
1

Process Support for Evolving Active Architectures

R. Mark Greenwood1, Dharini Balasubramaniam2, Sorana Cîmpan3,
Graham N.C. Kirby2, Kath Mickan2, Ron Morrison2, Flavio Oquendo3, Ian Robertson1,

Wykeen Seet1, Bob Snowdon1, Brian C. Warboys1, Evangelos Zirintsis2

1: {Department of Computer Science, The University of Manchester,
Manchester, M13 9PL, UK.}

{markg,robertsi,seetw,rsnowdon,brian}@cs.man.ac.uk
2: {School of Computer Science, The University of St Andrews,

St Andrews, Fife, KY16 9SS, UK.}
{dharini,graham,ron,kath, vangelis}@dcs.st-and.ac.uk

3: {ESIA, Universite de Savoie, 5 Chemin de Bellevue,
74940 – Annecy-le-Vieux, France.}

{Sorana.Cimpan,Flavio.Oquendo}@esia.univ-savoie.fr

Abstract. Long-lived, architecture-based software systems are increasingly
important. Effective process support for these systems depends upon
recognising their compositional nature and the active role of their architecture
in guiding evolutionary development. Current process approaches have
difficulty with run-time architecture changes that are not known a priori, and
dealing with extant data during system evolution. This paper describes an
approach that deals with these issues. It is based on a process-aware architecture
description language (ADL), with explicit compose and decompose constructs,
and with a hyper-code representation for dealing with extant data and code. An
example is given to illustrate the ease-of-use benefits of this approach.

1 Introduction

There is now a substantial proportion of software development that is based on
assembling a set of appropriate components into the required system. This typically
involves configuring generic components to the particular situation, and writing the
necessary glue code to bind the components into a coherent system. This component-
oriented approach clearly has impact on the software process used to develop and
evolve such systems. The process needs to represent the essential compositional
nature of the system. When the system is long-lived, its development process is
evolutionary. It is based around the system’s decomposition into components, the
replacing or modifying of those components, and the recomposition of the evolved
system.

A popular way of designing long-lasting compositional systems is to adopt an
architecture-based approach. The system architecture describes the assembly of the
system in terms of functional components, and the connectors that link them together.
This architecture provides a high-level view that is used to understand the system and
guide its evolutionary development. In most cases it is essential that this architecture

2

is not static. As the system evolves the architecture itself must evolve. These are the
systems that we consider to have active architectures.

Software developers evolving a long-lived system have to deal with both the
operational software and the process for evolving (managing) the operational
software. This evolutionary process might include software for re-installing the
system, or specific components. In addition, it might include utilities that migrate
essential state information from the current to the evolved system.

In this paper we present an approach to dealing with this key software process
problem. It is based on three features:
• Use of the software architecture to structure the evolutionary development

process as well as the software itself.
• The architecture-based software process explicitly represents the composition,

decomposition and re-composition that are at the heart of the evolution process.
• The use of a hyper-code representation [CCK+94,ZKM00] so that the current

state or context can be effectively managed during the evolution.

The approach is illustrated through an example. This example is deliberately kept
small so that it can be explained within the confines of this paper. The aim is to show
the ease with which the approach deals with aspects that are often ignored in software
processes. In section 2 we place our approach in the context of related work. In
particular, we contrast the problem of supporting the evolution of active architectures
with the more conventional project-based software processes. In section 3, we
examine composition and decomposition in more detail. In section 4, we introduce the
concept of hyper-code that is an essential novel feature of our approach. In section 5,
we describe the architecture description language (ADL) used in the small example in
section 6. Section 6 steps through an example evolution of the example active
architecture system, illustrating the three features of the approach. Section 7 describes
further work and Section 8 concludes.

2 Related Work

The relationship between architecture and evolution is widely acknowledged. The
Unified Process describes software as having both form (architecture) and function,
and stresses the relationship between architecture and evolution. “It is this form, the
architecture, that must be designed so as to allow the system to evolve.”[JBR99] From
a software maintenance background, [RBG00] describes the importance of a flexible
architecture in enabling software systems to evolve and continue to meet the changing
requirements of their users.

The use of an explicit run-time representation of a system’s architecture to aid
evolution of the system at run-time is described in [OT98]. Archstudio [OMT98] is a
tool suite that supports architecture-based development. Changes are made to an
architectural model and then reified into implementation by a runtime architecture
infrastructure.

3

While the relationship between architecture and evolution is recognised, the full
potential of combining software process modelling techniques, to explicitly represent
system evolution, and the system architecture, to structure that process representation,
has not been fully realised. Traditionally, the process modelling research community
has adopted a simplistic view of the aims driving business, or software, process
modelling [DF94, FH93, FKN94]:

1. Model a process using a textual or diagrammatic representation. (This model is
often called a process model definition.)

2. Translate (or compile) the model into a process support system (PSS).
3. Instantiate the library model to give a process model enactment. (This is often

called a process model instance.)
4. The PSS runs the model enactment to support the process performance of a

specific process instance.

This is based on the context of a software development organisation that undertakes a
number of distinct software projects over a period of time. They create a process
model enactment for each project. The assumption is that the textual or diagrammatic
model represents current best practice, and one of the main benefits of modelling is to
disseminate this to all projects. There may be some additional customisation of the
model to a specific project when it is instantiated, but the assumption is that the
general form of the model is project independent. The focus on process model
evolution is on the textual or diagrammatic representation so that future projects can
learn from the experience of earlier ones.

The simplistic view of process modelling is closely aligned with a corresponding
view of the core of software engineering:

1. Create a program using a textual or diagrammatic representation. (The program
source code)

2. Compile the program in a specific run time environment. (This creates the
executable program or object code.)

3. Start (or deploy) the executable program. (This creates a process, an instance of the
executable program, in the run time environment.)

4. The run time environment runs the process to have the desired effect.

In this view the assumption is that the program is going to be run many times. The
emphasis for evolution of the program is at the representation (source code) level.
This means that only future program runs will benefit from improvements as the
program evolves. The development process is often supported by tools, such as source
code control systems, that help maintain control over the evolution of the
representation.

One feature that both the simplistic views mentioned above share is the one-off,
one-way translation from representation into values. In [GBK+01] we discussed how
this is a particular special case of a more general relationship, and that an ongoing,
two-way translations between representations and values are needed for evolutionary
processes.

Clearly the above software engineering view is not appropriate for long-lived
systems that can not be rebuilt from scratch when a change is required. There are two
issues: scale, and extant data and code. The simplistic view above is a monolithic

4

approach making it inappropriate for large problems, and provides no help for the re-
use of existing components. The notion of composing a system out of smaller parts,
which may themselves be composed from smaller parts and so on, is an essential tool
in the management of complexity.

However an architecture-based approach addresses the issue of scale. The
architecture provides a structure. This allows the representation (source code) of
different parts (components) to be developed independently, often by separate teams.
Some parts can be re-used source, or object code, so long as we have a representation
of its interaction with the rest of the system. The architecture structure is also used to
provide a build structure that manages the dependencies between parts, and is a key
influence on deployment. A common deployment approach is to have several parts, or
sub-systems, that can be started independently, so that individual sub-systems can be
evolved without requiring changes to the other sub-systems.

An architecture-based approach does not address the issue of extant data and code.
The core issue here is that the current running version of a sub-system, which requires
changing, may have valuable data that must be passed on to its evolved version, as
well as running code that must be evolved. There is typically no way of referring to
current existing data and code values in a source code representation. A typical work
around is for the current running version to have a mechanism for writing out its data
to a file or database, and the new evolved version includes initialisation code that
reads this saved data. This requires some a priori knowledge so that the required data
can be saved at the right time, and can be complex for data structures that can include
shared or circular references [AM95].

The problems of extant data and code are typically tackled by ad-hoc solutions that
are specific to a system. This is another example of how the one-way translation from
representations to values places artificial limits on the potential of process support
systems. Hyper-code technology [CCK+94, ZKM00] promotes a more general two-
way “round trip” translation, which can be performed many times throughout the
lifetime of the process.

3 Composition and Decomposition

An essential property of evolutionary systems is the ability to decompose a running
system into its constituent components, and recompose evolved or new components to
form a new system, while preserving any state or shared data.

This scenario is modelled in the diagram below. The original system can be
thought of as a composition of three client components communicating with a server
component. The server component refers to some data outwith the four components.
This system can then be decomposed into its components with no communication.
Note that the server component still maintains its link to the data.

5

We may then choose to evolve the components so that the clients stay the same
while the server is divided into two different components. The new server
components still maintain links to the data referred to by the original server. These
five components can then be composed together to form a new system with one client
communicating with one server and the other two clients communicating with the
second server.

Note that we can interpret this diagram from both an architecture and a process
perspective. From the architecture perspective the diagram captures the structure of
the current and evolved systems, and the relationships between them in terms of
which components are unchanged (the clients), modified (the server) or replaced.
From a process perspective the diagram captures how to evolve from the current to
the evolved system: decompose into parts, keep the clients, modify the server
(splitting it into two), and recombine in the new configuration.

4 Hyper-Code

The hyper-code abstraction was introduced in [CCK+94] as a means of unifying the
concepts of source code, executable code and data in a programming system. The
motivation is that this may ease the task of the programmer, who is presented with a
simpler environment in which the conceptually unnecessary distinction between these
forms is removed. In terms of Brooks’ essences and accidents [Zir00], this distinction
is an accident resulting from inadequacies in existing programming tools; it is not
essential to the construction and understanding of software systems. In a hyper-code
system the user composes hyper-code and the system executes it. When evolving the
system, for example because an error has occurred, the user only ever sees a hyper-
code representation of the program, which may now be partially executed. The hyper-
code source representation of the program is structured and contains text and links to
extant values.

The figure below shows an example of hyper-code representation of the ArchWare
ADL, which is described in section 5 below. The links embedded in it are represented
by underlined tokens to allow them to be distinguished from the surrounding text. The
first two links are to connection values in_int and out_int which are used by the
server_abs abstraction to communicate with other abstractions. The program also has
two links to a previously defined abstraction client_abs. Hyper-code models sharing
by permitting a number of links to the same object. Instances of server and client
abstractions are then composed to create a client-server system. Note that code objects

Decompose

Evolve

Compose

6

(client_abs) are denoted using exactly the same mechanism as data objects (in_int and
out_int). Note also that the object names used in this description have been associated
with the objects for clarity only, and are not part of the semantics of the hyper-code.

The ability of hyper-code to capture closures allows us to represent parts of a
system after decomposition without losing their context. It provides representations
which can be used for both evolving the components and recomposing them into the
new system.

The potential benefits of modelling and supporting evolving processes have been
well recognised in the software process modelling community. Many process
modelling research systems have included facilities for process evolution
[BT96,FKN94,War99]. The most common mechanism for providing these facilities is
through reflective programming techniques.

A significant problem has been that although such facilities make it possible to
write evolving processes, they are frequently hard to write and understand. It is not
the basic facility for introducing new code that causes the complication, but the
problem of dealing with extant data. This can be particularly severe if the required
evolution depends on the current state of the process being evolved. For example,
ProcessWeb [PWeb01, WKR+99] has distinct reflective facilities for dealing with
code and data [GBK+01]. For code the reflective facilities can provide a copy of the
current source, edit this to produce new source, and apply this new code. For data the
process evolver needs to write a meta-process model which, when it is run, will use
the reflective facilities to obtain the current data values, manipulate them as required,
and then transfer the required values from the meta-process model to the process
model being evolved (for an example see [CGO+00]). In short, while in ProcessWeb
it is possible to write a universal meta-process for dealing with code changes, the
meta-process model for data changes is specific to the model being evolved. For data
changes the process evolver has to think at the meta-meta-process level in order to
create the specific meta-process required. This is a result of the fact that there is a

value server_abs = abstraction()
{ replicate { via in_int receive i;

via out_int send 2*i }
} ;

value server1 = server_abs();
value client1 = client_abs(25) ;
value client2 = client_abs(50) ;

compose{ server1 and client1 and client 2 }

hyper-link to
client_abs
abstraction

hyper-link
to in_int
connection

hyper-link
to out_int
connection

7

source representation for any code value that needs to be evolved, but there is no
source representation for every data value.

Hyper-code provides a unification of source and data, and hides the underlying
reflective facilities. The benefit here is not that hyper-code enables us to do anything
that was not possible with the reflective facilities of ProcessWeb; it is that hyper-code
offers the ease-of-use that is needed for these facilities to be fully exploited.

5 A Process-aware Architecture Description Language

A software architecture can be seen as a set of typed nodes connected by relations.
When describing architectures, the nodes are termed components and the relations
termed connectors. These components and connectors and their compositions have
specified behaviours, and are annotated with quality attributes. The ArchWare ADL
takes the form of a core description language based on the concept of formal
composable components and a set of operations for manipulating these
components—a component algebra. The key innovation in the ArchWare ADL is the
use of mobility to model systems where the topology of components and connectors is
dynamic rather than static; new components and connectors can be incorporated and
existing ones removed, governed by explicit policies. This focus on architectural
evolution at design time and run time distinguishes the ArchWare ADL from others
that only deal with static architectures or where the state space of possible changes is
known a priori. It is this focus on architectural evolution that makes the ArchWare
ADL a suitable language for expressing both the architecture of an evolving system
and the process of evolving the system. It is for this reason that we refer to it as a
process-aware architecture description language (ADL).

The ArchWare ADL is the simplest of a family of languages designed for software
architecture modelling. It is based on the concepts of the p-calculus [Mil99],
persistent programming and dynamic system composition and decomposition. Indeed,
the language design draws heavily on previous work carried out by the Persistent
Programming Group at St Andrews on persistent programming languages
[Kir92,KRC+92,AM95,MCC+95], by the Informatics Process Group at Manchester
on process modelling [GWS96,WKR+99,War99,GRW00] and by the Software
Engineering Group at Annecy on formal description languages [CGO+00].

The ArchWare ADL is a strongly typed persistent language. The ADL system
consists of the language and its populated persistent environment and uses the
persistent store to support itself. To model component algebra, the ADL supports the
concepts of behaviours, abstractions of behaviours and connections between
behaviours. Communication between components, represented by behaviours, is via
channels, represented by connections. The language also supports all the basic p-
calculus operations as well as composition and decomposition.

8

6 Example: A Client-Server System

The concepts discussed earlier are illustrated in this section using an example written
in the ArchWare ADL. Consider a server that disseminates data about time, date and
the position of a satellite. A number of clients may request data from this server.

The functionality of the server and the client can be modelled as abstractions in the
ArchWare ADL. When applied, these abstractions yield executing behaviours. Such
behaviours are the components that make up the client-server system. The repetitive
nature of both client and server functionalities is captured using recursion.

Components interact by communicating via connections. Each component may
specify the connections it uses to communicate with others. At the time of
composition, these connections may be renamed to make communication possible.

In the simple client code above, a client sends a signal via connection c_put, then
receives a reply via connection c_get, and then sends the reply value via connection
c_display.

In the example server below, the connection used determines the nature of the
request. For example, a request received via connection c_put_s_get_time will be for
time. The server will choose to receive a request from one of the three connections
and respond to it.

! client
recursive value client_abs = abstraction()
{ value c_put = free connection () ; ! request connection

value c_get = free connection(string) ; ! reply connection

via c_put send ; ! send request

via c_get receive s : string ; ! receive reply

via c_display send s ; ! display reply
client_abs() ! client calls itself

};

9

Having defined server and client abstractions, we will now create a client-server
system by composing one server and three client instances with appropriate renaming.
Note that other topologies are also possible, for example two servers and five clients.
Renaming ensures that corresponding client and server connections are matched for
communication. Defining the composition as a value gives us a handle (CS_system1)
to the resulting behaviour.

! Global data items to keep count of server activities
value time_count, date_count, pos_count = loc(integer) ;

! server
recursive value server_abs = abstraction(){

value c_put_s_get_time, c_put_s_get_date, ! connections to receive requests

c_put_s_get_pos = free connection() ;
value s_put_c_get_time, s_put_c_get_date, ! connections to send data

s_put_c_get_pos = free connection(string) ;
choose{ ! server makes a choice of which request to service

{ via c_put_s_get_time receive ; ! request for time

via s_put_c_get_time send time ; ! send time
time_count := ’time_count + 1 } ! increment time count

or
{ via c_put_s_get_date receive ; ! request for date

via s_put_c_get_date send date ; ! send date
date_count := ’date_count + 1 } ! increment date count

or
{ via c_put_s_get_pos receive ; ! request for satellite position

via s_put_c_get_pos send satellite_position ; ! send position
pos_count := ’pos_count + 1 }} ; ! increment position count

server_abs() ! server calls itself
};

10

Once the system starts executing, we may wish to change its structure. Feedback from
the system, efficiency concerns and changing requirements can contribute to such a
decision. We begin this process by decomposing the system into its component parts.
The with construct gives us handles to the components.

Necessary changes can then be made by evolving or redefining some components.
In this case we wish to split the functionality of the server into two by creating two
new servers, one serving time alone and the other serving date and satellite position.
Therefore we create two new abstractions to replace the old server_abs.

Using hyper-code representations of the abstractions will enable us to define the
new abstractions to use the current values of the count variables without them having
to be stored and explicitly reinitialised.

! decompose system
decompose CS_system1 with c1, c2, c3, s1 ;

! build client-server system
value CS_system1 = {

compose{ ! compose components
client_abs() ! client for time

where { CS_1_time renames c_put,
CS_2_time renames c_get}

and client_abs() ! client for date

where{ CS_1_date renames c_put,
CS_2_date renames c_get }

and client_abs() ! client for position

where{ CS_1_pos renames c_put,
CS_2_pos renames c_get }

and server_abs() ! server

where{ CS_1_time renames c_put_s_get_time,
CS_2_time renames s_put_c_get_time,
CS_1_date renames c_put_s_get_date,
CS_2_date renames s_put_c_get_date,
CS_1_pos renames s_put_c_get_pos,
CS_2_pos renames s_put_c_get_pos }

} ;

11

A new client-server system can then be formed by composing the two new servers
with the decomposed clients appropriately.

! time server
recursive value time_server_abs = abstraction()
{ value s_get_time = free connection() ;

value s_put_time = free connection(string) ;
via s_get_time receive ;
via s_put_time send time ;
time_count := ’time_count + 1 ; ! reference to extant data

time_server_abs()
};

! date and satellite position server
recursive value date_sat_server_abs = abstraction()
{ value s_get_date, s_get_sat_pos = free connection();

value s_put_date, s_put_sat_pos = free connection(string) ;
choose {

 { via s_get_date receive ;
via s_put_date send date ;
date_count := ’date_count + 1 } ! reference to extant data

or
{ via s_get_sat_pos receive ;

via s_put_sat_pos send satellite_position ;
pos_count := ’pos_count + 1 }} ; ! reference to extant data

date_sat_server_abs() ;
} ;

! make new client-server system
value CS_system2 = {

compose{
c1 where {CS_1_time renames c_put,

CS_2_time renames c_get}
and c2 where{ CS_1_date renames c_put,

CS_2_date renames c_get }
and c3 where{ CS_1_sat_pos renames c_put,

CS_2_sat_pos renames c_get }
and time_server_abs()

where{ CS_1_time renames c_put_s_get_time,
CS_2_time renames s_put_c_get_time }

and date_sat_server_abs()
where{ CS_1_date renames c_put_s_get_date,

CS_2_date renames s_put_c_get_date,
CS_1_sat_pos renames c_put_s_get_pos,
CS_2_sat_pos renames s_put_c_get_pos}

} ;

12

Now client c1 will communicate with time_server and clients c2 and c3 will
communicate with date_sat_server.

7 Further Work

The example described in section 6 illustrates the core idea of using a process-aware
ADL to support the evolutionary development of a system. The ADL has been
developed as part of the ArchWare project, which is delivering customisable
architecture-based environments for evolving systems. To build an effective
environment, several additions are required to the core idea described above. The core
ADL is relatively low-level and does not have the domain abstractions to provide the
higher-level view required by people evolving the system. The ArchWare project is
using the notion of styles to allow users to customise the ADL through the
development of abstractions that are appropriate to the specific domain and system.
The ArchWare project is also tackling evolution consistency, through the notion of
the annotation of an architecture with properties, and providing architecture analysis
tools. The essential idea is to enable users to set constraints in terms of architecture
properties, and prove that the evolution of a system does not violate any of these
constraints.

In providing scalable support for evolving systems, a cellular approach is
promising. Each component can have its own evolutionary development process that
is responsible for local changes to that component [GWS96]. This may have to make
requests to the corresponding development processes of sub-components to achieve
its desired change, and to signal to its super-component’s process when a required
change is not within its control. The ArchWare project builds upon previous work in
process instance evolution [GRW00], which provides a process for evolving an
engineering process through a network of meta-processes that matches the product
breakdown structure (the architecture of the engineering product).

The architecture analysis approach is essentially a pre-emptive approach to
managing the evolution of a system. An alternative is a healing approach, typified by
autonomic systems, where the focus is on automatically recognising what is wrong
and initiating the appropriate actions to resolve the situation [AM95,Aut02]. To
achieve this ongoing management and tuning the ability to control decomposition,
evolution and re-composition explicitly is essential. Monitor components receive
meta-data arising from probes and gauges, which dynamically measure various
aspects of the running system. When deemed necessary, the monitors initiate the
evolution of selected components, by decomposing the component assemblies in
which they are embedded (producing hyper-code), updating the decomposed hyper-
code representation to use alternative components, and recomposing the result.
Various policy rules for when, what and how to evolve may be designed to pursue
different goals. Indeed these policies may themselves be components that are subject
to evolution.

13

The approach that we have described is not specific to the software development
process. In particular the approach can be applied to evolving the evolutionary
development process itself. In an ArchWare environment a generic meta-process,
such as the Process for Process Evolution P2E [War99], can be used to specialise the
evolutionary development process for a component within the system, for example to
use specific software development methods or tools.

Another area where we plan to evaluate this approach is in evolving in silico
experiments in the bioinformatics domain [GPR03]. Much biological experimentation
now takes place in silico, combining, comparing and collating biological data and
analysis tools that are available on the web. An in silico experiment is a process,
describing the various data retrieval, transformation and analysis steps that yield the
required outputs. As more resources become available, and as experimental best
practice changes, these experiments evolve. In addition, scientists want to be able to
evolve in silico experiments as they are running. If an experiment takes hours, or even
days, to complete then the scientists involved want the ability to examine the
intermediate results, and if necessary make changes to the later stages of the
experiment. The use of process technology to provide an explicit representation of in
silico experiments provides a way of effectively sharing best current practice within a
community. An architecture-based approach offers a promising way of composing
and evolving larger experiments from smaller experimental fragments. The potential
benefits of a hyper-code representation that can be used through the experimental
lifecycle, and enable experiments to directly refer to extant data, are very similar to
those in the software engineering domain. The bioinformatics domain is also of
interest because the coordination of resources into experiments shares many
characteristics with the electronic coordination of businesses into business networks
[GWS+02].

8 Conclusion

In this paper we have identified a class of software systems: long-lived architecture-
based systems. Such systems are becoming more common and supporting their
evolutionary development is a current key challenge for software engineering. This is
a challenge where process technology can make a contribution. The compositional
nature of these systems means that the architecture plays a dual role. It structures the
(operational) software system, and it structures the evolutionary development of that
operational software system. However, it is important to recognise that the
architecture is active; it evolves as the structure of the system evolves. Furthermore
the evolutionary development of these systems involves transferring important state
information, extant data, between the current and the evolved system.

The approach that we have described and illustrated addresses these issues through
the novel combination of three features:
• Exploiting the software architecture to structure the evolutionary development

process as well as the software itself. This configures the process to its context
(the software being evolved).

14

• The architecture-based software process explicitly represents the composition,
decomposition and re-composition that are at the heart of the evolution process.
The process is expressed in a process-aware Architecture Description Language
(ADL) that has explicit compose and decompose constructs.

• The use of a hyper-code representation so that the current state or context can be
effectively managed during the evolution. The unification of source code and
data in hyper-code eliminates different ways of managing code and data
evolution, and the hyper-code representation is used throughout the lifetime of
the system.

The benefits of this approach are ease of use and ease of understanding. It provides
a simpler abstraction over the basic reflective programming facilities for those
evolving the system. They are able to concentrate on the essential problems of
describing the required evolution. The approach also directly models the
compositional nature of the system through the use of compose and decompose
primitives in a process-aware ADL. This gives the benefits of a run-time architecture
description that is synchronised with the evolving system. Those evolving the system
always have an up to date, high-level view of the system, and state of the system
within its evolutionary development process.

There are other potential benefits of this approach. The compositional nature
encourages the creation of libraries of re-usable software components, and software
process fragments. The hyper-code representation means that such extant values in
the environment can be easily referenced and re-used. However, the approach is only
an essential foundational building block, and further facilities are needed to give an
effective environment that supports the evolutionary development process of long-
lived, architecture-based systems.

Acknowledgements

This work is supported by the EC Framework V project ArchWare (IST-2001-32360),
and the UK Engineering and Physical Sciences Research Council (EPSRC) under
grants GR/R51872 and GR/R67743. It builds on earlier EPSRC-funded work in
compliant systems architectures (GR/M88938 & GR/M88945).

References

[AM95]. Atkinson, M.P. and Morrison, R.: Orthogonally Persistent Object Systems. VLDB
Journal 4, 3 (1995) 319–401

[Aut02]. Autonomic Computing: IBM's Perspective on the State of Information Technology.
IBM, http://www.research.ibm.com/autonomic/ (2002)

[BT96]. Bolcer, G.A. and Taylor, R.N.: Endeavors: A Process System Integration
Infrastructure. In Proc. ICSP’4, Brighton, UK, IEEE Comp. Soc. Press, (1996) 76–85

15

[CGO+00]. Chaudet, C., Greenwood, R.M., Oquendo, F. and Warboys, B.C.: Architecture-
driven software engineering: specifying, generating, and evolving component-based
software systems. IEE Proc.–Software 147, 6 (2000) 203–214

[CCK+94]. Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C., Moore, V.S. and Morrison, R.:
Unifying Interaction with Persistent Data and Program. In: Sawyer, P. (ed): Interfaces to
Database Systems. Springer-Verlag, In Series: Workshops in Computing, van Rijsbergen,
C.J. (series ed) (1994) 197–212

[DF94]. Dowson, M., and Fernström B.C.: Towards Requirements for Enactment Mechanisms.
In: Proceedings of the Third European Workshop on Software Process Technology, LNCS
775, Springer-Verlag, (1994) 90–106

[FH93]. Feiler, P.H., and Humphrey, W.S.: Software Process Development and Enactment:
Concepts and Definitions. In: Proceedings of the 2nd International Conference on Software
Process, Berlin, (1993) 28–40

[FKN94]. Finkelstein, A., Kramer, J., and Nuseibeh, B. (eds): Software Process Modelling and
Technology. Research Studies Press, (1944)

[GPR03]. Goble, C., Pettifer, S., and Stevens, R.: myGrid: in silico experiments in
bioinformatics. In Berman, F., Hey, A.J.G., and Fox, G. (Eds) : Grid Computing: Making
the Global Infrastructure a Reality, Wiley, (2003) In press.

[GWS96]. Greenwood, R.M., Warboys, B.C., and Sa, J.: Co-operating Evolving Components –
a Formal Approach to Evolve Large Software Systems. In: Proceedings of the 18th

International Conference on Software Engineering, Berlin, (1996) 428–437
[GRW00]. Greenwood, M., Robertson, I. and Warboys, B.: A Support Framework for Dynamic

Organisations. In the Proceedings of the 7th European Workshop on Software Process
Technologies, LNCS 1780, Springer-Verlag, (2000) 6–21

[GBK+01]. Greenwood, R. M., Balasubramaniam, D., Kirby, G.N.C., Mayes, K., Morrison, R.,
Seet, W., Warboys, B.C., and Zirintsis, E.: Reflection and Reification in Process System
Evolution: Experience and Opportunity. In the Proceedings of the 8th European Workshop
on Software Process Technologies, LNCS 2077, Springer-Verlag, (2001) 27–38

[GWS+02]. Greenwood, M., Wroe, C., Stevens, R., Goble, C., and Addis, M.: Are
bioinformaticians doing e-Business? In Matthews, B., Hopgood, B., and Wilson, M. (Eds) In
"The Web and the GRID: from e-science to e-business", proceedings of Euroweb 2002,
Oxford, UK, Dec (2002), Electronic Workshops in Computer Science, British Computer
Society http://www.bcs.org/ewic

[JBR99]. Jacobson, I., Booch, G., and Rumbaugh, J.: The Unified Software Development
Process. Addison-Wesley, 1999.

[KRC+92]. Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M. and Morrison,
R.: Persistent Hyper-Programs. In Albano, A. and Morrison, R. (eds): Persistent Object
Systems. Springer-Verlag, In Series: Workshops in Computing, van Rijsbergen, C.J. (series
ed) (1992) 86–106.

[Kir92]. Kirby, G.N.C.: Persistent Programming with Strongly Typed Linguistic Reflection. In:
Proceedings 25th International Conference on Systems Sciences, Hawaii (1992) 820–831

[MCC+95]. Morrison, R., Connor, R.C.H., Cutts, Q.I., Dustan, V.S., Kirby, G.N.C.: Exploiting
Persistent Linkage in Software Engineering Environments. Computer Journal, 38, 1 (1995)
1–16

[Mil99]. Milner, R.: Communicating and mobile systems: the !-calculus. Cambridge
University Press (1999)

[OMT98]. Oreizy, P., Medvidovic, N. and Taylor, R.N.: Architecture-Based Runtime Software
Evolution. Proc. ICSE’20, Kyoto, Japan, IEEE Computer Society Press (1998) 177–186

[OT98]. Oreizy, P. and Taylor, R.N.: On the role of software architectures in runtime system
reconfiguration. In Proc. of the International Conference on Configurable Distributed
Systems (ICCDS 4), Annapolis, MD. (1998)

16

[PWeb01]. ProcessWeb: service and documentation http://processweb.cs.man.ac.uk/ (accessed
on 10 Apr 2003)

[RBG00]. Rank, S., Bennett, K., and Glover, S.: FLEXX: Designing Software for Change
through Evolvable Architectures. In Henderson, P. (Ed), Systems Engineering for Business
Process Change: collected papers from the ERSRC research programme, Springer (2000)
38–50

[STO95]. Sutton, Jr., S.M., Tarr, P.L., and Osterweil, L.: An Analysis of Process Languages.
CMPSCI Technical Report 95-78, University of Massachusetts, (1995)

[WKR+99]. Warboys B.C., Kawalek P., Robertson T., and Greenwood R.M.: Business
Information Systems: a Process Approach. McGraw-Hill, Information Systems Series,
(1999)

[War99]. Warboys, B. (ed.): Meta-Process. In Derniame, J.-C., Kaba, B.A., and Wastell, D.
(eds.): Software Process: Principles, Methodology, and Technology, LNCS 1500, Springer-
Verlag (1999) 53–93

[ZKM00]. Zirintsis, E., Kirby, G.N.C., and Morrison, R.: Hyper-Code Revisited: Unifying
Program Source, Executable and Data. In Proc. 9th International Workshop on Persistent
Object Systems, Lillehammer, Norway, (2000)

[Zir00]. Zirintsis, E.: Towards Simplification of the Software Development Process: The
Hyper-Code Abstraction. Ph.D. Thesis, University of St Andrews, (2000)

