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Abstract  

We discuss the problem of scheduling tasks that con- 
sume uncertain amounts of a resource with known ca- 
pacity and where the tasks have uncertain utility. In 
these circumstances, we would like to find schedules 
that exceed a lower bound on the expected utility 
when executed. We show that the problems are NP- 
complete, and present some results that characterize 
the behavior of some simple heuristics over a variety of 
problem classes. 

Introduction 
In this paper we discuss scheduling problems in which 
the resource consumption and the utility of the tasks 
to be scheduled are given only as probability distri- 
butions. Due to the uncertainty of the resource con- 
sumption, some scheduled tasks may not actually be 
performed when a schedule is executed. If we assume 
that we have accurate knowledge of the distribution of 
resource consumption and job utility, we can compute 
the expected utility of a schedule by accounting for both 
the uncertain resource consumption and utility. We can 
then find a schedule that maximizes the expected util- 
ity, or find a schedule whose expected utility exceeds a 
lower bound. 

The treatment of events during execution can lead 
to different formalizations of the expected utility of a 
schedule. In one scenario, the execution system can de- 
cide whether to reject an event based on pre-dispatch 
kmwledge of resource requirernents. Thus, event fail- 
ure does not result in any resource mcdification. This is 
appropriate in data acquisition scenarios; the execution 
system may determine that poor quality image data 
will result, and reject an image acquisition task without 
storing any data. In the other scenario, the event is dis- 
patched, the resource is impacted, and then the execu- 
tion system is informed of success or failure. This model 
is appropriate in power system modeling, where unprg 
dictable spikes in power requirement or generation can 
cause faults. Try and figure out  language t o  de- 
scribe ”failures” like downlink operations where 
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the data buffer is ”over-emptied” or re-charge 
operations where a battery is ”over charged” 
bu t  where no utility accrues to these tasks and 
where execution of the schedule can continue. 

Traditionally, constraint reasoning approaches have 
been applied to scheduling problems with known re- 
source consumption and temporal constraints; this has 
led to “global” resource constraints such as those de- 
scribed in (Mus02; BC02). These techniques must be 
extended to handle problems with uncertain resource 
consumption and utility, where the goal is to find sched- 
ules that exceed a utility bound. While these problems 
are similar in spirit to bin-packing problems, numerical 
integration is required to convolve arbitrary probability 
distributions over resource availability. This introduces 
challenges in the application of constraint reasoning a p  
proaches to solve the problems. 

elaborate: difference between ucrsp and urrsp 
When computing the expected utility of a schedule, we 
must compute the probability that tasks fail because 
they attempt to consume or produce too much resource. 
Examples of resources that may behave this way are 
batteries; draining too much energy or attempting to 
over-charge a battery can destroy it. Under this model, 
the failure of one job no longer leads to unconditional 
failure of the rest of the jobs in the schedule. For ex- 
ample, a resource replenishment event that fails can be 
followed by a sequence of successful resource consump- 
tion events. 

The paper is organized as follows. In we present 
theoretical results on the problem of scheduling tasks 
that have imcertain resource consumption, utility, or 
both. In 5 we first describe some likely heuristics, and 
discuss drawbacks to them. We then briefly discuss 
some empirical results. 

Theory 
We first introduce some notation. Let X be a set of 
events, and let R be a set of resources. Let rmaz be 
the capacity of T E R; thus, at all times, the amount 
of available resource is bounded between 0 and rmaz. 
Let IT(z )  be the probability distribution over the initial 
amount of available resource T .  Define C,,,.(z) as the 
probability distribution over the change in availability 



of resource r after executing x. We assume that all 
events' resource impact probabilities are independent; 
that is, the distribution for an event j does not depend 
on the distribution of any other event k # j .  Define 
Uz(w) as the probability distribution over the utility 
received from executing x.  Finally, let T = ~ ~ ( x , y )  be 
a set of binary metric temporal constraints over pairs 
of events x ,  y .  

We will denote a schedule by x and the j t h  event in 
a schedule by xJ. We will assume that only schedules 
that are guaranteed to satisfy all T = ~ ~ ( x , y )  can be 
executed. However, these schedules are not guaranteed 
to satisfy the resource bounds. Our task is to build a 
schedule IT in advance to either maximize the expected 
utility E ( x ) ,  or such that E ( x )  2 B. Throughout this 
paper we will focus on the decision problem. 

clean up a little Initially, we will assume that there 
is only one resource r with maximum capacity rmax. 
We will also assume without loss of generality that the 
probability that there is less than 0 resource initially 
available is 0. We also consider two different classes 
of problem. If Cr,j (z)  > 0 only when z < 0. we will 
call this problem the Uncertain Consumable Resource 
Scheduling Problem (UCRSP). if either CT,,(z) > 0 only 
when z < 0, or Cr,J(z) > 0 only when z > 0 but not 
both, we refer to this problem as the Uncertain Re- 
plenishable Resource Scheduling Problem (URRSP). In 
principle, we could consider a model in which an event 
has a non-zero probability of either consuming or re- 
plenishing an event, but this scenario doesn't strike us 
as realistic. 

The precise definition of E(T)  depends on the event 
execution model as described in the introduction. We 
provide formal definitions for these two models below. 

Closed-Loop Model 
Our first execution model assumes that, prior to actual 
execution, the execution system is informed of the exact 
impact on the resource. We assume that if executing an 
event would lead to a violation of the resource bounds 
that the event is discarded, the resource is unmodified, 
and that no utility for the job is accrued. We call this 
the Closed Loop Model, since (at least implicitly) the 
execution system performs a sensory action on the event 
and then decides how to proceed. 

We define AKJ,r(z) as the probability distribution 
over the availability of resource r after the execution 
or rejection of the first j events of T. For convenience, 
we define A,o,r(z) 3 I r (z ) .  Again for convenience, we 
define TKJ,,.(z) as follows: 

T?r,,(z) = A*,T,J-l(z) * c ? r J , T ( z ) c 7 r J , T ( z )  (1) 
Intuitively, TKJ , r ( z )  is the resource availability distri- 

bution after accounting for the impact of CKJ,r(z ) .  This 
can violate the resource bounds for r ,  in that T?iJ,r(z) 
may exceed 0 for z < 0 or z > rmaz. We can now 
compute the probability that event j successfully exe- 
cutes, conditioned on the execution of the previous j - 1 
events: 

rmar 

S(75,7-) = A T=,,r(z)dz (2) 

This formula says that event IT] will be rejected if it 
attempts to allocate more resource than r has avail- 
able after the successful execution of the first j - 1 
events of x, and succeeds otherwise. Thus, Execution 
of event xJ is permitted, only if it is known that the 
resource bounds will not be exceeded, which happens 
with probability S ( x J , r ) .  In this case, we must chop 
TxJ,,(z) so that it is non-zero only between 0 and rmas, 
and normalize by dividing by S(xJ , r ) .  The rest of 
the time the resource distribution remains unchanged, 
which means we add this to the previous distribution 
of resource availability, ATJ- ,r (2) , after normalizing by 
1 - S(xJ , r ) .  We can now write the following recurrence 
for AKJ,T(z): 

Under this model. failure of an event does not mean 
failure of the rest of the schedule. We are now in a 
position to write the expected value of a schedule T: 

n 

E ( x )  = S(TJ1 T ) E ( U ( T J ) )  (4) 
2= 1 

This formalization works for describing the expected 
value of a schedule for either UCRSP or URRSP. 

Open Loop Model 
Our second execution model assumes that the execution 
system blindly dispatches events without knowledge of 
those events' demands on the resource. Some underly- 
ing system informs the execution system of the resulting 
resource use and event success or failure. We call this 
the Open Loop Model. 

We preserve the intuitive definitions of 
TKJ,T(z),AKJ,,.(z) and S(ITJ,r). In this case, how- 
ever, we modify the recurrence of ATJ,,(z); this now 
must acknowledge that the resource is modified un- 
conditionally by event execution. This means we need 
to accumulate the probability of resource exhaustion, 
which was not a problem in the Closed Loop case. For 
simplicity, we will first deveiop the expectation formula 
for UCRSP, then use this to develop the formula 
for URRSP. In UCRSP we assume that resource is 
consumed, and so the recurrence for AKJ,r ( z )  is as 
follows~ : 

(5) 

'Our earlier work (?) implicitly used this model but the 
update formula was incorrect; it has been corrected in the 
present paper. 



For the UCRSP, the failure of event xi implies failure 
of xk,  IC > j .  If there are n events in x, then the proba- 
bility of successfully executing only the first i events of 
schedule R is given by 

i 

X ( x i >  = (1 - ~ ( x ,  r, i + 1)) n ~ ( x ,  r,  j )  ( 7 )  

(where we define S(x, r, n + 1) = 0). The expected 
utility of these i events is E(U(x j ) ) .  So the ex- 
pected utility of the schedule T for UCRSP is given by 

3=1 

In preparation for writing the expectation of URRSP 
we introduce the following definition. 

Definition 1 Let x be a permutation of jobs f o r  a 
URRSP. A monotone subsequence of x is  a sequence of 
events all of which modify the resource in the same way, 
i.e. all producers or all consumers. Let Si(x) be these 
subsequences. I n  linear time, we can identify all Si(n), 
and there are m 5 n of them. Let Si(..) be a consuming 
subsequence if V j  E Si(x)Cr,j(z) > 0 only when z < 0,  
and a producing subsequence if V j  E Si(x)Cr,j(z) > 0 
only when z > 0. 

We can now compute the expected value E ( x )  for 
URRSP as follows. First, observe that each Si(x) de- 
fines a UCRSP problem. If Si(..) is a consuming sub 
sequence, this is obvious. If Si(x) is a producing subse- 
quence, we can treat productions as consumptions and 
invert the resource bounds. Equation 8 shows how to 
compute E(Si(x))  But E ( x )  = cEl  E(Si (r ) ) ;  this 
is because the contribution of each Si(x)'s utility is 
solely dependent on the resource availability distribu- 
tion when the subsequence begins. check rationale of 
this and clean it u p  some. Another way of thinking 
about it is that we are taking E ( n i  Xi) for all Xi inde- 
pendent. Each Xi corresponds to the UCRSP derived 
from a monotone subsequence Si(..); it takes only poly- 
nomial time to construct each Xi, since all we need t o  
do is find Ar,r,j(z) to set up each I ( z ) ,  which we have 
shown that we can do above. From elementary proba- 
bility, we know E ( n i  Xi) = Ci E ( X i )  where all of the 
Xi are independent. 

clean this up generalize t o  all problem classes 
In closing, we observe that scaling up to multiple re- 
sources does not increase the difficulty of the prob- 
lem. Suppose there are q resources. For all cases 
except UCRSP in the Open Loop model, we define 
S ( T ~ )  = nrER S(xj ,  r )  and then generalize Equation 
4: 

-. 

For UCRSP in the Open Loop model, the probabil- 
ity of successfully executing only the first i events of 
schedule x is now given by 

The expected value equation remains unchanged. 

The Decision Problem and Numerical 
Error 
Numerical integration is prevalent in the handling of 
these problems. In the worst of all worlds, we need to be 
concerned about how this error propagates when decid- 
ing what the expectation bound to be used in the deci- 
sion problems is. Under these circumstances, we formu- 
late the decision problem by passing both B and E the 
allowed numerical error tolerance. We then compute 
the lower bound on the expected value of the schedule 
using the error analysis, and returning "Yes" if we find 
a schedule for which the lower bound is 2 B. 

We can perform an analysis on equations 4 and ?? to 
find out what the error bounds on the expected value 
do as a function of the number of events and the error 
tolerance of the numerical integration step. Suppose 
S is the set of all S(x j l r ) .  For a problem under the 
Closed Loop model, we can use Equation 4 to get the 
following equation for the lower bound of the expected 
value: 

... 

(where it is understood that the sums in this equation 
are sums of all products of kS(xn-l, r)values.) Thus, if 
we receive a "Yes" 8nswer to the decisioE problen given 
B and E we know that E(x)lb 2 B. I don't see the 
need in doing this error analysis for Equation ?? 
but I will if we have to. 

serious hand waving going on here A subtle but 
important argument involves some of the numerical in- 
tegration steps, particularly those that produce proba- 
bility distributions instead of point probabilities. Since 
these distributions are carried throughout the compu- 
tation, we must be certain that the error doesn't prop- 
agate by means of repeated numerical integration. The 

2This formula was incorrect in (?); we thank Neil Yorke- 
Smith for identifying the error. 



crux of the argument is that we can ensure that the 
error at any point in the process is constant. This may 
require adapting the error bound passed to the numeri- 
cal integrator to ensure that the error on the final prob- 
abilities is bounded by the input error bound, but this 
can all still be done in constant time. 

Complexity Results 
As we described in the previous section, the decision 
problem for either UCRSP or URRSP is posed given 
a set of events xi, their corresponding Cz,r(z),  Uz(w), 
a resource r with corresponding rmaz and I r ( z ) ,  a set 
of metric temporal constraints T ~ ( z ,  y ) ,  a bound B and 
a numerical error limit B. The problem is to find a 
permutation T such that E ( ~ ) l b  2 B or report that 
no such permutation exists. We now show that these 
problems are NP-complete. 

Theorem 1 UCRSP is in NP. 
Proof 1 Suppose that the UCRSP has no temporal 
constraints. First, note we only need to convolve a 
linear number of distributions and compute G linear 
number of event utilities to compute the schedule util- 
ity, whether in the Closed-Loop or Open-Loop models. 
The multiplications and sums in the formula presented 
above are all polynomial time operations. (This includes 
Equation 11; the expectation bounds can be maintained 
in a constant number of operations f o r  each event an the 
permutation.) All that remains is  showing that the con- 
volution operation is  a polynomial t ime operation. In 
the worst case, we can do each convolution using Monte 
Carlo Integration, which takes constant time fo r  a jixed 
error ("64). W e  can add temporal constraints back to 
the UCRSP and preserve NP-completeness. The only 
additional machinery needed is t o  observe that we can 
-validate the temporal constraints in polynomial time us- 
ing the results of Dechter, Meiri and Pearl (DMPSI). 
Theorem 2 UCRSP is NP-Hard .  
Proof 2 W e  will reduce the Knapsack problem to 
UCRSP. A Knapsack i tem j = ( s ,u )  where s is the  
size and u i s  the utility. Thus, we map j to a UCRSP 
event j with Cr,j(s) = 1 and U j ( u )  = '1). The ini- 
tial amount of resource r in the UCRSP is  the bound 
o n  the Knapsack size R. The utility bound of the Knap- 
sack is  mapped to the expected utility bound of our prob- 
lem. There are no temporal constraints in the resulting 
UCRSP. This mapping requires only linear time. Now 
consider a schedule T that satisfies the expected utility 
bound of the UCRSP. A n y  schedule can be mapped into 
a partition ofjobs by the following linear time procedure: 
while there i s  still any resource available, add ~j to the 
Knapsack. If adding ~j violates the resource constraint, 
pik for k 2 j are not in the Knapsack. Thus, the set 
of Knapsack items obeys the Knapsack constraint. Fur- 
ther, by construction of the UCRSP, each event j that 
contributes utility i s  guaranteed to  contribute all of i s  
utility, since all such events execute with probability 1. 
It i s  clear f rom the simplicity of this mapping that the 

(expected) utility of the schedule i s  the value of a solu- 
tion to the Knapsack. Thus, a solution to the UCRSP 
is a solution to the Knapsack problem. Thus, UCRSP 
is NP-Hard. 
Corollary 1 UCRSP i s  NP-Complete.  

Theorem 3 URRSP is  in N P .  
Proof 3 Suppose we are given a Permutation T .  Only 
linear work is required to identify the Si(..). From The- 
orem 1, only polynomial work is required to compute 
all of the E(SZ(7r)), and only linear work is required to 
compute E(T)  from E(&(.)). Thus, the total work to 
compute the expectation E ( T )  is polynomial, and thus 
URRSP is  in NP. 
Theorem 4 URRSP i s  NP-Hard.  

Proof 4 I t  is trivial to see that UCRSP can be reduced 
to URRSP in polynomial time, since URRSP is  a gen- 
eralization of UCRSP. Further, any solution to the re- 
sulting URRSP i s  trivially a solution to the original 
UCRSP. Thus, URRSP is NP-Hard.  

Modifications 
In this section we explore the impact of some more of 
the assumptions we have made above. 

The first relaxation is to allow two events to be sched- 
uled at exactly the same time. In this case, we have 
to modify the task execution model, and thus the fail- 
ure model. One option is the "conservative" model, in 
which two events scheduled simultaneously result in a 
single resource allocation. In this case, if the joint re- 
source request exhausts the resource, both tasks fail. 
Under these assumptions, the problem is still in N P .  
However, this model is unlikely to be realistic, so we do 
not consider it of interest. 

An alternative is to assume that two events scheduled 
simultaneously are executed in arbitrary order. Thus, 
it is equiprobable that either event occurs first. In this 
case, the problem is no longer known to be in NP. The 
reason is that the certificate, a set of events such that 
the execution order is not determined, may not be ver- 
ifiable in polynomial time. Consider an arbitrary set 
of simultaneous resource allocations. Is there a per- 
mutation of this set that exceeds a utility bound U*? 
This is simply a version of UCRSP, which we have just 
shown is in NP under the assumption that we enforce 
a permutation of event occurences. Thus, if P # NP, 
then UCRSP with the relaxed certificate and the liberal 
event execution model is not in NP. 

The second relaxation is to permit the scheduler to 
return a partial ordering of the events rather than a 
total ordering. It is easy to see that this puts us in 
the same position as allowing two or more simultaneous 
events in a schedule. We can no longer guarantee that 
a schedule is a solution in polynomial time, because the 
validatation problem requires solving an NP-complete 
problem. Note that there is an additional complication, 
which is determining the probability of any permutation 



of the unordered events when computing the expected 
utility. 

The third relaxation is the limitation on the proba- 
bility of resource modification probabilities. As we have 
said previously, we have discounted the possibility that 
a job could either produce or consume resources. Re- 
laxing this assumption requires revising the expectation 
calculation again. However, the crux of the argument 
still holds. We can produce n independent variables 
whose expectations we can sum; in this case, one for 
each job. Each of these still required only polynomial 
work to build, because we still only need to perform 
numerical integrals like those described in Equations 2 
and 3. 

We now say a few words about the distinction be- 
tween renewable resources and reusable resources in the 
context of uncertainty. A reusable resource is one that 
is allocated by an activity for a period of time, then 
returned for other activities to use. Reusable resources 
can be modeled using renewable resources quite eas- 
ily; an event that consumes the resource represents the 
reusable activity start, while an event that represents 
the replenishment represents the end. The replenish- 
ment is constrained to replenish the same amount of 
resource that the start event used. Thus, when the 
ending event of an activity is executed, no numerical 
integration is required to update the resource availabil- 
ity distribution, but it may be necessary to perform 
a numerical integration step to determine the success 
probability. 

pects of these problems are the uncertainty in the re- 
source consumption. First, consider the problem of un- 
certainty in the utility with certainty in the resource 
consumption and no temporal constraints. The prob 
lem now is identical to the Knapsack problem. The 
task is to find those tasks that can be executed (i.e. 
put in the Knapsack) whose expected utility exceeds a 
bound. From probability, E(P’(U)Pk(U)) = EP’(U) + 
EPk(U), so this is simply another Knapsack problem. 
The problem with temporal constraints added simply 
limits the tasks that can simultaneously be in the Knap- 
sack. Another aspect of the problem with uncertain re- 
source consumption that is of interest is that tasks in a 
schedule can be partitioned into roughly 3 sets: those 
guaranteed to execute, those guaranteed not to execute, 
and those that may execute if tasks scheduled earlier do 
not overconsume (or overproduce) the resource. This is 
a more interesting problem than the traditional schedul- 
ing problem with job utility, where tasks are either ac- 
cepted or rejected. It is not possible to reject tasks out 
of hand until the resource is exhausted with probability 

As a final point, we note that the interesting as-. . 

Problem Resource 
UCRSP Consumable 
UCRSP Consumable 
URRSP. Replenishable 
URRSP ReDlenishable 

1. 

Ordering Complexity Reductit 
Total NP-complete Knapsal 

Partial NP-Hard Knapsal 
Total NP-complete UCRSl 

Partial NP-Hard T JCR.Sl 
I &  I - . , - - -- I - _-__. ~~ 

Figure 1: Complexity of various problems of scheduling 
with uncertain resource consumption. 

spacecraft with an uncertain transmission rate. If there 
is sufficient time and bandwidth to transmit more data 
than necessary to empty the onboard data buffer, it 
should be possible to model this. Doing so requires 
modifying the update formula for URRSP under the 
Open Loop model but should pose no serious problems. 

Summary 
might want to fix this up to handle closed/open 
loop model In summary, the problem of finding to- 
tally ordered schedules of activities with uncertain re- 
source impact and uncertain reward such that the ex- 
pected utility exceeds a bound is NP-complete. How- 
ever, the problem of producing a flexible job ordering is 
not in NP if P # n/P because the problem of validating 
the flexible schedule is itself an NP-complete problem. 
This is in stark contrast to the case of scheduling jobs 
whose resource consumption is known for certain ’. 

Figure 1 summarizes these results. Note that we have 
omitted the results assuming the conservative event ex- 
ecution model where simultaneous events make a joint 
resource demand and the simple version of the problem 
with uncertainty only in the utility of the events. We 
have also omitted results on the different event failure 
models since these do not change the complexity. 

Practice 
Empirical Results 

beef this section up. We only experimented on UCR- 
SPs. (URRSPs were too expensive to import and our 
budget for this project was limited.) 

We devised three heuristics to choose among unsched- 
uled events: maximize the expected partial schedule 
utility ( E ) ,  minimize the expected resource consump 
tion of the job (R), and minimize the probability of 
job failure given the current partial schedule (S). To 
test the performance of the heuristics we performed a 
number of experiments on relatively simple, random do- 
mains. We considered problems with between ten and 
20 jobs to be scheduled, and with approximately half 
that many constraints. Each of the jobs had a Gaussian 
distribution for the quantity of resources it consumed, 

Modeling 

Want to model a scenario in which an event ”fails” due 
to a resource violation but utility is still deirved from 
the job. An example of this is downlinking data from a 

3Note that the reference is for non-rejectable jobs with- 
out utility. As long as jobs are definitely included or not 

left up in the air and certificates cm still be validated in 
polynomial time for the cme of scheduling jobs such that 
the reward exceeds a boud  

Uncertain this belongs here In Some cases, we might included in a schedule, the exact order of the jobs can be 
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0.8-1.0 
E 13.91 37.71 approxidtion, a@Wcjnly fo8UJ33 low variance case. 
R 11.72 44.91 Anticor. The a#woxinat2i3@&ctual~.b6ats E for the uncor- 
S 11.63 43.91 related pmblen s2by7%16ett~tisdOd& significant amount. 

with a range of values for the means. We considered 
problems in which the resource consumption means had 
uniformly low variance, uniformly high variance, and 
random variance, and we varied the resource limit be- 
tween ten percent and 50 percent of the expected re- 
source requirement for all the jobs. For each setting of 
these parameters, we generated 100 problems, and ran 
each of the heuristics on each problem. 

We evaluated the heuristics by using them greedily 
to select a single valid schedule. We then computed the 
expected value of that schedule as shown in Equation 4. 
The performance of the three heuristics was consistent 
over all sizes of problems and resource limits, so we 
show the results for a single setting of those parameters 
in Table 1. In this case, the problems had 20 jobs, ten 
constraints, mean resource usages for the jobs uniformly 
distributed between ten and 50, job utilities uniformly 
distributed between one and ten, and a resource limit 
of 60 (ten percent of the expected resources required 
by all the jobs). We were particularly interested in the 
effects on the algorithms of changing the variance of 
the resource usage of the jobs, so we present results for 
three different resource usages. 

As the left-hand columns of Table 1 show, the E 
heuristic (choose the job that maximizes the expected 
utility of the schedule built so far) considerably outper- 
forms the other two on essentially all these problems. 
The only exception is on a few very small problems on 
which both E and R are finding optimal, or very close 
to optimal schedules. We expected the E heuristic to 
perform poorly when most job’s resource consumption 
and utility are positively correlated. We performed ad- 
ditional experiments on such problems, but it still out- 
performs R and S. When job resource consumption and 
utility are anti-correlated R actually performed slightly 
better than E ,  but these results are not statistically 
significant. In fact, both heuristics produce very simi- 
lar schedules for these problems, and appear to perform 
very close to optimal (on small problems we have com- 

from the approximation than large jobs, so the approxi- 
mation favours small jobs at the beginning of the sched- 
ule, which is good for cases such as this with tight re- 
source bounds. The approximation performs compara- 
bly to R, and is in fact worse on anti-correlated prob- 
lems. The computation time is still somewhat larger (a 
factor of around 2) for the approximation, which sug- 
gests that there is relatively little advantage to using 
the approximation over using R for many problems. 

Heuristics for Different Failure Models 
How do the existing heuristics perform on the two re- 
jection models? Can we come up with a sensible alter- 
native heuristic for the event failure model? 
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