
1

A Look Back on the XML Benchmark Project

Albrecht Schmidt1, Florian Waas2, Stefan Manegold3, and Martin Kersten3

1 Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7E, DK-9220 Aalborg Øst
al@cs.auc.dk

2 Microsoft Corporation
Redmond (WA), USA
florianw@microsoft.com

3 Centre for Mathematics and Computer Science (CWI)
Kruislaan 413, NL-1098 SJ Amsterdam
firstname.lastname@cwi.nl

1.1 Introduction

Database vendors and researchers have been responding to the establishing of
XML [6] as the premier data interchange language for Internet applications with
the integration of XML processing capabilities into Database Management Systems.
The new features fall into two categories:XML-enabled interfacesallow the DBMS
to speak and understand XML formats, whereasXML extensionsadd novel primi-
tives to the engine core. Both kinds of innovations have the potential to impact the
architecture of software systems, namely by bringing about a complexity reduction
in multi-tier systems. However, it is often difficult to estimate the effect of these in-
novations. This is where the XML Benchmark Project tries to help with XMark. By
providing an application scenario and a query workload, the benchmark suite can be
used to identify strengths and weaknesses of XML-enabled software systems.

The queries of the benchmark suite target different aspects of querying of XML
documents, both in isolation and in combination. We identify the following areas of
potential performance impacts:

– The topology of XML structures as found in the original document is a potential
candidate for queries; especially systems that implement document order on top
of an unordered data model may not be properly prepared for this kind of chal-
lenge and have to turn rather simple queries into complex operations. This is also
tested in several benchmark queries.

– The document-oriented nature of XML makes strings the basic data type ap-
plications have to deal with. Typing XML documents is therefore as important
a challenge to make data processing more robust as enforcing other semantics
constraints. Problems can also arise as the typing rules of query languages may
clash with the more complex type systems of host programming languages. In



2 Albrecht Schmidt, Florian Waas, Stefan Manegold, and Martin Kersten

addition, strings are often not efficient in database systems since their length can
vary greatly, putting additional stress on the storage engine.

– The hierarchical structure of XML documents impacts queries in the form of
path expressions. The hierarchical structure of documents in conjunction with
complicated path expressions does not only result in potentially expensive join
and aggregation operations but also in a search space that makes it hard for query
optimizers to find good execution plans.

– The loose schema of XML data may not only make it hard for users to get an
overview of the structure, which is a prerequisite for being able to user query
languages sensibly and a notoriously error-prone activity when a user tries to
specify long and complicated path expressions. It also poses optimization chal-
lenges to the database engine. Sparsely populated parts of the database do not
only aggravate maintenance problems with respect to data statistics, they also
inflate the size of the database with maintenance information and NULL values.

– Besides the tree structure, XML provides a number of additional features that
influence a query processor. For example, the XML standard lists constraints
on special attributes to ensure that references only connect existing elements.
To cope with references efficiently, techniques like join indexes or logical OIDs
might be of use. The resolution of namespaces is another topic that requires care-
ful handling; XMark does not feature queries that challenge namespaces since its
authors believe that the mechanism to handle them do not differ greatly from
queries involving different parts of subtrees.

Due to complex interdependencies between these points and the different com-
ponents of a system, implementation efforts tend to be hard to assess in a general
fashion without putting them to a standardized test, which is most conveniently done
in the form of a benchmark. The need for new benchmarks has been a recurring mo-
mentum in database research; consequently, over the past years the database com-
munity developed a rich tradition in performance assessment of systems ranging
from research developments like the Hypermodel [2], OO1-Benchmark [10], OO7-
Benchmark [8] or the BUCKY benchmark [9] to industrial standards like the family
of TPC benchmarks [15] just to mention a few examples. However, none of the avail-
able benchmarks offers the coverage needed for XML processing. All of them are
geared towards a certain data model but fail to take into account the flexibility and
expressiveness of semi-structured data with their implicit schemas [1] and flexible
data structures which exceed the capabilities of existing query languages.

The XMark Benchmark takes on the challenge and features a tool kit for eval-
uating the retrieval performance of XML stores and query processors: a workload
specification, a scalable benchmark document and a comprehensive set of queries,
which were designed to feature natural and intuitive semantics. To facilitate analysis
and interpretation, each of the queries is intended to challenge the query processor
with an important primitive of the underlying algebra. XML processing systems usu-
ally consist of various logical layers and can be physically distributed over a network.
To make the benchmark results interpretable we abstract from the systems engineer-
ing issues and concentrate only on the core ingredients: the query processor and its



1 A Look Back on the XML Benchmark Project 3

interaction with the data store. We do not consider network overhead, communica-
tion costs or transformations to the output. As for the choice of language, we use
XQuery [12] which is the result of incorporating experiences from various research
languages [4] for semi-structured data and XML into a standard.

The target audience of the benchmark could comprise three groups. First, the
framework presented here can help database vendors to verify and refine their query
processors by comparing them to other implementations. Second, customers can be
assisted in choosing between products by using our setting as a simple case study
or pilot project that yet provides essential ingredients of the targeted system. For
researchers, lastly, we provide example data and a framework for helping to tailor
existing technology for use in XML settings and for refinement or design of algo-
rithms.

1.2 Evolution of XML Technology and Benchmarks

Database benchmarks found in the literature cover a plethora of technologies and
aspects of traditional data management ranging from query optimization to trans-
action processing. But even if we make use of established techniques to store and
process XML, it is not clear if and in what way the semi-structured nature of the
data impacts on performance and engineering issues. Therefore, to motivate the need
for XML benchmarks we take a look at the evolution of XML standards and how it
differs from that of established technologies.

The evolution of XML differs significantly from the evolution of relational
databases in that for XML there was an early standard which was accepted and sup-
ported by a large community. It was then that implementations had to live up to the
standards that were already present and in place. There was no organic and interac-
tive development between standards and research as there was, for example, in the
case of the SQL standards. Therefore it is sensible to design the benchmark with a
top-down perspective in mind,i.e., to come up with challenges for query primitives
anticipated as typical and thus provide a kind of thematic benchmark. In the case
of XML, the W3C Use Cases [11] contained the research necessary to justify the
relevance of the challenges. In this sense, the combination of traditional and new
features present in XML processing systems in conjunction with the new approach
to standards results in the need for a new quality of system development. The XMark
benchmark tries to be a part of this endeavor.

Traditionally, database management systems have been deployed in settings
where very regular, table-structured data format prevail. While it has been shown that
these data-centric documents,i.e., documents which logically represent data struc-
tures [5], map effectively to relational databases (e.g., see [14, 20, 23]) or object-
relational databases [16], it is less clear how the same systems can handle efficiently
documents that are more document-centric [5],i.e., consisting mostly of natural lan-
guage with mark-up only interspersed with the result of irregular path structures.
Converted to relational tables in a naive way, the data and query profile often do not
match the kind of pattern traditional database engines are optimized for.



4 Albrecht Schmidt, Florian Waas, Stefan Manegold, and Martin Kersten

buyer, seller

author

watch

seller
bidder,

interest

itemref

person

from,to

categoryannotation

item

closed auctionopen auction

itemref

categoryref

Fig. 1.1.Overview of main entities in the XMark document

1.3 The XMark Database

In this section, we give an overview of XMark’s document database. One of the major
design goals were good performance during generation, opportunities for formulat-
ing predictable and interesting queries, and that the database ‘feels natural’. We first
summarize the semantics of the document and then cover some of the more technical
issues of generating such documents.

1.3.1 Main Entities and Their Relationships

The main syntactic constituent of XML documents is the recursive application of
elements that contain other elements; it renders the typical tree structure of XML.
Accordingly, element relationships play a crucial role in document design. The other
important tool that designers have at hand are references which connect elements in
a way that is orthogonal to the tree structure. In XMark, we decided to model the
database after a schema that is typical for Internet auction sites. The main entities
come in two groups:person, open auction, closed auction, item, andcategoryon the
one side and entities akin toannotationon the other side. The relationships between
the entities in the first group are expressed through references, as depicted with ar-
rows in Figure 1.1. The relationships between the entities of the second group, which
take after natural language text and are document-centric element structures, are em-
bedded into the sub-trees to which they semantically belong. An ER diagram can be
found in [7]. The entities we just mentioned carry the following semantics:

– Itemsare the objects that are on sale in an auction or that already have been sold.
Each item carries a unique identifier and bears properties like payment (credit
card, money order, . . . ), a reference to the seller, a descriptionetc., all encoded



1 A Look Back on the XML Benchmark Project 5

as elements. Each item is assigned a world region represented by the item’s parent
element.

– Open auctionsare auctions in progress. Their properties are the privacy status, the
bid history (i.e., increases or decreases over time) with references to the bidders
and the seller, the current bid, the time interval within which bids are accepted,
the status of the transaction and a reference to the item being sold, among others.

– Closed auctionsare auctions that are finished. Their properties are the seller (a
reference to a person), the buyer (a reference to a person), a reference to the
respective item, the price, the number of items sold, the date when the transaction
was closed, the type of transaction, and the annotations that were made before,
during and after the bidding process.

– Personsare characterized by name, email address, phone number, mail address,
homepage URL, credit card number, profile of their interests, and the (possibly
empty) set of open auctions they are interested in and get notifications about.

– Categoriesfeature a name and a description; they are used to implement a clas-
sification scheme ofitems. A categorygraph links categories into a network.

We emphasize that these entities constitute the relatively structured,i.e., data-
oriented part of the document. Their sub-element structure is fairly regular on a per
entity basis but there are predictable exceptions such as that not every person has
a homepage; in a relational DBMS, these exceptions would typically be taken care
of by NULL values. Another characteristic of these entities is that, apart from occa-
sional list types such as bidding histories, the order of the input is not particularly
relevant. On the other hand, the sub-elements of the document-centric part of the
database, namely those ofannotationand similar elements, do not accentuate the
above aspects. Here the length of strings and the internal structure of sub-elements
varies greatly. The markup now comprises itemized lists, keywords, and even visual
formatting instructions and character data, doing its best to imitate the characteristics
of natural language texts. This warrants that the benchmark database covers the full
range of XML instance incarnations, from marked-up data structures to traditional
prose.

The arrows in Figure 1.1 are mainly implemented as IDREFs that connects ele-
ments with IDs. Care has been taken that the references feature diverse distributions,
derived from uniformly, normally and exponentially distributed random variables.
Also note that all references are typed,i.e., all instances of an XML element point
to the same type of XML element; for example, references that model interests al-
ways refer to categories although this constraint does not materialize in the DTD that
accompanies XMark.

The XML Standard [6] defines constructs that are useful for producing flexi-
ble markup but do not justify the definition of queries to challenge them directly.
Therefore, we only made use of a restricted set of XML features in the data gen-
erator which we consider performance critical in the context of XML processing in
databases. We do not generate documents with Entities or Notations. Neither do we
distinguish between Parsed Character Data and Character Data assuming that both
are string types from the viewpoint of the storage engine. Furthermore, we don’t in-



6 Albrecht Schmidt, Florian Waas, Stefan Manegold, and Martin Kersten

clude namespaces into the queries. We also restrict ourselves to the seven bit ASCII
character set. A DTD and schema information are provided to allow for more effi-
cient mappings. However, we stress that this is additional information thatmaybe
exploited.

1.3.2 The Document Generator

We designed and implemented a document generator, calledxmlgen , to provide
for a scalable XML document database. Besides the obvious requirement to be ca-
pable of producing the XML document specified above we were eager to meet the
following additional demands. The generation of the XML document should be:

– platform independentso that any user interested in running the benchmark is able
to download the binary and generate the same document no matter what hardware
or operating system is used; to achieve this plain ANSI C was used to implement
xmlgen ;

– accurately scalableranging from a minimal document to any arbitrary size lim-
ited only by the capacity of the system;

– bothtime and resource efficient, i.e., elapsed time ideally scales linearly whereas
the resource allocation is constant – independent of the size of the generated
document;

– deterministic, that is, the output should only depend on the input parameters.

First, in order to be able to reproduce the document independently of the plat-
form, we incorporated a random number generator rather then relying on the oper-
ating system’s built-in random number generators. Together with basic algorithms
which can be found in statistics textbooks the data generatorxmlgen implements
uniform, exponential, and normal distributions of fairly high quality. We assigned
to each of the elements in the DTD a plausible distribution of its children and its
references, observing consistency among referencing elements, that is, the number
of items organized by continents equals the sum of open and closed auctions,etc.
Second, to provide for accurate scaling we scale selected sets like the number of
items and persons with the user-defined factor. Moreover, we calibrated the numbers
to match a total document size of slightly more than 100 MB at scaling factor 1.0.
Finally, it is a challenge to implement the data generator efficiently because refer-
ences are created at various places throughout the document; since we have to abide
by the integrity constraint that every reference points to a valid identifier, we could
go for the straight-forward solution of keeping some sort of log and record which
identifier has already been referenced; unfortunately this seems infeasible for large
documents. We solved the problem by modifying the random number generation to
produce several identical streams of random numbers. That way, we are able to im-
plement a partitioning of sets like the item IDs that are referenced from both open
and closed auctions. In its current version,xmlgen requires less than 2 MB of main-
memory, and produces documents of sizes of 100 MB and 1 GB in 33.4 and 335.5
seconds, respectively (450MHz Pentium III). A more detailed description of the tool
and downloads can be found on the project Web page [18].



1 A Look Back on the XML Benchmark Project 7

1.4 The XMark Queries

In total, XMark contains 20 queries testing various concepts such as exact match,
ordered access, casting, regular path expressions, chasing references, construction
of complex results, joins on values, reconstruction, full text search, path traver-
sals, missing elements, function application, sorting, and aggregation. Due to lack
of space, we present only a representative selection of the queries, here. A complete
description of all queries is available in [21] and the respective XQuery-code can be
downloaded from the project Web site at [19].

Exact MatchThis simple query is mainly used to establish a performance baseline,
which should help to interpret subsequent queries. It tests the database ability to
handle simple string lookups with a fully specified path.

Q1: Return the name of the person with ID ‘person0’.

Ordered AccessThese queries should help users to gain insight how the DBMS
copes with the intrinsic order of XML documents and how efficiently they can expect
the DBMS to handle queries with order constraints.

Q2: Return the initial increases of all open auctions.

This query evaluates the cost of array lookups. Note that it may actually be harder
to evaluate than it looks; especially relational back-ends may have to struggle with
rather complex aggregations to select the bidder element with index 1.

Q3: Return the first and current increases of all open auctions whose current in-
crease is at least twice as high as the initial increase.

This is a more complex application of array lookups. In the case of a rela-
tional DBMS, the query can take advantage of set-valued aggregates on the index
attribute to accelerate the execution. Queries Q2 and Q3 are akin to aggregations in
the TPCD [15] benchmark.

Casting Strings are the generic data type in XML documents. Queries that interpret
strings will often need to cast strings to another data type that carries more seman-
tics. This query challenges the DBMS in terms of the casting primitives it provides.
Especially, if there is no additional schema information or just a DTD at hand, casts
are likely to occur frequently. Although other queries include casts, too, this query is
meant to challenge casting in isolation.

Q5: How many sold items cost more than 40?

Regular Path ExpressionsRegular path expressions are a fundamental building
block of virtually every query language for XML or semi-structured data. These
queries investigate how well the query processor can optimize path expressions and
prune traversals of irrelevant parts of the tree.

Q6: How many items are listed on all continents?



8 Albrecht Schmidt, Florian Waas, Stefan Manegold, and Martin Kersten

A good evaluation engine or path encoding scheme should help realize that there
is no need to traverse the complete document tree to evaluate such expressions.

Q7: How many pieces of prose are in our database?

Also note thatCOUNTaggregations do not require a complete traversal of the
document tree. Just the cardinality of the respective parts is queried.

Chasing ReferencesReferences are an integral part of XML as they allow richer re-
lationships than just hierarchical element structures. These queries define horizontal
traversals with increasing complexity. A good query optimizer should take advantage
of the cardinalities of the operands to be joined.

Q8: List the names of persons and the number of items they bought. (joins person,
closed auction)

Q9: List the names of persons and the names of the items they bought in Europe.
(joins person, closed auction, item)

Construction of Complex ResultsConstructing new elements may put the storage en-
gine under stress especially when the newly constructed elements are to be queried
again. The following query reverses the structure of person records by grouping them
according to the interest profile of a person. Large parts of the person records are re-
peatedly reconstructed. To avoid simple copying of the original database we translate
the mark-up into French.

Q10: List all persons according to their interest; use French markup in the result.

Joins on ValuesThis query tests the database’s ability to handle large (intermediate)
results. This time, joins are on the basis of values. The difference between these
queries and the reference chasing queries Q8 and Q9 is that references are specified
in the DTD and may be optimized with logical OIDs for example. The two queries
Q11 and Q12 differ mainly in the size of the result set and hence provide various
optimization opportunities.

Q11: For each person, list the number of items currently on sale whose price does
not exceed 0.02% of the person’s income.

Q12: For each person with an income of more than 50000, list the number of items
currently on sale whose price does not exceed 0.02% of the person’s income.

Missing ElementsThis is to test how well the query processors know to deal with the
semi-structured aspect of XML data, especially elements that are declared optional
in the DTD.

Q17: Which persons don’t have a homepage?

The fraction of people without a homepage is rather high so that this query also
presents a challenging path traversal to non-clustering systems.



1 A Look Back on the XML Benchmark Project 9

AggregationThe following query computes a simple aggregation by assigning each
person to a category. Note that the aggregation is truly semi-structured as it also
includes those persons for whom the relevant data is not available.

Q20: Group customers by their income and output the cardinality of each group.

1.5 Experiences and Lessons Learned

In this section, we summarize some of the experiences we gathered during the design
of the benchmark and when we ran the setup on a number of platforms.

1.5.1 Benchmark Document

In past database benchmarks, there have been two main routes to designing a
database. On the one hand, designers may lean towards databases that exhibit prop-
erties close to what is found in real-world applications. This has the advantage that
queries feel natural and that it is hard to question the usefulness of the scenario. On
the other hand, it is often desirable to have another property which often is hard to
combine with naturalness, namely predictable query behavior. If designers pursue
predictability, they often go for very regular designs so that they can exactly and reli-
ably predict what queries return. These designs are frequently based on mathematical
models which allow precise predictions – at times at the trade-off however that the
resulting databases ‘feel’ only little natural.

It is hard to position XML between the two extremes. For one, XML is not a
pure machine format and therefore not exclusively consumed and produced by ap-
plications but also absorbed by humans – at least occasionally. Therefore, not only
the semantics but also the documents themselves should still make sense to humans
while it is primarily machines that produce and consume them. In XMark, we thus
tried to reconcile the two competing goals as much as possible but, in case of con-
flicts, our policy was to favor predictability of queries and performance in the gener-
ation process.

We should mention that designers of other XML benchmarks had different poli-
cies in mind. For example, the Michigan Benchmark [17] features a very structured
approach to database generation and want to maximize predictability on all levels
and queries, much in the spirit of the Wisconsin Benchmark described in [15]. A hy-
brid approach is taken by XBench [24] who classify their documents according to a
requirements matrix: their axes are Single-Documentvs. Multi-Document Databases
and Text-Centricvs. Data-Centric Databases, respectively. Other XML benchmarks
like X007 [7] and XMach-1 [3] are also based on certain considerations with respect
to document design.

While most people agree that performance is an important goal in query exe-
cution, it is equally important in data generation especially when it comes to large
databases, which bring about significant generation overhead. In XMark, we pursued



10 Albrecht Schmidt, Florian Waas, Stefan Manegold, and Martin Kersten

performance in that it was a design goal that the data generator should be able to out-
put several megabytes of XML text per second, which we considered a necessary
requirement should it be suitable for deployment in large-scale scenarios. After we
finished a first prototype of the generator, we found out that a major performance
bottleneck was random number generation. At first, we had chosen a high quality
random number generator which turned out to be inadequate. In the sequel, we had
to deal with the trade-off between the quality of random variables in general and
their correlations in particular at one end of the scale and generation time at the
other end. What turned out to be a problem was that when weak correlations were
to be generated the quality of the random number generator may not be sufficient
to make a correlation actually materialize in the generated database instance. On the
other hand, using high-quality random number generators may be too costly in terms
of resource consumption. We tackled the issue by fine-tuning the parameters that
define the available scaling factors. As a final remark on correlations, we mention
that it is quite easy to specify correlations between different entities that are log-
ically sound but nearly impossible to materialize in the generated database due to
the above-mentioned constraints. Hence, it is important to find a logic to describe or
model the benchmark database that at the same time is non-contradictory and feasi-
ble. In the design ofxmlgen , XMark’s data generator, we put considerable effort
into finding both economical and reliable ways of generating random numbers. Espe-
cially, xmlgen makes use of reproducible streams of random numbers to ensure that
important correlations are preserved, most notably the well-formedness constraints
imposed by the XML standard; technically,, we use deterministic number generation.
When a fully customizable document generator is used, the language describing the
document may contain contradictions; in this case, an important design rationale is
to eliminate or minimize the contradictions, for example, by reporting them to the
user through warning and error messages. We believe that there are still many open
research issues with respect to data generation. Promising subjects include how to
generate interesting chain correlations in large data sets and statistical guarantees for
their materialization in the data sets, amongst others.

1.5.2 Running the Benchmark

Since XML was still at an early stage in its development, the actual implementation
of the benchmark on a number of systems was a non-trivial task. The architectures
and capabilities of query processors very much varied from system to system. Some
systems could only bulkload small documents at a time; hence, we sometimes had to
use the split feature of the data generator and feed the benchmark document in small
pieces; at other times we were given the opportunity to specify (parts of) the XML-
to-Database mapping by hand. The benchmark queries (see [22] for a complete list)
often had to be translated to standard (SQL and XQuery) or proprietary query lan-
guages and possibly annotated with execution plan hints. All in all, there were many
opportunities for hand-optimization which sometimes had to be taken advantage of
to make the benchmark work on a system. However, we think that the technology
has matured since we did the experiments and expect it to become more robust so



1 A Look Back on the XML Benchmark Project 11

that a detailed report of these experience would probably be already outdated. We
therefore just mention some findings and refer to [21] and [22] which contain more
detailed material.

The benchmark has been a group-design activity of academic and industry re-
searchers and is known to be used with success to evaluate progress in both commer-
cial and research settings. The evaluation in this section here is meant to present the
highlights we encountered when running the benchmark on a broad range of the sys-
tems; an in-depth analysis of the behavior of all individual systems would be beyond
the scope of this chapter. We anonymized the systems due to well-known license re-
strictions and we simply speak of systems A through F. These systems are designed
aslarge scale repositoriesand therefore can be expected to perform well at handling
large amounts of data. In the sequel, we will refer to these systems also asmass stor-
age systems.Some of the systems, namely A to C, are based on relational technology,
come with a cost-based query optimizer and allow the kind of hand-optimization and
hints as the relational product. While A and B do not require the user to provide a
mapping for physical data breakdown, System C reads in a DTD and lets the user
generate an optimized database schema. Systems D to F are main-memory based and
only come with heuristic optimizers; however, they also allow rewriting the queries
by hand if necessary.

A note on the analysis. Some systems provided us with the opportunity to look
at query execution in detail,i.e., find out how much time is spent for query opti-
mization, metadata access or during I/O wait; others only allowed a black-box anal-
ysis augmented with the usual monitoring tools that operating systems provide. The
tools to run the benchmark document have been made available on the project Web
site [18]. They include the data generator and the query set along with a mapping
tool to convert the benchmark document into a flat file that may be bulk-loaded into
a (relational) DBMS; a variety of formats are available.

All queries were run on machines equipped with 550 MHz Pentium III proces-
sors, SCSI Ultra2 harddisks and 1 GB of main memory; operating systems were
Windows 2000 Advanced Server and Linux 2.4 respectively depending on what the
packages required. Although the systems were all equipped with at least two proces-
sors, only one processor was used during bulk load and query execution.

System SizeBulkload time
A 241 MB 414 s
B 280 MB 781 s
C 238 MB 548 s
D 142 MB 50 s
E 302 MB 96 s
F 345 MB 215 s

Table 1.1.Database sizes

Concerning the scaling factor, all mass storage systems were able to process the
queries at scaling factor 1.0. Note that it took the XML parserexpat [13] 4.9 sec-



12 Albrecht Schmidt, Florian Waas, Stefan Manegold, and Martin Kersten

onds (user time on the above Linux machine including system time and disk I/O)
to scan the benchmark document (this time only includes the tokenization of the in-
put stream and normalizations and substitutions as required by the XML standard
and no user-specified semantic actions). The bulkload times are summarized in Ta-
ble 1.1: they range from 50 seconds to 781 seconds. They are completed transactions
and include the conversion effort needed to map the XML document to a database
instance. Note that System C requires a DTD to derive a database schema; the time
for this derivation is not included in the figure, but is negligible anyway. The result-
ing database sizes are also listed in Table 1.1; we remark that some systems which
are not included in this comparison require far larger database sizes.

System ASystem BSystem CSystem DSystem ESystem F
Q 1 689 784 257 120 1597 2814
Q 2 3171 1971 707 2900 4659 7481
Q 3 41030 6389 1942 3900 4630 8074
Q 5 259 221 237 160 246 204
Q 6 293 331 509 10 336 508
Q 7 719 741 1520 10 287 2845
Q 8 1684 1466 667 470 3849 9143
Q 9 3530 10189 92534 980 5994 13698

Q 10 3414285 86886 1568 22000 54721 69422
Q 11 205675 2551760 2533738 8700 602223 741730
Q 12 126127 965118 976026 7500 268644 270577
Q 17 1008 1117 240 250 2103 3598
Q 20 821 939 1254 620 1065 1759

Table 1.2.Performance in ms of some queries

We now turn our attention to the running times and statistics as displayed in
Table 1.2 and present some insights. Since we do not have the space to discuss all
timings and experiments in detail, we only present a selection. In most physical XML
mappings found in the literature, Query Q1 [18] consists of a table scan or index
lookup and a small number of additional table look-ups. It is mainly supposed to
establish a performance baseline: At scaling factor 1.0, the scan goes over 10000
tuples and is followed by two table look-ups if a mapping like [20] is used.

QuerySystemCompilation CPUCompilation totalExecution CPUExecution total
A 16% 25% 31% 75%

Q 1 B 13% 51% 30% 49%
C 0% 29% 20% 71%
A 9% 13% 41% 87%

Q 2 B 12% 20% 65% 80%
C 3% 16% 77% 84%

Table 1.3.Detailed timings of Q1 and Q2 for Systems A, B, C



1 A Look Back on the XML Benchmark Project 13

Queries Q2 and Q3 are the first ones to provide surprises. It turns out that the parts
of the query plans that compute the indices are quite complex TPC/H-like aggrega-
tions: they require the computation of set-valued attributes to determine the bidder
element with the least index with respect to the open auction ancestor. Therefore
the complexity of the query plan is higher than the rather innocent looking XQuery
representation [18] of the queries might suggest. Consequently, running times are
quite high. Although System A was able to find an execution plan for Q3 which was
as good as that of the other systems, it spent too much of its time on optimization.
Table 1.3 displays some interesting characteristics of Q1 and Q2 that can be traced
back to the physical mappings the systems use. System A basically stores all XML
data on one big heap,i.e., only a single relation. System B on the other hand uses a
highly fragmenting mapping. Consequently, System A has to access fewer metadata
to compile a query than System B, thus spending only half as much time on query
compilation (including optimization) as System B. However, this comes at a cost.
Because the data mapping deployed in System A has less explicit semantics, the ac-
tual cost of accessing the real data is higher than in System B (75%vs49%). System
C as mentioned needs a DTD to derive a storage schema; this additional information
helps to get favorable performance. Still in Table 1.3, we also find the detailed ex-
ecution times for Q2. They show that mappings that structure the data according to
their semantics can achieve significantly higher CPU usage (compare 77% of System
C and 65% of System BvsSystem A’s 41%). We remark that System C also uses a
data mapping in the spirit of [23] that results in comparatively simple and efficient
execution plans and thus outperforms all other systems for Q2 and Q3.

Query Q5 tries to quantify the cost of casting or type-coercion operations such
as those necessary for the comparisons in Q3. For all mass-storage systems, the cost
of this coercion is rather low with respect to the relative complexity of Q3’s query
execution plan and given the execution times of Q5. In any case, Q5 does not exhibit
great differences in execution times. We note that all character data in the original
document, including references, were stored as strings and cast at runtime to richer
data types whenever necessary as in Queries 3, 5, 11, 12, 18, 20. We did not apply
any domain-specific knowledge; neither did the systems use schema information nor
pre-calculation or caching of casting results.

Regular path expressions are the challenge presented by queries Q6 and Q7. Sys-
tem D keeps a detailed structural summary of the database and can exploit it to op-
timize traversal-intensive queries; this actually makes Q6 and Q7 surprisingly fast.
However, on systems without access to structural summaries, which effectively play
the role of an index or schema, these queries often are significantly more expensive
to execute. The problem that Q7 actually looks for non-existing paths is efficiently
solved by exploiting the structural summary in the case of System D. For some sys-
tems, the cost of accessing schema information was very high and dominated query
performance.

Queries Q8 and Q9 are usually implemented as joins. In the systems that we
could analyze in detail, chasing the references basically amounted to executing equi-
joins on strings. We were surprised that Q8 and Q9 were relatively cheap in com-
parison to Q2 and Q3 since we would have deemed the individual elements similarly



14 Albrecht Schmidt, Florian Waas, Stefan Manegold, and Martin Kersten

expensive. For Q9, System C was not able to find a good execution plan in acceptable
time. Apart from that anomaly, the implementation of the executed join algorithms
seemed to determine the performance.

The construction of complex query results is addressed in Q10. The path expres-
sions and join expression used in the query are kept simple so that the bulk of the
work lies in the construction of the answer set which amount to more than 10 MB
of (unindented) XML text. Whereas Q10 produced massive amounts of output data,
Q11 and Q12 test the ability to cope with large intermediate results by theta-joining
potential buyers and items that might be of interest to them. The theta-join produces
more than 12 million tuples. Q12 especially is also a challenge to the query opti-
mizer to pick a good execution plan and allows insights into how the data volume
influences query and output performance. For Systems B and C, the optimizer chose
a sub-optimal execution plan. For Systems D through F we had to experiment with
several hand-optimized execution plans.

Q17 again stresses the loose schema of many XML documents by querying for
non-existing data. The query execution plan computes the intersection of two sets.
The timings in Table 1.2 show a typical situation: although all systems are able to
process the query in less than four seconds, there is still an order magnitude of dif-
ference in the performance. The aggregations of Q20 conclude the query set with
a combination of three table scans and a set difference. All systems show similar
performance.

In some of the performance figures certain systems (particularly Systems A to C)
show pathological running times (cf. Table 1.2). This does not necessarily mean that
the relevant systems are inferior to the others; we rather relied on the built-in query
optimizers and did not at all change or reformulate queries by hand. This was to show
that the benchmark queries indeed present reasonable challenges thatcanbe solved
even if not optimally. The analysis of the query translation and optimization process
showed that search spaces for XML queries are often larger than necessary since,
during the translation from XQuery to a lower-level algebra, information especially
about path expressions is often lost. To improve on this, experimenting with new
pruning strategies and extended low-level algebras to better capture query semantics
might be a good starting point.

1.6 Conclusion

In this chapter we outlined the design of XMark, a benchmark to assess the perfor-
mance of query processors for XML documents. Based on a internet auction site as
an application scenario, XMark provides a suite of queries that have been carefully
crafted to highlight individual performance critical aspects inherent to the querying
of XML. As work on the benchmark started at an early stage in the development of
XML query processors, the philosophy behind it evolved to keep up with its targets.
Since its release XMark has been widely adopted by both research communities and
industry.



References 15

References

1. S. Abiteboul. Querying Semi-Structured Data. InProceedings of the International Con-
ference on Database Theory (ICDT), pages 1–18, 1997.

2. T. Anderson, A. Berre, M. Mallison, H. Porter, and B. Schneider. The HyperModel
Benchmark. InInternational Conference on Extending Database Technology, volume
416 ofLecture Notes in Computer Science, pages 317–331, 1990.

3. T. Böhme and E. Rahm. XMach-1: A Benchmark for XML Data Management. InPro-
ceedings of BTW2001, 2001.

4. A. Bonifati and S. Ceri. Comparative Analysis of Five XML Query Languages.ACM
SIGMOD Record, 29(1):68–79, 2000.

5. R. Bourett. XML Database Products. available athttp://www.rpbourret.com/
xml/XMLDatabaseProds.htm , 2000.

6. T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible Markup Language
(XML) 1.0 (Second Edition). available athttp://www.w3.org/TR/REC-xml ,
2000.

7. S. Bressan, G. Dobbie, Z. Lacroix, M. Lee, Y. Li, and U. Nambiar. X007: Applying 007
Benchmark to XML Query Processing Tools. InInternational Conference on Information
and Knowledge Management, pages 167–174, 2001.

8. M. Carey, D. DeWitt, and J. Naughton. The OO7 Benchmark. InProceedings of the ACM
SIGMOD International Conference on Management of Data, pages 12–21, 1993.

9. M. Carey, D. DeWitt, J. Naughton, M. Asgarian, P. Brown, J. Gehrke, and D. Shah. The
BUCKY Object-Relational Benchmark. InProceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 135–146, 1997.

10. R. Cattell and J. Skeen. Object Operations Benchmark.TODS, 17(1):1–31, 1992.
11. D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, and J. Robie. Xml query use

cases. Technical report, W3C, November 2002. available athttp://www.w3.org/
TR/xmlquery-use-cases/ .

12. D. Chamberlin, D. Florescu, J. Robie, J. Siméon, and M. Stefanescu. XQuery: A
Query Language for XML, February 2001. available athttp://www.w3.org/TR/
xquery .

13. James Clark et al. Expat XML Parser. available athttp://sourceforge.net/
projects/expat/ , 2001.

14. D. Florescu and D. Kossmann. Storing and Querying XML Data using an RDMBS.IEEE
Data Engineering Bulletin, 22(3):27–34, 1999.

15. J. Gray. Database and Transaction Processing Performance Handbook. available
at http://www.benchmarkresources.com/handbook/contents.asp ,
1993.

16. M. Klettke and H. Meyer. XML and Object-Relational Database Systems - Enhancing
Structural Mappings Based on Statistics. InInternational Workshop on the Web and
Databases (WebDB), pages 63–68, 2000.

17. K. Runapongsa, J. M. Patel, H. V. Jagadish, and S. Al-Khalifa. The michigan bench-
mark: A micro-benchmark for xml query processing system. Informal Proceedings
of EEXTT02, electronic version available athttp://www.eecs.umich.edu/db/
mbench/ , 2002.

18. A. Schmidt, M. Kersten, D. Florescu, M. Carey, I. Manolescu, and F. Waas. The XML
Store Benchmark Project, 2000.http://www.xml-benchmark.org .

19. A. Schmidt, M. Kersten, D. Florescu, M. Carey, I. Manolescu, and F. Waas.
XMark Queries, 2002. available athttp://www.xml-benchmark.org/Assets/
queries.txt .



16 Albrecht Schmidt, Florian Waas, Stefan Manegold, and Martin Kersten

20. A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient Relational Storage and
Retrieval of XML Documents. InInternational Workshop on the Web and Databases
(WebDB), pages 47–52, Dallas, TX, USA, 2000.

21. A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and R. Busse. XMark: A
Benchmark for XML Data Management. InProceedings of the International Conference
on Very Large Data Bases, pages 974–985, 2002.

22. A. Schmidt, F. Waas, M. Kersten, D. Florescu, I. Manolescu, M. Carey, and R. Busse. The
XML Benchmark Project. Technical Report INS-R0103, CWI Amsterdam, April 2001.

23. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F. Naughton.
Relational Databases for Querying XML Documents: Limitations and Opportunities. In
Proceedings of the International Conference on Very Large Data Bases, pages 302–314,
1999.

24. B. B. Yao, M. T. zsu, and J. Keenleyside. XBench - A Family of Benchmarks for XML
DBMSs. Technical Report TR-CS-2002-39, University of Waterloo, 2002.


