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Abstract. In this article, we propose a new soft constraint called preference 
constraint, squaring well with the decision theory concept of preference binary 
relation. We show how to use it for designing complex hierarchical preference 
information based on preference binary relations for combinatorial problems. 
Finally, preference-based constraint systems are defined and associated best 
quality choice problems are introduced. This new model offers greater 
flexibility to represent and make complex decisions with computers. 

1 Introduction 

Until now, the privileged preference representation used for combinatorial 
problems has been the objective function. It is exclusively used at every aggregation 
level [7] of a hierarchical preference model, and has remarkable structural properties 
as transitivity and completeness. These properties are often judged too restrictive, 
because some important aggregation concepts are incomplete by definition, as 
efficiency, unanimity, equity [10], to quote only few of them. Attributes cannot be 
necessarily transitive because of uncertainty [12]. Obviously these properties are 
desirable for a collective choice, but we shall not make a fetish of them [10]. For all 
these reasons which are the rule in practical works, it is necessary to enlarge objective 
function-based preference models toward weakly structured aggregation rules. In this 
work, we extend preference models to aggregation rules based on preference binary 
relations. Often used in multi-criteria decision aiding (MCDA) and social choice 
theory (SCT) 1, for their abilities of preference modelling and decision aiding, 
preference binary relations stay yet almost non-existent in combinatorial (and 
continuous) optimization 2

                                                           
1 MCDA [

. Both interactivity and weaker preference models 
(“bounded” rationality) are necessary to improve the decision-making. 

12] attends to evaluation of practical problems having solutions given in extension, 
and SCT [10] points out theoretical works on the characterization of adequate aggregation 
rules for collective and public problems. 

2 Note nevertheless that multi-objective mathematical programming (MOMP) has allowed 
going beyond classical optimization models by admitting the transitive incomplete Pareto 
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This article is outlined as follows: After a review of basic notions in constraint 
programming in section 2, we introduce preference constraints as a way to represent 
preference binary relations (section 3). The 4th section is devoted to preference binary 
relations obtained from aggregation rules for which preference constraints are 
adapted. Finally, preference-based constraint systems are introduced in 5. 

2 Background in Constraints 

A finite constraint system CCSS is defined as a set of n variables V = {v1, …, vn}, a 
finite domain D(v) of possible values for each variable v ∈ V, and a set of m 
constraints C = {c1, …, cm} among variables. A constraint c is characterized by a set 
of variables V(c) ⊆ V and a feasible solution set S(c) included in the Cartesian product 
of domains associated to V(c): S(c) ⊆ DV(c) = ×v ∈ V(c) D(v). An element of DV(c) is 
called a solution of c, and an element of DV = D(v1) × … × D(vn)  is called a solution 
of the constraint system CCSS. A value d of a variable v (⇔ d ∈ D(v)) is consistent with 
a constraint c iff v ∉ V(c), or there exists a feasible solution x of c such that x(v) = d. 
Otherwise, d of v is said inconsistent with c. As from this definition, it is possible to 
define different kind of consistency properties on variables, constraints and constraint 
systems 3

9

. A variable v is consistent with a constraint iff D(v) is not empty and all its 
values are consistent with c. A constraint c is globally inverse consistent iff for all v in 
V(c), v is consistent with c. Given a constraint c and a set of domains D associated to 
variables V(c), a filtering algorithm for c is an algorithm establishing a consistency 
level for c. A constraint provided with an adjusted filtering algorithm is called a 
global constraint ([ ], [8]). 

A combinatorial constraint satisfaction problem (CSP) on a given finite constraint 
system CCSS = (V, D, C) is concerned with the search for an element x of DV such that 
for all constraints c ∈ C, the projection4

3 Preference Binary Relations and Preference Constraints 

 of x on V(c) is consistent with c. Such a 
solution x is called a feasible solution of the constraint system and the set of all 
feasible solutions of a constraint system CCSS is noted SCSP(CCSS). 

After defining the preference binary relation, we present an adequate model to 
represent preference binary relations on constraint systems (i.e. Cartesian product 
sets). 

                                                                                                                                           
dominance as final aggregation rule. Others as the lexicographic, the maximin and the 
leximin rules, have been used to synthesize objective functions. Although transitive and 
complete these aggregation rules are not representable by objective functions (see references 
given in [10]). 

3 For further information, see [11], [2], among others. 
4 Projection of x ∈ DV on V1 ⊆ V is the element x1 of DV1 such that x1(v) = x(v) ∀ v ∈ V1. 
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3.1 Background in Decision Theory 

There exists different ways of modelling preferences [12]. This article is devoted 
to preference binary relations, defined here: 

A binary relation ≽ on a set S is a subset of the Cartesian product S × S. We will 
note here x ≽ y instead of (x, y) ∈ ≽, and not(x ≽ y) to designate (x, y) ∉ ≽. 

Given a set of solutions S, a preference binary relation ≽ of an individual on S is a 
reflexive binary relation on S (⇔ x ≽ x, for all x ∈ S) traducing the judgments of this 
individual concerning his preferences between the pairs of solutions. The assertion “x 
≽ y” means “x is at least as good as y for the considered individual” for any solutions 
x and y of S. A preference binary relation ≽ makes a partition of S × S into four 
fundamental binary relations called fundamental attitudes. Here is their definition: 

(indifference) x ≃ y ⇔ ( x ≽ y  and  y ≽ x ) for any x, y ∈ S 
(strict preference) x ≻ y ⇔ ( x ≽ y  and  not(y ≽ x) ) for any x, y ∈ S 
(strict aversion) x ≺ y ⇔ y ≻ x for any x, y ∈ S 
(incomparability) x ∥ y ⇔ ( not(x ≽ y)  and  not(y ≽ x) ) for any x, y ∈ S 

A preference binary relation can be also interpreted as a mapping from S × S to AF = 
{≃, ≻, ≺, ∥} with AF the set of fundamental attitudes. The set PPRR(AF), made up of 
elements of the power set of AF different from the empty set and AF, is called the set 
of attitudes. 

3.2 Preference Modelling, Soft Global Constraints and Preference Constraints 

In an explicit solution set environment, preferences are often explicitly represented 
[12]. But the implicit formulation of solutions DV and feasible solutions SCSP(CCSS) 
makes this way of modelling inconceivable. In constraint programming, preference 
representations have taken shape in soft constraints. Interesting soft constraints have 
been used in the frameworks of valued constraints systems and semiring-based 
constraint systems [1]. But they are limited to semiring structures on valuations. 
Otherwise, two kinds of preference models have handled global constraints: (a) 
property constraints dedicated to relevant basic properties which can be or not 
satisfied by a feasible solution and (b) objective function constraints devoted to 
objective functions by way of constraints. Such soft constraints are called soft global 
constraints ([8], [9]). To fill the gap about soft global constraints dedicated to 
preference binary relations, we present the preference constraints: 

A preference binary relation ≽ can be described by a set of constraints c≽[α, x] 
parameterized by a solution x and an attitude α. By noting V the variable set and D the 
domain set on which scope the constraints c≽[α, x], then the set {c≽[α, x], ∀ (α, x) ∈ 
PPRR(AF) × DV} is called the preference constraint associated to the preference binary 
relation ≽. For short, we will note {c≽[α, x]}α, x. 
The feasible set of c≽[α, x] is noted S(c≽[α, x]) = {y ∈ DV  such that: y α≽ x}, with α≽ 
indicating the attitude α of the preference binary relation ≽. In a digraph context, 
S(c≽[α, x]) describes the neighborhood of x in the set DV according to the binary 
relation α. This modelling of the preference binary relation offers large perspectives 
in solving problems, as we will see in the following. 
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4 Aggregation and Preference Constraints 

We show here possibilities offered by preference constraints in the building of 
complex hierarchical preference models. 

4.1 Aggregation Rules and Preference Models 

In complex real world problems, the evaluation of solutions can be done from 
several persons or/and from several viewpoints for each person. This preference 
information is methodically synthesized with several 7 aggregations rules ([ ], [3]) in 
order to obtain a collective preference binary relation representing the preference 
model of the problem. 

Here, the term individual designates a human, a group, a society or someone’s 
viewpoint; and I = {1, …, n} points out a set of individuals. From now pref(i, S) 
refers to either the objective function fi or the preference binary relation ≽i of the 
individual i on the set S. The component of a preference model, allowing to 
synthesize preferential information, is the aggregation rule. An aggregation rule is a 
functional relation AR such that for any set of n individual preferences pref(1, S), …, 
pref(n, S) (one for each individual), one and only one collective preference pref(I, S) 
is determined, pref(I, S) = AR(pref(1, S), …, pref(n, S)). 
As examples we mention: the weighted sum function ([4], [7], [12]), the majority 
method ([10], [12]) and the lexicographic rule ([4], [10], [12]). 

4.2 Preference Constraints for Aggregation Rules. 

The semantics of a preference constraint can be defined as an aggregation rule 
allowing preference binary relations and objective functions as individual preferences 
and a binary relation as collective preference. To each aggregation rule AR is 
associated one preference constraint noted {cAR[α, z]}α, z or {c≽[α, z]}α, z, if ≽ is the 
collective preference binary relation of AR. Individual preferences are noted {ci[α, 
z]}α, z for any individual i ∈ I = {1, …, n}. The variable set of {cAR[α, z]}α, z is equal 
to the union of individual preferences variable sets. Whereas the variable set, the 
feasible solution set of {cAR[α, z]}α, z is parameterized by an attribute and a solution. 
Here is their definition: 

V({cAR[α, z]}α, z) = V({c1[α, z]}α, z) ∪ … ∪ V({cn[α, z]}α, z)  
S(cAR[α, x]) = {y ∈ DV(AR) such that:  y αAR x}    ∀ (α, x) ∈ PPRR(AF) × DV(AR) . 

with DV(AR) the Cartesian product of domains D(v) for all v ∈ V({cAR[α, z]}α, z) and αAR 
the attribute α associated to the collective preference of AR. Any filtering algorithm 
for cAR[α, x] has to use only the elements ci[α1, z], ∀ (α1, z) ∈ PPRR(AF) × DV(AR) in 
order to keep their generality. But for algorithmic efficiency they can be specialized. 

Preference constraints devoted to aggregation rules give a recursive definition of 
preference constraints. They are components of a preference model. Like the 
cardinality operator [13], they are abstractions; which argue in favor of their 
modelling power. 
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5 Preference-Based Combinatorial Choice Problems 

The instance of a combinatorial problem is made up of two parts. The first one, the 
feasibility model, describes feasible solutions by way of constraints and variables. 
The second one, the preference model, describes all the information necessary to 
compare solutions (different actors’ viewpoints, etc). Preference constraints can be 
used to design the hierarchical preference model of some constraint-based choice 
problem instances. Thus, a preference-based constraint system is a couple (CCSS, {c≽[α, 
z]}α, z), where CCSS is a constraint system describing the set of solutions and feasible 
solutions, and {c≽[α, z]}α, z is a preference constraint possibly defined recursively. 

Several choice problems can be defined from a preference-based constraint system. 
For example a problem searching one best quality solution and giving some 
indications on the quality of the returned solution (optimality, maximality or only 
feasibility): 

Preference-based combinatorial constraint search problem (P-CCSP): Given a 
preference-based constraint system (CCSS, {c≽[α, z]}α, z), returns one optimal 
solution x (⇔ x ∈ SCSP(CCSS) and ∀ y ∈ SCSP(CCSS), x ≽ y) with the label “optimal”, if 
such a solution exists, else returns one maximal solution x (⇔ x ∈ SCSP(CCSS) and ∀ 
y ∈ SCSP(CCSS), not(y ≻ x) ) with the label “maximal”, if such a solution exists, 
otherwise returns a feasible solution with the label “feasible”, if such a solution 
exists, else returns “no”. 

Partial problems can be defined from P-CCSP, by only returning for example one 
maximal solution or else “no”, etc. Next, these problems can be specialized according 
to properties of ≽. In this way, the partial preorder-based combinatorial constraint 
search problem (PPO-CCSP) is defined. This latter problem returns either an optimal 
solution, or a maximal solution, or “no”, because the existence of a feasible solution 
certifies at least the existence of a maximal solution (see [12]). 
Solving a preference-based combinatorial problem is not limited to finding one 
maximal solution [12], if such solutions exist. It’s necessary, in the general case, to 
propose algorithmic tools exploring the whole maximal (or optimal) set. Interactive 
tools are very well adapted for these kinds of tasks. Sometimes, when we have any 
guaranty on the size of such a set, and that the problem ventures to do it, the problem 
of generating all solutions of a whole maximal set can be envisaged. We call this 
enumerating version of P-CCSP, the preference-based combinatorial constraint choice 
problem (P-CCP). In the same way, the specialized version PPO-CCP can be defined. 

A great amount of work have been carried on the search for a maximal solution of 
a transitive preference binary relation ≽ by way of an objective function (see [4], 
[12], for review). For this goal, it is necessary to identify some objective functions 
having their optimal set included in this of (SCSP(CCSS), ≽). On the other hand, global 
constraints give us the possibility to build a complex instance and then to solve it, 
without going through this theoretical identification. This possibility of customization 
of the preference models opens great perspectives. Recently, Gavanelli [5] presented 
two Branch-and-Bound-based algorithms solving the PPO-CCP, by using the 
particular case of α = {≻, ∥} of preference constraints. Afterwards, he designed a 
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filtering algorithm for this partial preference constraint associated to the Pareto 
dominance aggregation rule [6]. 

6 Conclusions and Perspectives 

This article gives a general framework to design and solve by way of constraint 
programming, combinatorial problems allowing complex preference models based on 
preference binary relations. It allows designing preference binary relations at an 
individual, intermediary and global level in preference models, conceding thus more 
importance to preference elicitation. Thus new soft global constraints, called 
preference constraints, and new combinatorial choice problems, called preference-
based constraint problems, have been introduced. One future work leading from this 
approach is the building of filtering algorithms for different aggregation rules. 
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