
14

Web-Based Distributed XML Query
Processing

Marko Smiljanić, Ling Feng, and Willem Jonker

14.1 Introduction

Web-based distributed XML query processing has gained in importance in
recent years due to the widespread popularity of XML on the Web. Unlike
centralized and tightly coupled distributed systems, Web-based distributed
database systems are highly unpredictable and uncontrollable, with a rather
unstable behavior in data availability, processing capability and data transfer
speed. As a consequence, there exists a number of conspicuous problems that
need to be addressed for Web-based distributed query processing in the novel
context of XML. Some major ones are listed below.

• High autonomy of participanting sites. Data sources scattered on the Web
may be equipped with either powerful query engines, say those which can
support XPath, XQuery or some other XML query languages, or sim-
ple ones which offer limited processing capabilities, just like a plain Web
server returning the whole XML files. In Web-based distributed database
systems, both the data sources and their associated processing capabilities
need to be modeled and used in query execution planning.

• XML streaming data is proliferating and flowing on the Web. As the size
of the streaming data is usually enormous, it is not efficient to first wait
for all data to arrive, store it locally and then query it. Instead, new
techniques must be deployed for querying streaming XML data.

• Unreliable response time on the Web exists due to dozens of Internet
routers that separate nodes participating in distributed processing. High
delay and a total data jam must be taken into account. When congestions
are detected by certain mechanisms like timers, querying should activate
alternative execution plans to keep the system busy with performing some
other relevant tasks.

• Different expectations of query results. The classical way of querying sug-
gests the delivery of a complete and exact query result. In such systems,
users prefer to have the “time to last” result as short as possible. However,

H. Blanken et al. (Eds.): Intelligent Search on XML Data, LNCS 2818, pp. 207–216, 2003.
Springer-Verlag Berlin Heidelberg 2003



208 M. Smiljanić, L. Feng, and W. Jonker

in a dynamic environment like the Internet, more querying facilities must
be introduced. For example, users may opt for getting the first element
of the result quickly with others coming afterwords. The complete result
is of no interest at the first instance. Such systems can thus be optimized
to have “time to first” result shorter. Another approach is to have re-
sults available “on demand” at any stage of query processing. To this end,
we can let the systems present the current state of the answer and then
resume the processing.

The aim of this chapter is to survey recent research on Web-based dis-
tributed XML query processing, with the emphasis on technical innovations
that have been devised in query planning, query execution and query opti-
mization.

The reminder of the chapter is organized as follows. Section 2 describes sev-
eral query processing schemas, including centralized vs. distributed schema,
static vs. dynamic schema, and streaming data query processing schema. Sec-
tion 3 presents several XML query optimization techniques. We review a few
Web-based systems in Section 4. Section 5 gives the conclusion.

14.2 Web-Based Distributed XML Query Processing
Schemas

Figure 14.1 shows a generic Web-based distributed XML query processing
architecture, containing three nodes A, B and C. Each participant node ac-
commodates some XML data and is equipped with a query processor. Users
at the client site are unaware of such a distributed architecture. They pose
queries via a single entry point, assigned to node A. Nodes in this system
can be heterogeneous in terms of both data sources and query processors.
Some systems also provide users with an integrated view, so that users can
ask questions over the integrated view.



14 Web-Based Distributed XML Query Processing 209

We now describe in detail various distributed query processing schemas.
The taxonomies for classifying these schemas are based mainly on different
approaches distributed query processors employ in query planning and exe-
cution in response to a user’s query. Note that the following taxonomies are
not orthogonal.

14.2.1 Centralized vs. Distributed Query Processing Schema

According to the location where queries are planned and executed, we cate-
gorize query processing into the following three groups.

Centralized Planning and Centralized Execution.

This is the simplest, and currently the most frequently used architecture in
distributed Web systems. In such a system, one node carries all the respon-
sibilities: it collects and warehouses XML data, plans and executes queries.
Other nodes are accessed in the off-line mode and are asked only to pro-
vide the raw data. Google, a keyword-based search engine, falls in this group
(though Google itself does not solely use XML data). Niagara system [227],
a combination of a search engine and a query processing engine, allows users
to raise arbitrary structured queries over the Internet. Niagara can perform
“on-demand” retrievals on the distributed documents if they are not available
in the local document repository, but are referenced by the full text search
engine. Xyleme system [75] provides users with integrated views of XML data
stored in its local warehouse.

Centralized Planning and Distributed Execution.

When a node receives a user’s query over a virtual view of data sources,
it produces a complete set of instructions that will evaluate the query in
the distributed environment. These instructions will be sent to corresponding
nodes which will optimize the execution of their local subqueries. In this case,
we have a centralized distributed query processor, responsible for generating
a complete query execution plan. However, the query execution that follows
is delegated to respective local query processors.

Distributed Planning and Distributed Execution.

In contrast to centralized query planning carried out by one node, distributed
query processors at multiple nodes can coordinate with each other to derive
a global query plan. For example, node A, upon the receipt of a query, can
plan initial stages of the query execution using its local data, and then send
the “rest” of the query to some other nodes, say B and C, where involved
data sources are located. Node B and C then plan further execution of the
rest of the query. The query processors of participanting nodes can be either
identical or different.



210 M. Smiljanić, L. Feng, and W. Jonker

14.2.2 Static vs. Dynamic Query Processing Schema

Once a query plan is generated, it can either be altered or remain unchanged
during the query execution phase.

The static query processing schema will execute the query plan until com-
pletion. The problem with the static query processing schema is that it is
vulnerable to unexpected events, like long initial delay in data arrival or gen-
eral traffic congestions. The need for dynamic query processing capability that
can act upon the emergence of such events especially in the Web context is
thus highly desirable.

In dynamic query processing schema, the query execution planner gets a
feedback from the query execution engine on the status of the execution. If
some delays are detected, the query planner produces alternative plans for
finishing the query processing or just reorders the actions that were planned
for later execution. [11] describes a dynamic query plan modification strategy
for wide-area remote access, where a scrambling technique is used to generate
the alternative execution plan when delays in arrival of data are experienced.
As soon as the original data becomes available, the execution is continued
at the point before the scrambled plan was used. Scrambling is based on the
rescheduling of the operators in the execution plan. However, it must be taken
into account that the scrambled processing increases the cost (CPU, I/O and
memory usage) of the query execution.

14.2.3 Streaming Data Query Processing Schema

Significant amount of streaming data may be generated and transported from
one site to another during the execution of a distributed query on the Web.
As such streaming data can be of enormous size, it is not efficient to first
wait for all data to arrive, store it locally and then to do the processing.
Instead, techniques for processing of the streaming XML data are exploited.
Such processing techniques are applicable to all the schemas discussed above.

In [172], it is shown that a group of regular XPath expressions can be simul-
taneously executed over streaming XML data. The proposed X-scan processor
uses a state machine to detect the satisfaction of XPath expressions over in-
coming XML data. States of the state machine correspond to steps of the
XPath queries and the input to the state machine is the data stream arriv-
ing from the input. The key challenges in this approach include dealing with
cyclic data, preserving the order of elements and removing duplicate bind-
ings that are generated when multiple paths lead to the same data elements.
To cope with those problems, the X-scan engine parses the data, creates the
structural index to enable fast IDREF to ID traversal and also maintains a
”not-yet-seen” ID list.

Joining can be also done between two or more simultaneously incoming
streams of XML data. Techniques for joining the streaming data are based on
non-blocking pipelined hash join method. In this approach, data is arriving



14 Web-Based Distributed XML Query Processing 211

from two data sources from the network. Each data entity is first placed in
the hash structure for that data source, and then the other hash is probed.
As soon as a match is found, the result tuple is produced. In order to cope
with the memory overflow due to the hash size, other techniques involving
data storage on secondary storage medium are proposed. Some specifics of
XML element joining are discussed in [299], demonstrating that Lattice-Join
of XML documents can be implemented as merge operation.

If data streams are continuous like stock indexes, or simply too long, it
is desirable for a system to be able to show the current status of results
being generated. A query processor has been designed to support partial result
generation for non-monotonic functions such as sort, average, and sum, etc.
[278].

14.3 Web-Based Distributed XML Query Optimization

When comparing XML query processing with relational database query pro-
cessing, one impression we have is that those two fields overlap on all the
major problems. Indeed, techniques like selection pushdown or querying of
materialized views are applicable to query optimization regardless of the data
models used. What makes an essential distinction is the environment in which
the two models are used and thus different requirements they shall satisfy in
both performance and functional domains. In the following, we describe sev-
eral techniques known from the “classical” query optimization approaches,
and discuss how they fit the XML world.

14.3.1 Selectivity Estimation

Selectivity estimation is used by query optimizers to plan for the execution
order of subexpressions. Expressions yielding smaller result sets are said to
have higher selectivity and are scheduled for early execution. The more com-
plex the operation used in an expression, the more difficult it is to have good
selectivity estimation for it.

For XPath expressions containing no predicates on XML documents, se-
lectivity estimation equals the number of elements selected by the XPath.
This information can be provided by counting the markup particles in the
documents. In the presence of predicates or joins in query expressions, such
selectivity information must be extended with statistical data on the XML
document content.

The selectivity information has to be stored and accessed with respect to
performance requirements of the query planner. This inevitably puts limits
on the selectivity estimation in both data size and complexity of selectivity
calculation algorithms.

In [5], two methods for storing “basic” XPath selectivity information are
used. First, the Path Trees come in the form of a schema tree for an XML



212 M. Smiljanić, L. Feng, and W. Jonker

document. Each node of such trees represents a path, leading from the root
to that node. Each such node is assigned an accumulated number of element
instances reached using the path described by the node. This number repre-
sents the selectivity for that path. It can be calculated in a single pass over
the XML document. The second technique is named “Markov tables”. A table
is constructed with a distinct row for each path in the data up to the length
of m. The calculation of the estimation for longer paths based on the data
in the table is shown in [5]. Several summarizing techniques can be exploited
to reduce the size and the complexity of the data structures used in both
approaches.

14.3.2 Selection Pushdown

Selection pushdown is an optimization technique in which selection opera-
tors are scheduled early, e.g., before join operators. When executed, selection
reduces the number of values that are to be fed to the expensive join oper-
ator, resulting in a low execution cost. This technique has a straightforward
application in the XML field [172].

In [69], selection operator placement is analyzed in the context of query
systems, which serve a large number of continuous queries (i.e. persistent
queries, yielding results once available). Such simultaneous queries are ana-
lyzed for common subexpressions which are then grouped for joint execution.
This provides resource and time savings. It is shown that in this setup, Push-
Down (select first) technique is outperformed by the PullUp (join first) tech-
nique. The rational behind those results is that major improvement comes
from the operator grouping (i.e. reuse) and not from the operator ordering.
Executing the join first enables the wide reuse of the results of this expensive
operation.

14.3.3 Integrated Views

In the presence of integrated views, query processors can start with query
rewriting in such a way that a query over a global view is translated into a set
of queries over local data sources. Such rewriting and creation of a distributed
execution plan involves the techniques known as data-shipping and query-
shipping. [210] describes an architecture for integrating heterogeneous data
sources under an XML global schema, following the local-as-view approach,
where local sources’ schemas such as relational and tree-structured schemas
are described as views over the global XML schema. Users express their queries
against the XML global schema in XQuery, which is then translated into into
one or several SQL queries over the local data sources. The advantage of
using a relational query model lies in the benefit from the relational query
capabilities that the relational or XML sources may have. The tuples resulting
from the SQL query execution are then structured into the desired XML result.



14 Web-Based Distributed XML Query Processing 213

In addition to facilitating query rewriting with views, using materialized
views to answer a query can also greatly speed up query performance, espe-
cially when one is confronted with a large volume of data sources on the Web
[67, 2, 212].

14.4 Web-Based Query Processing Systems

In this section, we overview a few Web-based database systems. The systems
will be analyzed through the spectrum of architectural features covered in the
previous sections.

14.4.1 Distributed Query Evaluation on Semistructured Data –
Suciu

XML bears a close similarity to semi-structured data models [44, 54, 24]. One
pioneering work on distributed querying over semistructured data was done
by Dan Suciu [288], who proposed the efficiency definition for a distributed
query from the following two aspects.

1) The total number of communication steps between the data sources is
constant, i.e. independent on the data or on the query. A communication step
can be a broadcast, or a gather, and can involve arbitrary large messages.

2) The total amount of data transferred during query evaluation should
depend only on (a) the total number of links between data sources, and (b)
the size of the total result.

Suciu investigates distributed queries in a context where data sources are
distributed over a fixed number of nodes, and the edges linking the nodes
are classified into local (with both ends in the same node) and cross edges
(with ends in two distinct nodes). Efficient evaluation of regular path ex-
pression queries is reduced to efficient computation of transitive closure of a
distributed graph. For more complex queries, where regular path expressions
are intermixed freely with selections, joins, grouping, and data restructuring,
a collection of recursive functions can be defined accordingly. Those iterate on
the graph’s structure. The queries in this formalism form an algebra C, which
is a fragment of UnQL [53, 55]. By following an algebraic rather than an op-
erational approach, a query Q can be rewritten into Q′, called a decomposed
query, such that on a distributed database, Q can be evaluated by evaluating
Q′ independently at each node, computing the accessible part of all results
fragments, then shipping and assembling the separate result fragments at the
user site.

The proposed query evaluation algorithms provide minimal communica-
tion between data sources. Even if several logical ‘jumps’ (joins in queries)
between data sources exist, execution is planned in such a way that those
data sources exchange data between each other just once. This does not come



214 M. Smiljanić, L. Feng, and W. Jonker

without a price. The centralized query planner has to know all the metadata
on the participating data sources to plan the query.

The algorithm and the systems described by Suciu fall in the category of
centralized planning and distributed evaluation architectures.

Since the autonomy and the dynamics of the data sources are quite high
on the Web, a high cost of maintaining a central metadata repository will be
incurred. Some alternative approaches of query evaluation are thus raised in
the sequel.

14.4.2 WEBDIS

WEBDIS system processes queries over Web documents by query shipping,
where all the data sources are equipped with WEBDIS query servers run-
ning as daemon processes that can access the HTML, XML or other types
of data [149]. An example query that WEBDIS can process is like “Starting
from COMPUTER SCIENCE HOMEPAGE find RESEARCH PROJECTS
PAGES linked to it over maximum 5 links and return the available PhD PO-
SITIONS.”

WEBDIS starts query execution at the user’s site based on the initial
execution plan. Parts of the query are processed locally, while the rest of the
query is dispatched to other nodes. Those nodes then proceed in a similar
fashion using their own plan generators. Hence we classify WEBDIS system
in the group of systems where both query planing and query evaluation are
performed in a distributed fashion. Some particular issues to be addressed by
this distributed query processing system include:

1) Query completion. The query should migrate from one node to another
without a control of the query issuer. To enable query completion monitoring,
additional protocols are used.

2)Query termination. The cancellation request of an ongoing query should
be dispatched to all active data sources. One simple solution is to close the
communication sockets at the user site, which will eventually bring all partic-
ipating data sources to cease the query processing.

3) Avoiding query recomputation. Some data sources may be faced with
the same subquery during one query execution. Mechanisms to detect dupli-
cated requests are introduced to prevent repeated computation of such queries.

4) Result returning. Results of the query can be directly sent to the user
site from every participant node or collected by backtracking the path through
which query was distributed.

14.4.3 Xyleme

Xyleme is designed to enable querying of large amounts of XML documents
stored in its warehouse [75]. Documents are collected and refreshed by be-
ing (re)loaded from the Web. This activity involves crawling or subscription
arrangements.



14 Web-Based Distributed XML Query Processing 215

User can query the documents in the repository through a predefined in-
tegrated view. The integrated views for specific thematic domains are defined
by domain experts but the mapping between each integrated view and the
documents in the warehouse is established using the support of sophisticated
mapping algorithms. Apart from that, the main strengths of Xyleme lie in the
layered and clustered internal architecture. The architecture provides good
scalability in terms of both the number of users and the number of XML
documents stored in the system.

As illustrated, Xyleme falls in the group of Web-based databases with
centralized planning and centralized evaluation approaches.

14.4.4 Niagara and Tukwila

Niagara [227] and Tukwila [171] are both data integration systems implement-
ing XML query processing techniques .

Niagara system is built as a two-component system with the first compo-
nent being a search engine and the second one being an XML query processing
engine. Niagara allows users to ask arbitrary structured queries over the Web.
Its search engine uses the full text index to select a set of the XML documents
that match the structured content specified in the query, while its XML query
engine is used to perform more complex actions on the selected documents and
to present the requested results. Niagara can perform on-demand retrievals of
XML documents if they are not available in the local document repository.
Still, all the XML query processing is performed centrally.

In comparison, Tukwila provides a mediated schema over a set of hetero-
geneous distributed databases. The system can intelligently process the query
over such mediate schema, reading data across the network and responding
to data source sizes, network conditions, and other factors.

Both Tukwila and Niagara possess a dynamic feature. Their query process-
ing is adaptable to changes in the unstable Web environment. Adaptability
is thus defined as a special ability of the query processor, using which the
execution plan of the query is changed during the course of its execution in
response to unexpected environmental events. Both systems achieve adapt-
able query processing by implementing flexible operators within their query
engines. In Niagara, operators are built in such a way that they provide non-
blocking functioning. This means that they can process any data available at
their input at any time. Faced with data delays, the operators can switch to
process other arriving data, and resume the original task when data becomes
available.

In Tukwila, a re-optimization is done on the level of query execution frag-
ments - which are units of query execution. After each fragment is materi-
alized, Tukwila compares the estimated and the achieved execution perfor-
mance. If sufficiently divergent, the rest of the execution plan is re-optimized
using the previous performance sub-results [227]. In addition, a collector op-
erator is proposed for managing data sources with identical schemas. The



216 M. Smiljanić, L. Feng, and W. Jonker

collector operator can dynamically switch between alternative different data
sources when getting the necessary data.

Feature System
Suciu WEBDIS Xyleme Niagara Tukwila

Data Source semistructured hyperlinked XML XML XML
rooted labeled XML, HTML data data data

graphs documents

Query Planning static static static dynamic dynamic
centralized distributed centralized centralized centralized

Query Execution static static static dynamic static
distributed distributed centralized centralized centralized

Querying of - - - yes yes
Streaming Data

Integrated View - - yes - yes

Query Granularity graph XML XML XML XML
node document component component component

Query Language UnQL DISQL XQL XML-QL XQuery

Table 14.1 summarizes different query processing schemas that the above
systems utilize, together with their query facilities offered to users.

14.5 Conclusions

In this chapter, we address some major challenges facing Web-based dis-
tributed XML query processing. Recent work on distributed XML query pro-
cessing and optimization were presented. We review and compare several exist-
ing systems according to their query planning and query execution strategies,
as well as their query facilities offered to users.

With XML becoming the dominant standard for describing and inter-
changing data between various systems and databases on the Web, Web-based
distributed XML query processing opens up a new research area, attracting
lots of attention from both academic and practical activities nowadays. It is
not possible and also not our intention to cover all the activities in this short
chapter. Our purpose is to stimulate the interests among the data manage-
ment community as we feel that there are still quite a number of issues to be
addressed by both academic researchers and practitioners.

Table 14.1. A comparison of Web-based query processing systems


	14.1 Introduction
	14.2 Web-Based Distributed XML Query Processing Schemas
	14.2.1 Centralized vs. Distributed Query Processing Schema
	14.2.2 Static vs. Dynamic Query Processing Schema
	14.2.3 Streaming Data Query Processing Schema

	14.3 Web-Based Distributed XML Query Optimization
	14.3.1 Selectivity Estimation
	14.3.2 Selection Pushdown
	14.3.3 Integrated Views

	14.4 Web-Based Query Processing Systems
	14.4.1 Distributed Query Evaluation on Semistructured Data – Suciu
	14.4.2 WEBDIS
	14.4.3 Xyleme
	14.4.4 Niagara and Tukwila

	14.5 Conclusions

