
I ’

Scheduling in the Face of Uncertain Resource Consumption And Utility

Jeremy Frank and Richard Dearden
NASA Ames Research Center

Mail Stop N269-3
Moffett Field, CA 94035-1000

{frank, dear den} @email. arc. nasa.gov

Abstract

We discuss the problem of scheduling tasks that con-
sume uncertain amounts of a resource with known ca-
pacity and where the tasks have uncertain utility. In
these circumstances, we would like to find schedules
that exceed a lower bound on the expected utility
when executed. We show that the problems are NP-
complete, and present some results that characterize
the behavior of some simple heuristics over a variety of
problem classes.

Introduction
In this paper we discuss scheduling problems in which
the resource consumption and the utility of the tasks
to be scheduled are given only as probability distri-
butions. Due to the uncertainty of the resource con-
sumption, some scheduled tasks may not actually be
performed when a schedule is executed. If we assume
that we have accurate knowledge of the distribution of
resource consumption and job utility, we can compute
the expected utility of a schedule by accounting for both
the uncertain resource consumption and utility. We can
then find a schedule that maximizes the expected util-
ity, or find a schedule whose expected utility exceeds a
lower bound.

The treatment of events during execution can lead
to different formalizations of the expected utility of a
schedule. In one scenario, the execution system can de-
cide whether to reject an event based on pre-dispatch
kmwledge of resource requirernents. Thus, event fail-
ure does not result in any resource mcdification. This is
appropriate in data acquisition scenarios; the execution
system may determine that poor quality image data
will result, and reject an image acquisition task without
storing any data. In the other scenario, the event is dis-
patched, the resource is impacted, and then the execu-
tion system is informed of success or failure. This model
is appropriate in power system modeling, where unprg
dictable spikes in power requirement or generation can
cause faults. Try and figure out language t o de-
scribe ”failures” like downlink operations where

Copyright @ 2003, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

the data buffer is ”over-emptied” or re-charge
operations where a battery is ”over charged”
bu t where no utility accrues to these tasks and
where execution of the schedule can continue.

Traditionally, constraint reasoning approaches have
been applied to scheduling problems with known re-
source consumption and temporal constraints; this has
led to “global” resource constraints such as those de-
scribed in (Mus02; BC02). These techniques must be
extended to handle problems with uncertain resource
consumption and utility, where the goal is to find sched-
ules that exceed a utility bound. While these problems
are similar in spirit to bin-packing problems, numerical
integration is required to convolve arbitrary probability
distributions over resource availability. This introduces
challenges in the application of constraint reasoning a p
proaches to solve the problems.

elaborate: difference between ucrsp and urrsp
When computing the expected utility of a schedule, we
must compute the probability that tasks fail because
they attempt to consume or produce too much resource.
Examples of resources that may behave this way are
batteries; draining too much energy or attempting to
over-charge a battery can destroy it. Under this model,
the failure of one job no longer leads to unconditional
failure of the rest of the jobs in the schedule. For ex-
ample, a resource replenishment event that fails can be
followed by a sequence of successful resource consump-
tion events.

The paper is organized as follows. In we present
theoretical results on the problem of scheduling tasks
that have imcertain resource consumption, utility, or
both. In 5 we first describe some likely heuristics, and
discuss drawbacks to them. We then briefly discuss
some empirical results.

Theory
We first introduce some notation. Let X be a set of
events, and let R be a set of resources. Let rmaz be
the capacity of T E R; thus, at all times, the amount
of available resource is bounded between 0 and rmaz.
Let IT(z) be the probability distribution over the initial
amount of available resource T . Define C,,,.(z) as the
probability distribution over the change in availability

of resource r after executing x. We assume that all
events' resource impact probabilities are independent;
that is, the distribution for an event j does not depend
on the distribution of any other event k # j . Define
Uz(w) as the probability distribution over the utility
received from executing x. Finally, let T = ~ ~ (x , y) be
a set of binary metric temporal constraints over pairs
of events x , y .

We will denote a schedule by x and the j t h event in
a schedule by xJ. We will assume that only schedules
that are guaranteed to satisfy all T = ~ ~ (x , y) can be
executed. However, these schedules are not guaranteed
to satisfy the resource bounds. Our task is to build a
schedule IT in advance to either maximize the expected
utility E (x) , or such that E (x) 2 B. Throughout this
paper we will focus on the decision problem.

clean up a little Initially, we will assume that there
is only one resource r with maximum capacity rmax.
We will also assume without loss of generality that the
probability that there is less than 0 resource initially
available is 0. We also consider two different classes
of problem. If Cr,j (z) > 0 only when z < 0. we will
call this problem the Uncertain Consumable Resource
Scheduling Problem (UCRSP). if either CT,,(z) > 0 only
when z < 0, or Cr,J(z) > 0 only when z > 0 but not
both, we refer to this problem as the Uncertain Re-
plenishable Resource Scheduling Problem (URRSP). In
principle, we could consider a model in which an event
has a non-zero probability of either consuming or re-
plenishing an event, but this scenario doesn't strike us
as realistic.

The precise definition of E(T) depends on the event
execution model as described in the introduction. We
provide formal definitions for these two models below.

Closed-Loop Model
Our first execution model assumes that, prior to actual
execution, the execution system is informed of the exact
impact on the resource. We assume that if executing an
event would lead to a violation of the resource bounds
that the event is discarded, the resource is unmodified,
and that no utility for the job is accrued. We call this
the Closed Loop Model, since (at least implicitly) the
execution system performs a sensory action on the event
and then decides how to proceed.

We define AKJ,r(z) as the probability distribution
over the availability of resource r after the execution
or rejection of the first j events of T. For convenience,
we define A,o,r(z) 3 I r (z) . Again for convenience, we
define TKJ,,.(z) as follows:

T?r,,(z) = A*,T,J-l(z) * c ? r J , T (z) c 7 r J , T (z) (1)
Intuitively, TKJ , r (z) is the resource availability distri-

bution after accounting for the impact of CKJ,r(z) . This
can violate the resource bounds for r , in that T?iJ,r(z)
may exceed 0 for z < 0 or z > rmaz. We can now
compute the probability that event j successfully exe-
cutes, conditioned on the execution of the previous j - 1
events:

rmar

S(75,7-) = A T=,,r(z)dz (2)

This formula says that event IT] will be rejected if it
attempts to allocate more resource than r has avail-
able after the successful execution of the first j - 1
events of x, and succeeds otherwise. Thus, Execution
of event xJ is permitted, only if it is known that the
resource bounds will not be exceeded, which happens
with probability S (x J , r) . In this case, we must chop
TxJ,,(z) so that it is non-zero only between 0 and rmas,
and normalize by dividing by S(xJ , r) . The rest of
the time the resource distribution remains unchanged,
which means we add this to the previous distribution
of resource availability, ATJ- ,r (2) , after normalizing by
1 - S(xJ , r) . We can now write the following recurrence
for AKJ,T(z):

Under this model. failure of an event does not mean
failure of the rest of the schedule. We are now in a
position to write the expected value of a schedule T:

n

E (x) = S(TJ1 T) E (U (T J)) (4)
2= 1

This formalization works for describing the expected
value of a schedule for either UCRSP or URRSP.

Open Loop Model
Our second execution model assumes that the execution
system blindly dispatches events without knowledge of
those events' demands on the resource. Some underly-
ing system informs the execution system of the resulting
resource use and event success or failure. We call this
the Open Loop Model.

We preserve the intuitive definitions of
TKJ,T(z),AKJ,,.(z) and S(ITJ,r). In this case, how-
ever, we modify the recurrence of ATJ,,(z); this now
must acknowledge that the resource is modified un-
conditionally by event execution. This means we need
to accumulate the probability of resource exhaustion,
which was not a problem in the Closed Loop case. For
simplicity, we will first deveiop the expectation formula
for UCRSP, then use this to develop the formula
for URRSP. In UCRSP we assume that resource is
consumed, and so the recurrence for AKJ,r (z) is as
follows~ :

(5)

'Our earlier work (?) implicitly used this model but the
update formula was incorrect; it has been corrected in the
present paper.

For the UCRSP, the failure of event xi implies failure
of xk, IC > j . If there are n events in x, then the proba-
bility of successfully executing only the first i events of
schedule R is given by

i

X (x i > = (1 - ~ (x , r, i + 1)) n ~ (x , r, j) (7)

(where we define S(x, r, n + 1) = 0). The expected
utility of these i events is E(U(x j)) . So the ex-
pected utility of the schedule T for UCRSP is given by

3=1

In preparation for writing the expectation of URRSP
we introduce the following definition.

Definition 1 Let x be a permutation of jobs f o r a
URRSP. A monotone subsequence of x is a sequence of
events all of which modify the resource in the same way,
i.e. all producers or all consumers. Let Si(x) be these
subsequences. I n linear time, we can identify all Si(n),
and there are m 5 n of them. Let Si(..) be a consuming
subsequence if V j E Si(x)Cr,j(z) > 0 only when z < 0,
and a producing subsequence if V j E Si(x)Cr,j(z) > 0
only when z > 0.

We can now compute the expected value E (x) for
URRSP as follows. First, observe that each Si(x) de-
fines a UCRSP problem. If Si(..) is a consuming sub
sequence, this is obvious. If Si(x) is a producing subse-
quence, we can treat productions as consumptions and
invert the resource bounds. Equation 8 shows how to
compute E(Si(x)) But E (x) = cEl E(Si (r)) ; this
is because the contribution of each Si(x)'s utility is
solely dependent on the resource availability distribu-
tion when the subsequence begins. check rationale of
this and clean it u p some. Another way of thinking
about it is that we are taking E (n i Xi) for all Xi inde-
pendent. Each Xi corresponds to the UCRSP derived
from a monotone subsequence Si(..); it takes only poly-
nomial time to construct each Xi, since all we need t o
do is find Ar,r,j(z) to set up each I (z) , which we have
shown that we can do above. From elementary proba-
bility, we know E (n i Xi) = Ci E (X i) where all of the
Xi are independent.

clean this up generalize t o all problem classes
In closing, we observe that scaling up to multiple re-
sources does not increase the difficulty of the prob-
lem. Suppose there are q resources. For all cases
except UCRSP in the Open Loop model, we define
S (T ~) = nrER S(xj , r) and then generalize Equation
4:

-.

For UCRSP in the Open Loop model, the probabil-
ity of successfully executing only the first i events of
schedule x is now given by

The expected value equation remains unchanged.

The Decision Problem and Numerical
Error
Numerical integration is prevalent in the handling of
these problems. In the worst of all worlds, we need to be
concerned about how this error propagates when decid-
ing what the expectation bound to be used in the deci-
sion problems is. Under these circumstances, we formu-
late the decision problem by passing both B and E the
allowed numerical error tolerance. We then compute
the lower bound on the expected value of the schedule
using the error analysis, and returning "Yes" if we find
a schedule for which the lower bound is 2 B.

We can perform an analysis on equations 4 and ?? to
find out what the error bounds on the expected value
do as a function of the number of events and the error
tolerance of the numerical integration step. Suppose
S is the set of all S(x j l r) . For a problem under the
Closed Loop model, we can use Equation 4 to get the
following equation for the lower bound of the expected
value:

...

(where it is understood that the sums in this equation
are sums of all products of kS(xn-l, r)values.) Thus, if
we receive a "Yes" 8nswer to the decisioE problen given
B and E we know that E(x)lb 2 B. I don't see the
need in doing this error analysis for Equation ??
but I will if we have to.

serious hand waving going on here A subtle but
important argument involves some of the numerical in-
tegration steps, particularly those that produce proba-
bility distributions instead of point probabilities. Since
these distributions are carried throughout the compu-
tation, we must be certain that the error doesn't prop-
agate by means of repeated numerical integration. The

2This formula was incorrect in (?); we thank Neil Yorke-
Smith for identifying the error.

crux of the argument is that we can ensure that the
error at any point in the process is constant. This may
require adapting the error bound passed to the numeri-
cal integrator to ensure that the error on the final prob-
abilities is bounded by the input error bound, but this
can all still be done in constant time.

Complexity Results
As we described in the previous section, the decision
problem for either UCRSP or URRSP is posed given
a set of events xi, their corresponding Cz,r(z), Uz(w),
a resource r with corresponding rmaz and I r (z) , a set
of metric temporal constraints T ~ (z , y) , a bound B and
a numerical error limit B. The problem is to find a
permutation T such that E (~) l b 2 B or report that
no such permutation exists. We now show that these
problems are NP-complete.

Theorem 1 UCRSP is in NP.
Proof 1 Suppose that the UCRSP has no temporal
constraints. First, note we only need to convolve a
linear number of distributions and compute G linear
number of event utilities to compute the schedule util-
ity, whether in the Closed-Loop or Open-Loop models.
The multiplications and sums in the formula presented
above are all polynomial time operations. (This includes
Equation 11; the expectation bounds can be maintained
in a constant number of operations f o r each event an the
permutation.) All that remains is showing that the con-
volution operation is a polynomial t ime operation. In
the worst case, we can do each convolution using Monte
Carlo Integration, which takes constant time fo r a jixed
error ("64). W e can add temporal constraints back to
the UCRSP and preserve NP-completeness. The only
additional machinery needed is t o observe that we can
-validate the temporal constraints in polynomial time us-
ing the results of Dechter, Meiri and Pearl (DMPSI).
Theorem 2 UCRSP is NP-Hard .
Proof 2 W e will reduce the Knapsack problem to
UCRSP. A Knapsack i tem j = (s ,u) where s is the
size and u i s the utility. Thus, we map j to a UCRSP
event j with Cr,j(s) = 1 and U j (u) = '1). The ini-
tial amount of resource r in the UCRSP is the bound
o n the Knapsack size R. The utility bound of the Knap-
sack is mapped to the expected utility bound of our prob-
lem. There are no temporal constraints in the resulting
UCRSP. This mapping requires only linear time. Now
consider a schedule T that satisfies the expected utility
bound of the UCRSP. A n y schedule can be mapped into
a partition ofjobs by the following linear time procedure:
while there i s still any resource available, add ~j to the
Knapsack. If adding ~j violates the resource constraint,
pik for k 2 j are not in the Knapsack. Thus, the set
of Knapsack items obeys the Knapsack constraint. Fur-
ther, by construction of the UCRSP, each event j that
contributes utility i s guaranteed to contribute all of i s
utility, since all such events execute with probability 1.
It i s clear f rom the simplicity of this mapping that the

(expected) utility of the schedule i s the value of a solu-
tion to the Knapsack. Thus, a solution to the UCRSP
is a solution to the Knapsack problem. Thus, UCRSP
is NP-Hard.
Corollary 1 UCRSP i s NP-Complete.

Theorem 3 URRSP is in N P .
Proof 3 Suppose we are given a Permutation T . Only
linear work is required to identify the Si(..). From The-
orem 1, only polynomial work is required to compute
all of the E(SZ(7r)), and only linear work is required to
compute E(T) from E(&(.)). Thus, the total work to
compute the expectation E (T) is polynomial, and thus
URRSP is in NP.
Theorem 4 URRSP i s NP-Hard.

Proof 4 I t is trivial to see that UCRSP can be reduced
to URRSP in polynomial time, since URRSP is a gen-
eralization of UCRSP. Further, any solution to the re-
sulting URRSP i s trivially a solution to the original
UCRSP. Thus, URRSP is NP-Hard.

Modifications
In this section we explore the impact of some more of
the assumptions we have made above.

The first relaxation is to allow two events to be sched-
uled at exactly the same time. In this case, we have
to modify the task execution model, and thus the fail-
ure model. One option is the "conservative" model, in
which two events scheduled simultaneously result in a
single resource allocation. In this case, if the joint re-
source request exhausts the resource, both tasks fail.
Under these assumptions, the problem is still in N P .
However, this model is unlikely to be realistic, so we do
not consider it of interest.

An alternative is to assume that two events scheduled
simultaneously are executed in arbitrary order. Thus,
it is equiprobable that either event occurs first. In this
case, the problem is no longer known to be in NP. The
reason is that the certificate, a set of events such that
the execution order is not determined, may not be ver-
ifiable in polynomial time. Consider an arbitrary set
of simultaneous resource allocations. Is there a per-
mutation of this set that exceeds a utility bound U*?
This is simply a version of UCRSP, which we have just
shown is in NP under the assumption that we enforce
a permutation of event occurences. Thus, if P # NP,
then UCRSP with the relaxed certificate and the liberal
event execution model is not in NP.

The second relaxation is to permit the scheduler to
return a partial ordering of the events rather than a
total ordering. It is easy to see that this puts us in
the same position as allowing two or more simultaneous
events in a schedule. We can no longer guarantee that
a schedule is a solution in polynomial time, because the
validatation problem requires solving an NP-complete
problem. Note that there is an additional complication,
which is determining the probability of any permutation

of the unordered events when computing the expected
utility.

The third relaxation is the limitation on the proba-
bility of resource modification probabilities. As we have
said previously, we have discounted the possibility that
a job could either produce or consume resources. Re-
laxing this assumption requires revising the expectation
calculation again. However, the crux of the argument
still holds. We can produce n independent variables
whose expectations we can sum; in this case, one for
each job. Each of these still required only polynomial
work to build, because we still only need to perform
numerical integrals like those described in Equations 2
and 3.

We now say a few words about the distinction be-
tween renewable resources and reusable resources in the
context of uncertainty. A reusable resource is one that
is allocated by an activity for a period of time, then
returned for other activities to use. Reusable resources
can be modeled using renewable resources quite eas-
ily; an event that consumes the resource represents the
reusable activity start, while an event that represents
the replenishment represents the end. The replenish-
ment is constrained to replenish the same amount of
resource that the start event used. Thus, when the
ending event of an activity is executed, no numerical
integration is required to update the resource availabil-
ity distribution, but it may be necessary to perform
a numerical integration step to determine the success
probability.

pects of these problems are the uncertainty in the re-
source consumption. First, consider the problem of un-
certainty in the utility with certainty in the resource
consumption and no temporal constraints. The prob
lem now is identical to the Knapsack problem. The
task is to find those tasks that can be executed (i.e.
put in the Knapsack) whose expected utility exceeds a
bound. From probability, E(P’(U)Pk(U)) = EP’(U) +
EPk(U), so this is simply another Knapsack problem.
The problem with temporal constraints added simply
limits the tasks that can simultaneously be in the Knap-
sack. Another aspect of the problem with uncertain re-
source consumption that is of interest is that tasks in a
schedule can be partitioned into roughly 3 sets: those
guaranteed to execute, those guaranteed not to execute,
and those that may execute if tasks scheduled earlier do
not overconsume (or overproduce) the resource. This is
a more interesting problem than the traditional schedul-
ing problem with job utility, where tasks are either ac-
cepted or rejected. It is not possible to reject tasks out
of hand until the resource is exhausted with probability

As a final point, we note that the interesting as-. .

Problem Resource
UCRSP Consumable
UCRSP Consumable
URRSP. Replenishable
URRSP ReDlenishable

1.

Ordering Complexity Reductit
Total NP-complete Knapsal

Partial NP-Hard Knapsal
Total NP-complete UCRSl

Partial NP-Hard T JCR.Sl
I & I - . , - - -- I - _-__. ~~

Figure 1: Complexity of various problems of scheduling
with uncertain resource consumption.

spacecraft with an uncertain transmission rate. If there
is sufficient time and bandwidth to transmit more data
than necessary to empty the onboard data buffer, it
should be possible to model this. Doing so requires
modifying the update formula for URRSP under the
Open Loop model but should pose no serious problems.

Summary
might want to fix this up to handle closed/open
loop model In summary, the problem of finding to-
tally ordered schedules of activities with uncertain re-
source impact and uncertain reward such that the ex-
pected utility exceeds a bound is NP-complete. How-
ever, the problem of producing a flexible job ordering is
not in NP if P # n/P because the problem of validating
the flexible schedule is itself an NP-complete problem.
This is in stark contrast to the case of scheduling jobs
whose resource consumption is known for certain ’.

Figure 1 summarizes these results. Note that we have
omitted the results assuming the conservative event ex-
ecution model where simultaneous events make a joint
resource demand and the simple version of the problem
with uncertainty only in the utility of the events. We
have also omitted results on the different event failure
models since these do not change the complexity.

Practice
Empirical Results

beef this section up. We only experimented on UCR-
SPs. (URRSPs were too expensive to import and our
budget for this project was limited.)

We devised three heuristics to choose among unsched-
uled events: maximize the expected partial schedule
utility (E) , minimize the expected resource consump
tion of the job (R), and minimize the probability of
job failure given the current partial schedule (S). To
test the performance of the heuristics we performed a
number of experiments on relatively simple, random do-
mains. We considered problems with between ten and
20 jobs to be scheduled, and with approximately half
that many constraints. Each of the jobs had a Gaussian
distribution for the quantity of resources it consumed,

Modeling

Want to model a scenario in which an event ”fails” due
to a resource violation but utility is still deirved from
the job. An example of this is downlinking data from a

3Note that the reference is for non-rejectable jobs with-
out utility. As long as jobs are definitely included or not

left up in the air and certificates cm still be validated in
polynomial time for the cme of scheduling jobs such that
the reward exceeds a boud

Uncertain this belongs here In Some cases, we might included in a schedule, the exact order of the jobs can be

b
- 1

4

0.8-1.0
E 13.91 37.71 approxidtion, a@Wcjnly fo8UJ33 low variance case.
R 11.72 44.91 Anticor. The a#woxinat2i3@&ctual~.b6ats E for the uncor-
S 11.63 43.91 related pmblen s2by7%16ett~tisdOd& significant amount.

with a range of values for the means. We considered
problems in which the resource consumption means had
uniformly low variance, uniformly high variance, and
random variance, and we varied the resource limit be-
tween ten percent and 50 percent of the expected re-
source requirement for all the jobs. For each setting of
these parameters, we generated 100 problems, and ran
each of the heuristics on each problem.

We evaluated the heuristics by using them greedily
to select a single valid schedule. We then computed the
expected value of that schedule as shown in Equation 4.
The performance of the three heuristics was consistent
over all sizes of problems and resource limits, so we
show the results for a single setting of those parameters
in Table 1. In this case, the problems had 20 jobs, ten
constraints, mean resource usages for the jobs uniformly
distributed between ten and 50, job utilities uniformly
distributed between one and ten, and a resource limit
of 60 (ten percent of the expected resources required
by all the jobs). We were particularly interested in the
effects on the algorithms of changing the variance of
the resource usage of the jobs, so we present results for
three different resource usages.

As the left-hand columns of Table 1 show, the E
heuristic (choose the job that maximizes the expected
utility of the schedule built so far) considerably outper-
forms the other two on essentially all these problems.
The only exception is on a few very small problems on
which both E and R are finding optimal, or very close
to optimal schedules. We expected the E heuristic to
perform poorly when most job’s resource consumption
and utility are positively correlated. We performed ad-
ditional experiments on such problems, but it still out-
performs R and S. When job resource consumption and
utility are anti-correlated R actually performed slightly
better than E , but these results are not statistically
significant. In fact, both heuristics produce very simi-
lar schedules for these problems, and appear to perform
very close to optimal (on small problems we have com-

from the approximation than large jobs, so the approxi-
mation favours small jobs at the beginning of the sched-
ule, which is good for cases such as this with tight re-
source bounds. The approximation performs compara-
bly to R, and is in fact worse on anti-correlated prob-
lems. The computation time is still somewhat larger (a
factor of around 2) for the approximation, which sug-
gests that there is relatively little advantage to using
the approximation over using R for many problems.

Heuristics for Different Failure Models
How do the existing heuristics perform on the two re-
jection models? Can we come up with a sensible alter-
native heuristic for the event failure model?

References
N. Reldiceanu and M. Carlsson. A new multi-resource
cumulatives constraint with negative heights. Proceed-
ings of the 8th International Conference on the Prin-
ciples and Practices of Constraint Programming, 2002.
R. Dechter, I. Meiri, and J. Pearl. Temporal constraint
networks. Artificial Intelligence, 49331-94, 1991.
J. M. Hammersley and D. C. Handscomb. Monte Carlo
Methods. J. Wiley, 1964.
N. Muscettola. Computing the envelope for stepwise-
constant resource allocations. Proceedings of the 9th
International Conference on the Principles and Prac-
tices of Constraint Programming, 2002.

