Plotkin, A probabilistic powerdomain of evaluations, in: IEEE Symposium on Logic in Computer

Science, 1989, pp. 186–195.
[44] B. Jonsson, Simulations between specifications of distributed systems, in: Concurrency Theory, Lecture Notes in

Computer Science, vol. 527, 1991, pp. 346–360.
[45] B. Jonsson, K.G. Larsen, Specification and refinement of probabilistic processes, in: IEEE Symposium on Logic in

Computer Science, 1991, pp. 266–277.
[46] C.-C. Jou, S.A. Smolka, Equivalences, congruences, and complete axiomatizations for probabilistic processes, in:

Concurrency Theory, Lecture Notes in Computer Science, vol. 458, 1990, pp. 367–383.
[47] J.-P. Katoen, M.Z. Kwiatkowska, G. Norman, D. Parker, Faster and symbolic CTMC model checking, in: Process

Algebra and Probabilistic Methods, Lecture Notes in Computer Science, vol. 2165, 2001, pp. 23–38.
[48] J.G. Kemeny, J.L. Snell, Finite Markov Chains, Van Nostrand, 1960.
[49] V.G. Kulkarni, Modeling and Analysis of Stochastic Systems, Chapman and Hall, London, 1995.
[50] K.G. Larsen, A. Skou, Bisimulation through probabilistic testing, Inform. Comput. 94 (1) (1991) 1–28.
[51] N.A. Lynch, F.W. Vaandrager, Forward and backward simulations: I. Untimed systems, Inform. Comput. 121 (2)

(1995) 214–233.

214 C. Baier et al. / Information and Computation 200 (2005) 149–214

[52] R. Milner, A calculus of communicating systems, in: Lecture Notes in Computer Science, vol. 92, 1980.
[53] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[54] D. Park. Concurrency and automata on infinite sequences, in: Fifth GI Conference, Lecture Notes on Computer

Science, vol. 104, 1981, pp. 167–183.
[55] A. Parma, R. Segala, Axiomatization of trace semantics for stochastic nondeterministic processes, in: Quantitative

Evaluation of Systems, IEEE CS Press, Silver Spring, MD, 2004, pp. 294–303.
[56] A. Philippou, I. Lee, O. Sokolsky, Weak bisimulation for probabilistic systems, in: Concurrency Theory, Lecture

Notes in Computer Science, vol. 1877, 2000, pp. 334–349.
[57] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley, New York, 1994.
[58] R. Segala, N.A. Lynch, Probabilistic simulations for probabilistic processes, Nordic J. Comput. 2 (2) (1995) 250–273.
[59] M. Silva, Private communication, 1993.
[60] J. Sproston, S. Donatelli, Backward stochastic bisimulation in CSL model checking, in: Quantitative Evaluation of

Systems, IEEE CS Press, Silver Spring, MD, 2004, pp. 220–229.
[61] W.J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton University Press, Princeton, NJ,

1994.
[62] M.I.A. Stoelinga, Verification of Probabilistic, Real-Time and Parametric Systems. PhD Thesis, University of Nij-

megen, 2002.

