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1 Introduction

As XML is going to become the standard document format, there is still the
legacy problem of large amounts of text (written in the past as well as today)
that are not available in this format. In order to exploit the benefits of XML,
these legacy texts must be converted into XML. In this chapter, we discuss the
issues of automatic XML markup of documents. We give a survey on existing
approaches, and we describe a specific system in some detail.

When talking about XML markup, we can roughly distinguish between
three types of markup:

e Macro-level markup deals with the global visual and logicalstructure of a
document (e.g. part, chapter, section down to the paragraph level.)

e Micro-level markup is used for marking single words or word groups. For
example, in news, person and company names, locations and dates may
be marked up, possibly along with their roles in the event described (e.g.
a company merger).

o Symbol-level markup uses symbolic names as content of specific elements
in order to describe content that is not plain text (e.g. MathML for math-
ematical formulas and CML for chemical formulas). Since this type of con-
tent is usually represented in various formats in legacy documents, specific
transformation routines should be applied in order to convert these into
XML. We will not consider this type of markup in the remainder of this
chapter.

Micro and macro-level markup require different methods for performing auto-
matic markup: Whereas macro-level markup is mainly based on information
about the layout of a document, micro-level markup typically requires basic
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linguistic procedures in combination with application-specific knowledge. We
will describe the details of these two approaches in the following sections.

Adding markup to a document increases its value by making its infor-
mation more accessible. Without markup, from a system’s point of view, a
document is just a long sequence of words, and thus the set of operations that
can be performed on such a document is rather limited. Once we have markup,
however, the system is able to exploit the implicit semantics of the markup
tags, thus allowing for operations that are closer to the semantic level. Here
we give a few examples:

e Markup at the macro level supports a user in navigating through the logical
structure of a document.

e Content-oriented retrieval aims at retrieving meaningful units for a given
query that refers only to the content, but not to the structure of the
target elements. Whereas classical passage retrieval [1] can only select text
passages of a fixed size, XML-based retrieval is able to select XML elements
based on the explicit logical structure as represented in the macro-level
markup.

e  When micro-level markup is used for specifying the data type of element
content (e.g. date, location, person name, company name), type-specific
search predicates may be used in retrieval, thus supporting high-precision
searches.

e Another dimension of micro-level markup is the role of element content
(e.g. author vs. editor, departure location vs. arrival location, starting
date vs. ending date). Here again, precision of retrieval can be increased
by referring to these elements; also, browsing through the values occurring
in certain roles may ease information access for a user.

e Text mining can extract the contents of specific elements and stores them
in a separate database in order to perform data-mining-like analysis oper-
ations.

The remainder of this chapter is structured as follows: In Section 2, we
briefly describe methods for macro-level markup. In Section 3, we give a survey
over Information Extraction (IE) methods and discuss their application for
micro-level markup. In Section 4, we present a case study where a toolkit for
automatic markup, developed by our research group, is applied to articles from
encyclopedias of art. Finally, we conclude this chapter with some remarks.

2 Markup of Macro Structures

In case the original document is available in the electronic format, markup
of the macro structure of the document is a matter of conversion, translation
or transformation from the original structure to the target (XML) elements.
Otherwise, providing an electronic representation of the document is the pre-
requisite of any markup at both macro and micro level.
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In order to get an electronic representation, the original document must be
processed. Optical Character Recognition (OCR) is the process of converting
text from paper into a form that computers can manipulate, by scanning the
paper, producing image, analysing it and providing an electronic file.

In this way, the textual content of the document as well as its structure
can be extracted. The document structure can be expressed in two ways:

e Presentation oriented: how the document looks.
e Logically: how the document parts are related to each other.

Markup of these (macro) structures have different applications. Presenta-
tion markup can mainly be used for enhancing the layout of the document.
Southall mentions that presentation markup helps us to display a document’s
visual structure which contributes to the document’s meaning [2]. Logical
markup serves for a variety of purposes, as mentioned in the previous section.

Taghva et al. introduce a system that automatically markups technical
documents, based on information provided by an (OCR) device, which, in
addition to its main task, provides detailed information about page layout,
word geometry and font usage [3]. An automatic markup program uses this
information, combined with dictionary lookup and content analysis, to identify
structural components of the text. These include the document title, author
information, abstract, sections, section titles, paragraphs, sentences and de-
hyphenated words.

Moreover, the logical structure of a document can be extracted from its
layout. For this purpose, there are two approaches:

Top-down: starting with the presentation markup and joining segmented
pages into sections, sections into paragraphs, paragraphs into sentences
and sentences into words. This is the preferred approach in the literature.

Bottom-up: starting with words and grouping words into sentences, sentences
to paragraphs and paragraphs into sections.

Having detailed information about presentation attributes of single words
(its page, exact location on the page and font) one can use this data to form
sentences, paragraphs and sections [3].

Furthermore, Hitz et al. advocate the use of synthetic document images
as a basis for extracting the logical structure of a document, in order to deal
with different formats and document models [4].

3 Survey on Information Extraction

The task of information extraction can be considered as a problem of template
filling: For a given domain, users are interested in facts of a certain type
(e.g. joint ventures, management changes), which are to be extracted from a
collection of texts. For this purpose, a template form has to be defined, and the
system is supposed to fill it. Accordingly, the system has to scan large volumes
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of text and instantiate the template for each event of the specified type, by
filling it with the data extracted from the text. Thus, we can assert that
Information Extraction (IE) is more challenging than Information Retrieval
(IR): whereas the latter only aims at locating the relevant documents for a
given query, the former goes one step further, by extracting facts from the text
of the relevant documents. Since in IE, as in IR, systems cannot yield perfect
results for a given task, the quality of the result is a crucial issue. For this
purpose, standard IR measures like recall, precision and the F-measure are
applied for IE as well. Evaluation of IE systems have been the major objective
of the Message Understanding Conferences (MUC) [5], where participating
groups were competing in developing systems for a given task. The MUC
proceedings also give a good overview of the range of approaches tried.

In the following, we give a brief survey of the state of the art in information
extraction. For a broader and more detailed description, see e.g. [6, 7, 8].

3.1 Approaches for Building IE Systems

For building information extraction systems, there are two generic types of
approaches:

Knowledge engineering approach: Here the rules to be applied by the system
are constructed manually by a so-called knowledge engineer. This strategy
may be applied to the construction of the grammar rules as well as to the
discovery and formulation of the domain patterns. Of course, effective rule
sets can be constructed only iteratively, by starting with simple rule sets,
evaluating the results and refining them stepwise. Thus the knowledge
engineering approach is rather laborious.

Machine learning approach: To apply this approach, also called automatic
training, we need annotated corpora. For example, a name recogniser
would be trained by annotating a corpus of texts with the domain-relevant
proper names. Alternatively, training data can be obtained by close in-
teraction with the user, where the system proposes new rules, which are
either confirmed or rejected by the user. For learning the rules, statistical
methods are used.

These two types of approaches can be applied at various stages of the IE pro-
cess (see below). Also, it is possible to mix the strategies, e.g. one can use
machine learning for named entity recognition and knowledge engineering for
formulating the domain patterns. Generally speaking, knowledge engineering
should be preferred in case appropriate knowledge (e.g. lexicons) and human
resources (i.e. rule writers) are available, whereas the machine learning ap-
proach should be preferred when the required knowledge and resources are
missing, but enough training data is available. In terms of achievable per-
formance, although the former approach has advantages, usually the latter
approach also leads to good results.
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3.2 System Architecture

A typical IE system consists of the following four major blocks:

1. Tokenisation performs word segmentation, which is trivial for European
languages (words are separated by blanks and / or punctuation symbols),
whereas some Asian languages require sophisticated methods for mapping
a text into a sequence of words.

2. Morphological and lexical processing deals with the recognition of inflected
word forms.

3. Syntactic analysis is applied to the output of the previous stage, and can
be shallow or aim at full parsing.

4. Domain analysis finally fills the specified template based on the input
from the previous stages.

In the following, we describe the last three stages in more detail.
Morphological and Lexical Processing

Following tokenisation, the system first has to detect inflectional variants of
word forms. For some languages, e.g. English and Japanese, this task can
be accomplished by simple string processing rules, whereas languages with a
complex morphology, e.g. German and Finnish, usually require a lexicon in
order to map the inflected word forms to the non-inflected ones. Furthermore,
during this step compound words should be segmented into their components,
which, again, requires a lexicon.

Following the morphological analysis, a lexical lookup retrieves syntactical
and / or semantical information for the given words. However, many applica-
tion domains use a specific sub language which is hardly covered by a stan-
dard lexicon. Thus, most approaches use small, domain specific lexicons. In
any case, lexical coverage will always be limited, thus the system design has
to take lexical incompleteness into account.

In order to ease subsequent syntactic analysis, most systems perform part
of speech tagging. Simple approaches just collect the unigram tag frequencies
of a word and then apply a rareness threshold, whereas other methods also
take into account bigram frequencies in order to reduce the ambiguity of word
senses.

The most important task in the morphological and lexical component is
the recognition of names (e.g. person, product or company names, locations)
and structured entities (e.g. dates, times), which are typically too numerous
to be included in a lexicon. Whereas elements of the latter group can often be
recognised by means of simple regular expressions, the elements of the former
group require the development of appropriate recognisers, using either the
knowledge engineering or the machine learning approach. Most name recog-
nition systems use the latter strategy in combination with Hidden Markov
Models. However, large training corpora (> 100 K words) are needed in order
to achieve a high performance, and increasing the training data size only leads
to log-linear improvements.

morphological
processing

lexical processing
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Syntactic Analysis

The most natural approach to syntactic analysis would be the development of
a full parser. However, experiments have shown that such an approach results
in a very slow system, which is also error-prone. Thus, most approaches in this
area aim at shallow parsing, using a finite-state grammar. The justification
for this strategy lies in the fact that IE is directed toward extracting relatively
simple relationships among singular objects. These finite-state grammars fo-
cus mainly on noun groups and verb groups, since they contain most of the
relevant information. As attributes of these constituents, numbers and def-
initeness are extracted from the determiner of noun groups, and tense and
voice from verb groups. In a second parsing phase, prepositional phrases are
handled; here mainly the prepositions “of” and “for” are considered, whereas
treatment of temporal and locative adjuncts is postponed to the domain anal-
ysis phase.

Domain Analysis

Before the extraction of facts can start, first the problem of coreference must
be solved. Since text writers typically use varying notations for referring to
the same entity, IE systems struggle with the problem of resolving these coref-
erences (e.g. “IBM”, “International Business Machines”, “Big Blue”, “The
Armonk-based company”). Even person names already pose severe problems
(e.g. “William H. Gates”, “Mr. Gates”, “William Gates”, “Bill Gates”, “Mr.
Bill H. Gates”). In addition, anaphoric references (pronouns or discourse def-
inite references) must be resolved. Although there is rich literature on this
specific problem, most approaches assume full parsing and thus are not appli-
cable for IE.

In [6], a general knowledge engineering approach for coreference is de-
scribed: In the first step, for a candidate referring expression (noun phrase),
the following attributes are determined: sortal information (e.g. company vs.
location), number (single vs. plural), gender and syntactic features (e.g. name,
pronoun, definite vs. indefinite). Then, for each candidate referring expression,
the accessible antecedents are determined (e.g. for names the entire preceding
text, for pronouns only a small part of it), which are subsequently filtered with
a semantic / sortal consistency check (based on the attributes determined in
the first step), and the remaining candidates are filtered by dynamic syntactic
preferences (considering the relative location in the text).

Once there are solutions for all the problems described above, the core
task of IE can be addressed. As a prerequisite, an appropriate template form
must be defined: Typically, users would give an informal specification of the
information bits they are interested, for which then an adequate and useful
representation format must be specified.

For filling this template, there are two knowledge engineering approaches:

e The molecular approach aims at filling the complete template in one step.
For this purpose, the knowledge engineer reads some texts in order to
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identify the most common and most reliably indicative patterns in which
relevant information is expressed. For these patterns appropriate rules are
formulated, then one moves on to less common but still reliable patterns.
Thus, this approach aims initially at high precision, and then improves
recall incrementally.

e The atomic approach, in contrast, is based on the assumption that every
noun phrase of the right sort and every verb of the right type (indepen-
dently of the syntactic relations among them) indicates an event / relation-
ship of interest. Thus, one starts with high recall and low precision, with
incremental development of filters for false positives. This approach is only
feasible if entities in the domain have easily determined types, and there
is scarcely more than one template slot where an entity of a given type
may fit - as a negative example, a template for management changes would
contain at least two slots (predecessor / successor) where a person can be
filled in.

In most cases both approaches produce only partial descriptions, which must
be merged subsequently (e.g. in a template for management changes, one por-
tion of the text may mention company, position and the new person filling it,
whereas the predecessor is mentioned in a subsequent paragraph). This merg-
ing step is a specific type of unification. A knowledge engineering approach
for this problem is described in [6]: Starting from typed slots, type-specific
procedures are developed which compare two candidates for inconsistencies,
coreference and subsumption; in addition, application-specific heuristics are
necessary in most cases.

In general, major parts of an IE system are rather application-dependent,
and there is little experience with the development of portable systems. On
the other hand, experience from the MUC conference shows that approaches
based on general-purpose language analysis systems yield lower performance
than application-specific developments.

3.3 Types of IE Problems

Above, we have described the general structure of IE tasks and the architec-
ture of IE systems. A more detailed analysis and categorisation of IE problems
is described in [9]. In this paper, the authors distinguish between source prop-
erties and extraction methods, and develop taxonomies for issues related to
these two subjects.

With respect to the source properties, the following aspects are considered
to be the more important ones:

Structure can be free, tagged or even follow a specified schema.
Topology distinguishes between single and multiple documents to be con-
sidered for filling a single template.

e Correctness refers to the amount and type (format, content) of errors that
may occur in the input.
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Regularity specifies whether instances of source documents may be regular
in format or vary widely.

Stability characterises type and frequency of source documents with re-
spect to content and structure.

Interaction specifies the ways in which a source notifies an IE system about
data changes - which may invalidate the current extraction description) -
possibly along with a description of the changes.

Extraction methods may be characterised by the following features:

The degree of automation, ranging from manual (programming by hand
or by demonstration) to (semi-)automatic, where the type of the learning
approach and the seed structure are important characteristics.

The extraction engine may be based on a finite state automaton or a
context-free grammar. Alternatively, if the source data already conforms
to a certain data model, a query engine based on that model can be applied.
Finally, some systems follow none of these approaches and use procedural
descriptions instead.

Change and error handling describes the ways in which the extraction en-
gine copes with these problems. Without additional provisions, the system
might fail; it should at least detect changes and give an appropriate warn-
ing. Some systems are able to compensate for errors to a certain extent. A
detect and learn strategy would even go one step further and try to adapt
the system dynamically.

Use of source knowledge simplifies the rule set for IE. This knowledge may
be at the syntactical as well as semantic level.

Use of target knowledge refers to the fact that both syntax (e.g. free text
vs. record structure) and semantics (e.g. predefined list of terms) of the
desired output may be restricted

Finally, transformation capabilities describe the level of transformation,
which may be at the structural or the semantic level.

3.4 Information Extraction for Automatic Markup

The discussion above has focused on IE methods, and little has been said
about their relationship with the problem of Automatic Markup (AM). Cun-
ningham distinguishes five levels of IE tasks, which can also be used for char-
acterising different levels of automatic markup [8]:

Named entity recognition extracts entities of one or more given types. For
automatic markup, this method can be used for assigning appropriate tags
to these names as they occur in the text.

Coreference resolution recognises different notations for the same entity.
In XML, this fact could be marked by adding ID /IDREF attributes to
the tags.
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e Template element reconstruction deals with structured entities, where en-
tity names and attributes are coordinated. In terms of XML, this would
correspond to a structured element.

e Template relation reconstruction requires the identification of the relation
between the template elements, e.g. an employee relationship between a
company and a person. For automatic markup, this step would result in
assigning additional tags characterising the roles of entities in such a (bi-
nary) relationship

e Scenario template production finally refers to the filling of the complete
template (including the merger process). This corresponds to automatic
markup for DTD describing the relevant aspects of the application.

Following the machine learning approach, a number of algorithms specifi-
cally designed for automatic markup have been described in the literature.

MarkitUp! [10] is an early predecessor of automatic markup systems. It
uses regular expressions and uses a kind of inductive logic programming for
abstracting from the given examples. In addition, rules may be specified ex-
plicitly by the user, and the system combines both types of rules in a single
grammar.

RAPIER [11] is a system for semi-structured text that uses a form of
inductive logic programming for inferring rules from a corpus tagged with
target templates. Here each slot filler has three fields: the target field, the
tokens preceding the target phrase, and those following it. Rapier considers
lexical, semantical and morphological constraints.

WHISK [12] is a rather general rule extraction system using regular ex-
pressions as extraction patterns. When combined with a parser, the system
can also perform free text analysis. For learning, WHISK uses a covering
algorithm inducing rules top-down.

SRV [13] considers all possible phrases as potential slot fillers. A multi-
strategy approach combines evidence from three classifiers (rote learner, naive
Bayes classifier, relational rule learner).

LearningPINOCCHIO [14] is based on a covering algorithm that learns
rules by bottom-up generalisation of instances in a tagged corpus. Unlike
other systems, LearningPINOCCHIO recognises starting tags and ending tags
separately, which allows for easier generalisation in rule writing.

template element
reconstruction

template relation
reconstruction

scenario template
production
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4 The Vasari Project

Vasari? aims at developing a Web portal providing comprehensive knowledge
about art, artists and works of arts for scientists and experts as well as for
other interested people.

The starting point for the project are different encyclopedias of art in
German which have been scanned and processed with an OCR software. The
result is a collection of fairly unstructured plain texts representing the contents
of the encyclopedias. An example of how such an texts like is given in Figure 1°

The task of the Vasari project is to develop means for doing automatic
markup of the knowledge contained in these texts at the micro level, for pro-
viding search and navigational structures that allow for effective exploration
of the knowledge.

Da Vinci, Leonardo, born in Anchiano, near Vinci, 15 April 1452, died in Am-
boise, near Tours, 2 May 1519. Italian painter, sculptor, architect, designer, the-
orist, engineer and scientist. He was the founding father of what is called the
High Renaissance style and exercised an enormous influence on contemporary and
later artists. His writings on art helped establish the ideals of representation and
expression that were to dominate European academies for the next 400 years. The
standards he set in figure draughtsmanship, handling of space, depiction of light
and shade, representation of landscape, evocation of character and techniques of
narrative radically transformed the range of art. A number of his inventions in
architecture and in various fields of decoration entered the general currency of
16th-century design.

Fig. 1. Example text of source documents

To arrive at a micro-level markup from the OCRed texts, the Vasari project
follows the knowledge engineering approach. The project presents a language
and a number of tools for this purpose. Rules for markup can be expressed in
the Vasari Language (VaLa). The Vasari tool serves the knowledge engineer in
the iterative process of developing the rules. Having defined the set of rules for
a given encyclopedia, the extraction tool VaLaFEx (Vasari Language Extractor)
uses them in order to automatically markup the plain texts. Furthermore, a
toolkit has been specified around VaLaFEx which includes tools that can be
used to pre-/post-process the input/output of the VaLaEx extractor.

In the following we describe the Vasari project in more detail. In Section 4.1
we give a survey on Vala. The Vasari tool for developing VaLa descriptions

4 Giorgio Vasari, who lived in the 16th century in Florence, Italy, was an Italian
painter and architect. His most important work is an encyclopedia of artist biogra-
phies (“The biographies of the most famous architects, painters and sculptors”,
published in an extended edition in 1568), which still belongs to the foundations
of art history.

5 Although our work principally deals with German texts, here we give an English
example from The Grove Dictionary of Art Online (http://www.groveart.com/).
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and the VaLaEx markup tool are described in Section 4.2. In Section 4.3 we
show how additional tools can be applied to enhance the result of the markup
process. We end the description of the Vasari project in Section 4.4 with a brief
discussion on how the results can be improved by fusing knowledge obtained
from different sources.

4.1 VaLa: The Vasari Language

Given a set of rather unstructured plain text documents, an appropriate de-
scription language for automatic markup must fulfill two requirements:

1. The logical structure of the documents implicitly inherent in the source
documents must be made explicit within a description for automatic
markup. Such a structure description defines the template which is to
be filled through the markup process.

2. Given a source document, it must be stated how its contents can be
mapped onto the elements of the template.

XML Schema [16] served as a starting point for VaLa. In our application
however, XML Schema does not serve its original purpose to validate the
structure of a given XML document, but to create such XML documents. The
first requirement mentioned above is met by XML Schema directly. Structure
can be defined in an elaborated way [17]. Elements within the structure can be
further constrained by means of already built-in and extensible data types [18].

The second requirement can be accomplished for by the application specific
data, which can be specified within xsd:annotation elements within XML
Schemas. The VaLa extension to XML Schema contains means to specify filler
rules defined within XML Schema. The filler rules define how text from the
source documents are to be mapped onto the elements of the structure defined
within the XML Schema. A filler rule may consist of up to three parts:

e Within the <vala:match> element constraints for the part of the source
document - which is to be mapped into a given element - can be specified.

e The content of the <vala:pre> element describes constraints for the left
context of a match for a given element.

e The content of the <vala:post> element describes constraints for the right
context of a match for a given element.

In order to formulate the constraints within the filler rules, the following types
of linguistic knowledge can be exploited:

e Character strings within source documents can be matched by regular
expressions. The construction of complex regular expressions is facilitated
by the option of nesting arbitrary expressions.

e Linguistic constructs like words and word classes can be matched by com-
puter linguistic categories. For extracting such categories from the source
documents external tools e.g. SPPC [19] can be used.

XML Schema
regular expressions
linguistic categories
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e Special types of entities (e.g. place names) can be matched by means of
registries or dictionaries (e.g. gazetteers).

Figure 2 displays an excerpt from a Vala description. Here, regular ex-
pressions are used for automatic markup of the artists’ names. A name con-
sists of two parts, a surname, followed by a given name. Both parts of the
name start with an upper case letter, followed by at least one lower case letter
([A-Z] [a-z]+). They may consist of more than one word separated by blanks,
and are followed by a comma. A birth place is constrained by its left context
which must consist of ”born” followed by ”in”, with possible blanks and line
feeds between and after them.

<xs:simpleType name="tSurName">
<xs:annotation>
<xs:appinfo>
<match type="regexp">[[A-Z] [a-z]+ ]+</match>
<post type="regexp">,</post>
</xs:appinfo>
</xs:annotation>
</xs:simpleType>

<xs:simpleType name="tGivenName">
<xs:annotation>
<xs:appinfo>
<match type="regexp">[[A-Z] [a-z]+ ]+</match>
<post type="regexp">,</post>
</xs:appinfo>
</xs:annotation>
</xs:simpleType>

<xs:simpleType name="tBirthPlace">
<xs:annotation>
<xs:appinfo>
<pre type="regexp">born[ I*[/nl*in[ 1*[/n]*</pre>
<match type="regexp">[~,]+</match>
</xs:appinfo>
</xs:annotation>
</xs:simpleType>
</xs:simpleType>

Fig. 2. An excerpt from a ValLa description for automatic markup of the artists’
data

Given a VaLa description for documents of a special type (in our case ar-
ticles from an encyclopedia) the VaLaEx tool for automatic markup applies
that description onto a set of source documents. Since a VaLa description
defines a tree structure, the approach taken by VaLaEx is based on the re-
cursive definition of trees. The source document is passed to the root of the
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structure tree. By means of its filler rules the root node selects that part of
the document text which matches its filler rules. The matching part then is
passed to the root’s first child node, which in turn selects its matching text
part and provides the respective markup. The remaining text is passed to
the next child node, and so on. In case the filler rules within a child node
cannot be matched, alternative solutions are tried through backtracking. For
each child which receives text from its parent node, the algorithm is applied
recursively.

Figure 3 displays the result of a VaLa description (the one mentioned
above).

<?xml version="1.0" encoding="IS0-8859-1"7>
<Artist>
<Name>
<SurName>Da Vinci</SurName>,<GivenName> Leonardo</GivenName>
</Name>, born in <MasterData>
<BirthPlace>Anchiano</BirthPlace>, near Vinci, <BirthDate>
<BirthDay>15</BirthDay> <BirthMonth>April</BirthMonth>
<BirthYear>1452
</BirthYear></BirthDate>, died
in <DeathPlace>Amboise</DeathPlace>, near Tours, <DeathDate>
<DeathDay>2</DeathDay> <DeathMonth>May</DeathMonth>
<DeathYear>1519
</DeathYear></DeathDate>. <Nationality>Italian</Nationality>
<Profession> painter, sculptor,
architect, designer, theorist, engineer and scientist</Profession>
</MasterData>.
<Description>He was the founding father of what is called the High

</Description>
</Artist>

Fig. 3. The result of a Vala description

4.2 Tterative Development of VaLa Descriptions

The production of a Vala description for automatic markup of documents,
which explicit only marginal structure, is a difficult task. On the one hand,
given large amounts of source documents, it is not possible to take into con-
sideration every single document for production of the rules. On the other
hand as many cases as possible should be covered by the rules of a ValLa
description.

In order to achieve this goal we provide for the Vasari tool for interactive
and iterative development of such descriptions. Similar as with MarkItUp! [10]
VaLa descriptions are developed from example source documents. The know-
ledge engineer starts with the definition of the structure it is aimed at for the
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resulting XML documents. The filler rules can then be developed by means of
the example documents. At any stage of the development process the know-
ledge engineer can check the result by means of the example documents.

A Vala description obtained in this way now can be improved iteratively.
In each iteration step the knowledge engineer gives feedback to the system
with regard to the result obtained up to then: The markup can be assessed
as being wrong or correct; missing markup can be introduced into the XML
documents. According to this kind of feedback, the Val.a description can then
be improved further. Whenever a new version of the description is finished,
the example documents are marked up using that version. Since feedback is
available from earlier versions already, part of the assessment of the new result
can be done by the system automatically and visualised to the user.

Figure 4 shows the main window of the Vasari user interface. The bottom
part of the window contains the VaLa description developed up to then (see
also Figure 2). The remaining upper part of the window is split into three
parts: The left-hand part contains an overview of the example source docu-
ments. One of the source documents is displayed in the middle part, while the
result of the markup process (using the VaLa description shown in the bottom
part of the window) is displayed on the right hand side. As can be seen the
artist’s name and birth place has been marked up correctly. The knowledge
engineer therefore marked the tags accordingly. Whenever markup of this part
of the document is changed by any later version of the VaLa description, it is
marked as being wrong automatically.

4.3 A Toolkit for Automatic Markup of Plain Texts

When developing means for markup of rather unstructured plain text docu-
ments, obtained from OCRed texts, we realized that there are some problems
which are not directly related to automatic markup. This includes the cor-
rection of systematic OCR errors, the detection of document boundaries and
the elimination of hyphenation of words in the pre-processing phase for the
source documents. Also, some features of the Vala language required the use
of external tools, like SPPC to detect linguistic categories or entities. In order
not to burden Vasari and VaLaEx with these tasks we developed a toolkit
framework, of which VaLaEx is the core. Other tools for specific tasks in the
markup process can be added arbitrarily.

All tools in the toolkit comply with a simple standard interface: The input
as well as the output always consist of (sets of ) XML documents - on the input
side additional parameters, e.g. a ValLa description for the VaLaEx tool, might
be provided. Hence a high degree of modularisation is achieved, and tools can
be combined in an almost arbitrary way. The interface standard allows for
easy integration of external tools, e.g. SPPC, by means of wrappers.
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X vasari - grove [BEE
Fila Project Statistic Help

markup || compare | | currecl" incorrecl” remove ” ignore|

i |LeonardoDaVinci (Quelitexty LeonardoDavinci* (0.07)
Project
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| near vinci, 15 April 1452, died
[ Projekte in Amboise, near Tours, 2 May 1519
9 [ arovwe Italian painter, sculptar,
@[] Artikal architect, designer, thearist, engineer
[y cartvagel and scientist
_ He was the founding father of what is
[ FriedericStarck called the High Renaissance
D LeonardoDayinci style and exercised an enormous influ
@ I versionen Bnce on contemporary and later

;| artists. His writings on art helped esta)
2| blish the ideals of

<7xml versien="1.0"
ancoding="150-8859-1"7>
<Artist>

|near “inci, <BirthDate>

|grnve (0.0 -- working version
<7?¥ml wersion="1.0" encoding="IS0-8859-1"7>
<xs:schema xmins:xs="http: /. wic. org /2001, 3ML5chena "

<usisimpleType name="tSurMame"s
<¥S:annotation:
<xs:appinfox
<match type="regexp">[[A-2] [(2-2]+ J+c/matchs
<pOST Types="regexp"s,</post>
</Hsrappinfor
</¥SIannoTation:
</ usisimpleTypes

<usisimpleType name="tGiwvenNane">
<XSIaNnoTaTion>
<xs:appinfos
<match Type="regexp"s[[A-7] [a-2]+ J+</matchs
<pOsT Type="regexp"s,</post>
</ xsiappinfox
</M51AnNN0TATi onx
</usrsinplaTypes

<xs:simpleType hame="tBirthPlace"s
<}5iannotation:
<xs:appinfox
<pre Type="regexp">horn[ 1*[sn]1*in[ 1% [\n]¥*</pre=
<match type="reagexp">[4, ]+ /match>
</Msrappinfos
</¥51annotations
</ usisimpleTypes

[«]

Fig. 4. Vasari user interface for interactive and iterative development of VaLa de-
scriptions

4.4 Improving the results

Characteristic for the Vasari application is that source documents from dif-
ferent encyclopedias are available, the contents of which intersect partly. This
can be exploited to achieve an even better knowledge representation after the
automatic markup process is completed. Knowledge from different sources can
be fused, thus references implicitly available within the source documents can
be made explicit. For example, given that an artist is described within differ-
ent encyclopedias, the fused descriptions would lead to a more complete view
on that artist. Even contradictions could be detected, triggering e.g. manual
correction.
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5 Conclusion

Automatic markup of (legacy) documents will remain a problem for a long
time. Using XML as the target format for automatic markup leads to pow-
erful search and navigational structures for effective knowledge exploration.
In this chapter we summarised approaches for automatic markup of macro
and micro structures within rather unstructured documents. In a case study
we demonstrated how automatic markup is applied to build a Web portal for

arts.
Future research in this area will focus on the development of markup and

extraction methods which are less domain-specific.
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Glossary

information extraction
Information extraction is the process of automatically extracting specific
interesting information with respect to a particular domain, including en-
tities, relationships and events, from (the relevant text) documents, based
on predefined templates.

automatic markup
Automatic markup is the process of marking or tagging a document in
order to specify and indicate its global visual and logical structure (macro
level) and/or single words or word groups (micro level).



