Efficient Software Implementation of LFSR and
Boolean Function and Its Application in
Nonlinear Combiner Model

Sandeepan Chowdhury and Subhamoy Maitra

Applied Statistics Unit, Indian Statistical Institute
203 B T Road, Kolkata, Pin 700 108, INDIA
sandeepan@consultant.com,
subho@isical.ac.in

Abstract. Here we present an efficient implementation strategy and
some general design criteria for the standard nonlinear combiner model.
This model combines the output sequences of several independent
Linear Feedback Shift Registers (LFSRs) using a Boolean function
to produce the running key sequence. The model is well studied and
a standard target for many cryptanalytic attacks. The naive bitwise
software implementation of the LFSRs is not efficient. In this paper we
explore an efficient block oriented software implementation technique
to make it competitive with the recently proposed fast stream ciphers.
Our proposed specifications on this model can resist the fast correlation
attacks. To evaluate our design criteria and implementation techniques,
we carry out the security and performance analysis considering a specific
scheme based on this model.

Keywords: Linear Feedback Shift Register, Block Oriented Software
Implementation, Boolean Function, Resiliency, Nonlinearity, Algebraic
Degree.

1 Introduction

Linear Feedback Shift Registers (LFSRs) are the main building block of most
of the stream cipher systems. The slow software realization of the bit oriented
LFSRs (i.e., LFSRs over GF(2)) reduces the efficiency of LFSR-based stream
ciphers in software. To improve software implementation, recently proposed fast
stream ciphers like SNOW ([8,9], t-classes of SOBER [18], TURING [19] have
opted for word-oriented LFSRs which are actually LFSRs over GF(2°). The
value of b is taken as 8/16/32 depending on different word sizes of the processor.
However, these newly proposed fast stream ciphers are not yet time-tested and
some of the newly proposed stream ciphers, like SSC2 [24], SNOW (Version-
1.0), t-classes of SOBER [18], despite being very fast in software, found to have
certain weaknesses in their design. In this context we like to draw attention to
the well-known LFSR-based nonlinear combiner model of stream cipher. In the

J. Zhou, M. Yung, Y. Han (Eds.): ACNS 2003, LNCS 2846, pp. 387-402, 2003.
© Springer-Verlag Berlin Heidelberg 2003

388 S. Chowdhury and S. Maitra

standard nonlinear combiner model (presented in Figure 1) the output sequences
of several independent Linear Feedback Shift Registers (LFSRs) are combined
using the nonlinear Boolean function to produce the running key stream K.
The n LFSRs and the Boolean function are presented as Si,...,S, and f (see
Figure 1) respectively. This key stream K is bitwise XORed with the message
bit stream M to produce the cipher C'. The decryption machinery is identical
to the encryption machinery. The initial conditions of the LFSRs constitute the
secret key of the system. There are several variants of this model where the

Fig. 1. Nonlinear Combiner Model.

LFSRs may be clock-controlled or the Boolean function may contain a few bits
of memory. The basic nonlinear combiner model is a standard target for most
of the correlation attacks [22,15,7,1,2,11,16]. As the correlation attacks on this
model appear to be stabilized, it is now possible to fix the proper design criteria
for the LFSRs [15,1,14] as well as that of the Boolean function [20,17,23]. So
considering the present scenario, we re-examine this model in detail. At this
point, let us highlight the salient features of this initiative.

1. The slow software realization of the bit oriented LFSRs reduces the efficiency
of this model in software. So, for the realization of LFSRs over GF(2), we
propose a block oriented technique to get considerable speed up in software.
Further, we show that the algebraic normal form representation of Boolean
functions can be efficiently used for block oriented strategy.

2. We start the design procedure of the basic nonlinear combiner model to
resist the fast correlation attack presented by Chepyzhov, Johansson and
Smeets [2]. Later, it has been checked that our design methodology provides
robustness against the attack proposed by Canteaut and Trabbia [1]. We
suitably incorporate recent theoretical developments in design of Boolean
function and LFSRs to choose parameters of each component of the system.

3. On the basis of our analysis and implementation techniques, we present a
concrete scheme, specifying the exact LFSR connection polynomials and the
Boolean function. Analysing this scheme we show that it is robust against ex-
isting fast correlation attacks which performs better than the exhaustive key
search. We also show that following the proposed block oriented technique,
software implementation of the scheme is quite competitive with most of the
other recently proposed fast software stream ciphers. However, low linear

Efficient Software Implementation of LFSR and Boolean Function 389

complexity of the generated scheme still remains a problem. Some modifica-
tion on the basic nonlinear combiner model may remove this weakness and
make the model suitable for practical purpose.

The organization of the paper is as follows. Section 2 presents some preliminary
notions. In Section 3, techniques for efficient software implementation of LESRs
and the Boolean function have been discussed. In Section 4 we develop the design
approach on the basis of the existing attacks. On the basis of our design strategy,
we analyse a specific scheme in Section 5.

2 Preliminaries

The basic components of the nonlinear combiner model are some LFSRs and a
Boolean function.

An LFSR of length d generates a binary pseudorandom sequence following
a recurrence relation over GF(2). The addition operator over GF'(2) is denoted
by &. It takes a small seed of length d and expands it to a much larger binary
pseudorandom sequence with high periodicity. We consider a degree d primitive
polynomial over GF(2) of the form z¢ @ EB?;Ol a;xz’. The corresponding binary
recurrence relation is sjq = @f:_ol aisj4+i, j > 0. Note that one uses a primitive
polynomial to get maximum possible periodicity, i.e., 2¢ — 1. This polynomial is
called the “connection polynomial” of the LFSR. The weight of this connection
polynomial is the number of places where the coefficient has the value 1, i.e.,
1+ #{a; = 1}. The taps of the LESR come from the positions where a; = 1 and
there is no tap at the positions with a; = 0.

By a 7-nomial multiple of the connection polynomial, we mean a multiple of
the form 2%t + 2% + ... + 2% -1 + 1 with degree less than (2¢ — 1).

An n-variable Boolean function f is defined as f : GF(2") — GF(2). Now
we present some definitions relevant to Boolean functions.

Definition 1. For binary strings S1,S2 of same length A\, we denote by #(S1 =
Sa) (respectively #(S1 # S2)), the number of places where S1 and Sa are equal
(respectively unequal). Hamming distance between Sy, Sy is denoted by d(S, S2),
i.e., d(S1,S2) = #(S1 # S2). Also the Hamming weight or simply the weight of
a binary string S is the number of ones in S. This is denoted by wt(S). An
n-variable function f is said to be balanced if its output column in the truth table
contains an equal number of 0’s and 1’s (i.e., wt(f) =2""1).

Definition 2. An n-variable Boolean function f(Xi,...,X,) can be consid-
ered to be a multivariate polynomial over GF(2). This polynomial can be ex-
pressed as a sum of products representation of all distinct r-th order products
(0 < r < n) of the variables. More precisely, f(X1,...,X,) can be written as
ao ® (BZ] aiX;) @ (Bircizjcn @i XiX;) @ ... @ ar2. n X1 Xz ... X, where the
coefficients ag, a;, aij, . .., a12..n € {0,1}. This representation of f is called the
algebraic normal form (ANF) of f. The number of variables in highest order

390 S. Chowdhury and S. Maitra

product term with nonzero coefficient is called the algebraic degree, or simply
degree of f.

We will later show that using ANF helps faster implementation of Boolean func-
tions when realized in block oriented manner.

Definition 3. Functions of degree at most one are called affine functions.
An affine function with constant term equal to zero is called a linear func-
tion. The set of all n-variable affine (respectively linear) functions is denoted
by A(n) (respectively L(n)). The nonlinearity of an n variable function f is
nl(f) = minge amn)(d(f, g)), i-e., the distance from the set of all n-variable affine
functions.

Definition 4. Let X = (X1,...,X,) and @ = (w1,...,wy,) both belong to
{0,1}" and X - @ = Xjw; @ ... ® Xpwy,. Let f(X) be a Boolean function on
n wvariables. Then the Walsh transform of f(X) is a real valued function over
{0,1}™ that can be defined as Wy (w) = Zfe{ojl}n(—l)ﬂx)@xw.

Definition 5. [10] 4 function f(X1,...,X,,) is m-th order correlation immune
(CI) iff its Walsh transform Wy satisfies Wy(w) = 0, for 1 < wt(w) < m. Also
[is balanced iff W¢(0) = 0. Balanced m-th order correlation immune functions
are called m-resilient functions. Thus, a function f(X1,...,X,) is m-resilient
iff its Walsh transform Wy satisfies Wy(w) =0, for 0 < wt(w) < m.

By an (n,m,u,x) function we mean an n-variable, m-resilient function with
degree u and nonlinearity z. It is known that for m > 3 — 2, the maximum
possible nonlinearity can be 27~ — 2%1 and such functions have three valued
Walsh spectra [20]. The maximum possible algebraic degree of such functions is

n—m —1 [21]. Construction of such functions has been demonstrated in [23,17].

3 Software Implementation

In this section we discuss the block oriented software implementation of LFSRs
and the Boolean function to enhance the processing speed.

3.1 Software Implementation of LFSRs

Hardware implementation of an LESR generates a single bit per clock. We denote
the output bit sequence (of N bits) as {s,}, 7 < 0 < N. In naive software imple-
mentation, more than one (say v) logical operations (bitwise XOR, AND, and
bit shifting) are required to generate a single output bit. The motivation behind
the fast software implementation of an LFSR is to generate a block of b output
bits in < bv logical operations. For this purpose we discuss the block oriented
implementation, where the LFSR outputs one block at a time. We denote this
output of b bit vectors as a “block”, i.e., Wj = {Sjp4(5-1),- -, Sjb41,Sjp). Thus

Efficient Software Implementation of LFSR and Boolean Function 391

a sequence of N output bits is now obtained as N’ blocks {w;},0 < j < N,
where N = N’b. For convenience of storage and operations in processors, it is
natural to take b = 8,16, 32, 64 etc.

First we discuss a block oriented implementation of an LFSR by matrix
operation. The standard matrix representation of an LFSR can be seen as x;, =
Al xq, where A is the d x d state transition matrix and xq is the d-bit initial
state vector of the LFSR [12]. Note that, to get one b length block we need
a binary matrix multiplication. For LFSRs of high length (say > 100), even
precomputation and efficient exponentiation (for calculating A®) will render this
technique slow.

Another approach is to extend the bitwise recurrence relation of an LFSR
Sjtd = EB?;& a;sj+i, to that over blocks w; 4 = EB?:_Ol a;w;4;. For imple-
menting this block oriented relation, we consider an LFSR consists of d blocks
corresponding to the original LFSR of d bits. We denote the LFSR blocks by
(S[d —1],...,S[1],S[0]) from left to right. The initial state is represented as
Sld—1) = wg_1,...,S[1] = w1, S[0] = wg. So one needs the first bd bits of
the LESR bit sequence s; to initialize these d blocks. Once initialized, the block
oriented recurrence relation can generate the output sequence of blocks i.e.,
{w;}j>0. Only % logical operations are required per output bit, where ¢ is the
total number of taps. Considering a primitive trinomial (i.e., ¢ = 2) and block
size b = 64, we get % = % Precomputation involving the generation of bd bits
for initialization of the d blocks makes the process slow and memory dependent
(=~ 3 KByte generation and storage for d ~ 300). Further, for synchronized oper-
ation, every reinitialization of initial d blocks is a time consuming affair. For fast
implementation in software, by hard coding the LFSR involves using distinct
variables for the d LFSR blocks. It is not practical when d ~ 300. In that case,
using arrays for storing the LFSR needs indirect addressing at machine level and
the implementation becomes inefficient.

We extend the idea of [24,3]. According to this approach, the LFSR (length
d) consists of y number of blocks, each of length b, i.e., d = yb. Here we de-
note the blocks (S[y — 1],...,5[1],S[0]) from left to right. Initially S[y — 1] =

Wy_1,...,5[0] = wo. The block oriented recurrence relation [3] for the LFSR is
t—1
Wity = D (Wisgu 11 << (0—10)) & (Wjtq, >>1s)), for j >0. (1)
=0

Here bq;s + i = pyr, and po, p1, ..., pi—1 are the tap positions. It may be noted
that taps are only between the positions 0 and d — b+ 1. Number of logical oper-
ations required for each output bit is %. Here, t; is the number of boundary
taps, i.e., at any of the positions 0,b,2b,...,d(b — 1), and t3 is the number of
non-boundary taps. Total number of taps ¢ = ¢; + to. Considering primitive
trinomials, ¢, = 1, to = 1. Thus for b = 64, the number of logical operation
per bit is 6%. Also the memory requirement is only y = % blocks instead of d
blocks as mentioned earlier. Further the initialization can be done directly with-
out any precomputation. Unfortunately, the method presented in [24,3] works
for LFSRs of size d = yb, i.e., the degree has to be multiple of block size.

392 S. Chowdhury and S. Maitra

Here we extend this technique for LFSR of any length d = yb+ a,0 < a < b,
where d may not be a multiple of the block size b. For the sake of faster im-
plementation, we consider that there is no tap between the positions d — 1 and
(d—b—a+1). Here, an LFSR (denote it by M) of length d = yb+a,0 < a <b
is assumed to consist of y + 1 blocks, namely (S[y], S[y — 1],...,S5[0]) from
left to right. In order to make all the blocks of same length b, we pad the
leftmost (b — @) bits of the block S[y] by zeroes. So at any stage we denote
its state by the bit vector D; = {0,...,0, Sj4d—1,-..Sj4y},7 > 0. Initially,
Sly] = Do, Sly — 1] = wy_1,...,S[0] = wo. The y blocks Sy —1],...,S[0] can
be viewed as an LESR (M) of length d’ = yb and the block S[y] is considered
separately. Recurrence relation for LESR (Mg) is obtained from Equation (1).
The output of the LFSR (My) is dependent on both My and S[y]. Se, we need to
define two simultaneous block oriented recurrence relations, for the LFSR Mj.
These can be obtained as,

Wity = (W <<a)®D;_; for j >0, for My and

D, =w'; >> (b—a) for j > 0 for single block S[y].

Here, w’; can be obtained from Equation (1) considering the LFSR M.

Note that W%“’ logical operations are required for each output bit. Using a
primitive trinomial (¢; = 1) as connection polynomial, only % logical operations
are required for each bit on average. The storage requirement is only y + 1
blocks and no precomputation is required for initialization of the blocks. The
implementation can be made faster by hard coding the LFSR in the program
code, which involves use of only y 4 1 variables in the memory to represent the
LFSRs. The pseudo code for updating the LFSR after generation of each new
block will be as follows.

newS[0] = S[1], newS[1] = S[2], ..., newS[y — 2] = S[y — 1];

newS[y — 1] = (newBlock << a) ® Sly|, newS[y] = newBlock >> (b — a);

Here, newS[| corresponds to the new state of a block S[] and newBlock corre-
sponds to the new block obtained from LFSR M . So, considering all the aspects
we advocate this method for fast software implementation of an LFSR. Next we
present some experimental results in Table 1.

We consider an LFSR of length 377 and calculate the number of cycles re-
quired per byte of LESR output in actual “C” language implementation (P-IV
2.4 GHz processor, gee compiler, LINUX (RedHat Version 8) operating sys-
tem) of the technique described above. Two different block sizes of 32 and 64
have been considered. The available data type “unsigned long long” in gec/ce
compilers provides this 64 bit storage block. The corresponding theoretically
calculated values of required number of logical operations per output byte (de-
noted as op./byte) have also been provided. For all the cases t; = 1. Note that
the implementation speed is much worse than the theoretical speed and it needs
some more effort to reduce the gap.

Efficient Software Implementation of LFSR and Boolean Function 393

Table 1. LFSR performance for different block size.

t b=64 b=32
cycles/byte|op./byte|cycles/byte|op. /byte

2 8.04 1 8.76 2
4 14.12 2 9.29 4
6 16.80 3 9.77 6
8 20.74 4 11.08 8
10 24.14 5 12.15 10
12 28.43 6 12.70 12

3.2 Software Implementation of Boolean Function

The truth table of the Boolean function can be implemented in software using
a look up table (of 2" bits) which gives one bit output for n bit input. In
order to combine the n output blocks generated by the n LFSRs, the ANF of
Boolean function provides an interesting option. First we present the following
construction method [23,17].

Construction 3.1 Let f be an (n,m,d,x) function (m >% —2), f = (1&
Xn)f1 @ X fa, where f1, fa are (n — 1)-variable m-resilient functions. Let F' =
Xn+2 EBX'rH»l @f and G = (1 EBXnJrQ EBXnJrl)fl D (Xn+2 @Xn+1)f2 @Xn+2 X,
Also H = (1®X,,13)F® X, 13G. The function H constructed from f above is an
(n+3,m+2,d+1,2" ! +4x) function. Moreover, F,G are both (n+2)-variable,
(m + 2)-resilient functions.

Table 2. Construction of Boolean function

Algebraic Normal Form & || Total
f=08 X)) & Xnfo 212 4
F:Xn+2®Xn+1EBf 0[2 2
G=(1DXnt2PD Xnt1)1 D (Xnt2 D Xnt1)f2 ® Xny2 ® Xp
=18 (Xnt2® Xn1))([1 D f2) D Xni2o B X, 1|5] 6
H=(1&X,3)F ® Xny3G 2|2| 4
Total logical operations 16

Now consider that the algebraic normal form of f, fo are available and they
need I1,lo number of logical operations (AND, XOR) respectively. Following
Construction 31, we require /1 + I3 + 16 logical operations to derive the function
H. Table 2 gives step wise breakup of required logical operations. We consider
the input variables (X1,...,X,) are n output blocks from the LFSRs. So the
output of the Boolean function is one block of b bits after I; 4+ 15 + 16 operations.
Thus b bits are produced in l; + Il + 16 operations. So on an average, one bit is
generated in l”'l%w operation(s).

394 S. Chowdhury and S. Maitra
4 The Design Approach

Existing correlation attacks on the nonlinear combiner model exploits the cor-
relation between the cipher text bit sequence and the bit sequence coming out
of one or more LFSRs. To be specific, one considers the correlation between the
sequence generated by one or more LFSRs and the cipher text C [21,22] (in
turn K'). Here we consider an (n,m,d,x) Boolean function f. It is known that
there always exists a linear function @, w; X; (with wt(wy,...,w,) =m+1)
such that the correlation coefficient between the stream coming out of f and the
linear function @, w; X; is not zero.

Definition 6. The sequence o generated by XORing the sequences generated by
the individual LFSRs, say, S;,,...,S;, ., i same as that produced by the LFSR
S with length L = ZZ':Il d; and connection polynomial 1(x) = HT:T ci; (x) [7].
We refer to this single LESR of length L and connection polynomial 1(x) as the
equivalent LFSR.

The nonlinear combiner model can be attacked if the initial condition of an
equivalent LFSR can be obtained. The standard models of correlation attacks
recover the initial condition of a target LFSR from a perturbed version of the
original output sequence. These attacks fit into the nonlinear combiner model,
if we consider the equivalent LFSR as the target LFSR, the sequence o as the
original sequence and the running key sequence K as the perturbed sequence.
Note that it is generally not possible to get K and the perturbed sequence is
actually C. Naturally the attacker will consider the smallest length equivalent
LFSR. So from the designer’s viewpoint, fix the design parameters of the nonlin-
ear combiner model to make the smallest length equivalent LFSR robust against
correlation attacks.

The fast correlation attack proposed in [15] improved the complexity of this
exhaustive search to 2°F where 3 < 1. It has been mentioned in [15, Section
1] that the attack is not feasible if the target LFSR has more than 10 taps. So
the weight of the equivalent LFSR S must be > 10. However one also needs to
ensure that a high weight connection polynomial does not have a sparse multiple
of low degree [15, Section 5]. This criteria has been dealt in more detail later.

The modified fast correlation attacks developed subsequently [2,11,1,16] and
they transformed this problem of cryptanalysis to some decoding problem. Ac-
cording to this model of cryptanalysis, the running key sequence K is the per-
turbed version of the output sequence o of an LFSR (here the equivalent LFSR),
after passing through a Binary Symmetric Channel (BSC) with error probability
p = Plo; # K;] < L (see Figure 2). Now we relate this error probability p of
the BSC with the parameters of the nonlinear combiner model. In that case,
p= P[Ui + Kz] _ % - maxwe{o;ﬁ:l“wf(wﬂ).

If we correlate the cipher text bits C' with o, then the error probability p
increases further [1] and hence the complexity of the attack increases. In order
to establish the robustness of our scheme we consider the correlation between
o and K. Depending on the nature of the fast correlation attacks they can be

Efficient Software Implementation of LFSR and Boolean Function 395

Binary Symmetric Channel
M}

L 0 - 0
S
© ®

Equivalent LESR (S) 1-p

Fig. 2. Coding theory based model of Correlation Attack

divided as iterative algorithm and single pass algorithm (see [4] for details). We
first consider the single pass algorithm described by Chepyzhov, Johansson and
Smeets (CJS) [2]. The basic idea is to correctly guess a small number of output
bits of the LFSR output sequence o from the perturbed sequence C. To reduce
the decoding complexity of the [N, L] binary code, it is associated to another
code [na, k] of lower dimension (k < L). This [ng, k] code is obtained using sets
of t (t > 2) parity check equations of the [N, L] code [2, Algorithm A2]. This
helps to recover k initial bits of the target LESR (of length L). According to [2],
the BSC has probability p = % — € < 0.5. The amount of cipher text bits (N)
required for cryptanalysis is given by [2]

1 _
N = (2t In te25" (2)

where k is the number of initial bits recovered correctly from the attack. For
given values of L and k, cipher text bit requirement N increases as e decreases.

Comparing the expression of p in BSC and the Boolean function model, we get

_ max,eqo,13n (W (@)])
- 2n+1 N

It is important to note here that the Boolean function needs to have highest
possible nonlinearity in order to possess maximum resistance against the best
affine approximation (BAA) attack [7]. Moreover, maximum nonlinearity pro-
vides the minimum value of €, which in turn increases the complexity of the
attack. We generally select a resilient function with three valued Walsh spectra.
The (n,m, u, z) functions with best possible nonlinearity must have three valued
Walsh spectra for m > 2 — 2 [20]. In this case, max,e 0,13 |[Wy(@)| = 22 and

m—+2 . .
hence, € = %nﬁ = 2m—n+1l We start our design from the formulae available

from [2].

4.1 Design Criteria for Equivalent LFSR

We denote the key length by ¢. From designer’s viewpoint the time complexity
of any attack should be > 27. The precomputation memory and time complexity
of [2, Algorithm A2] are N5 and NI [8, Section 4], where N, L, k,t are

as given in Equation 2. The decoding complexity is 2* k (221;)12%

Fact 4.1 The criteria for safe design against CJS attack gives L = 4q.

396 S. Chowdhury and S. Maitra

Reason 4.1 We refer the Equation 2. From the designer’s point of view we can

safely approzimate (underestimate) N as 257", Thus, NI can be approxi-
t L—k

mated as 271 =1 Ift is even, (S =1L and 277 T = 255" Ift is odd,

2 = 2
L—k
T

then 257 1571 = 257" 5 = 2% 5257 % =277 2" . The term 2~ 70

will be minimized when t is the smallest possible odd integer greater than 2, i.e.,

t = 3. Then the minimum value of the term is 2- 55", So, we can underesti-
mate NI'51 as 2557255 = 2°5°. Hence for safe design, % > q, which
gives L = 3q + k. Here, we need to keep in mind that the decoding complexity is
2k . kéle—r)‘z% Considering k as large as q, we get 255" = 27 and also the decoding

complexity is greater than 29. Thus we take L = 3q + k = 4q for a safe design.

However, for a more tight design, we can very well decrease L by some small
amount considering the other terms, mainly the terms related to e.

Ezample 1. Let us consider ¢ = 256, L = 1000, ¢ = 0.125. Note that 4g = 1024,
but considering €, we reduce L a little bit and take L = 1000. For this value of
L, one can calculate the cipher text bit requirement, preprocessing and decoding
complexity for carrying out the CJS attack for different values of ¢ and k. Note
that, in Table 3, for any given values of k and ¢, the corresponding maximum
value of time complexity is always at least 22°6. Thus for L = 1000, the attack
of [2] can succeed in no way with complexity less than the exhaustive key search,
ie., 2256,

Table 3. Time complexity for CJS Attack [2] (L = 1000, ¢ = 0.125)

k[t Bit Requirement Preprocessing| Decoding
(N) Complexity | complexity
1 = =4 k 21n2
TRt m2)l/te=22 N 2 km
32 2 5301 53071 240
32 |3 5329 5329 244
612 5ATG 5A7G 572
64 |3 5319 5319 576
96 2 5A60 5A60 >T07
96 |3 2309 5309 5108
128]2 pYET: PR e 5130
1283 2298 2298 2140
160[2 212 2128 216
160|3 5287 5287 2172
102]2 2413 2413 2200
1023 2277 2277 5204
2242 2397 2397 2232
2043 5266 5266 5236
2562 2681 25 T 2104
2562 5256 5256 5268

Now we concentrate on the iterative decoding algorithm proposed by Can-
teaut and Trabbia (CT) [1]. The correct value of the LFSR output sequence o are
obtained by iteratively modifying the values of the sequence C using parity check
equations of weight 4 and 5. According to their estimation, the cipher text bit

requirement is given by N = 2% (W71 where o (p) = —loga[(T—1)! Cf;(p)],

Cr—_2 is the capacity of the binary symmetric channel with overall error proba-
blhty Pr—2, i-e'a CT—2 =Pr-2 1Og2 (pT—Q) + (1 _pT—Q) IOgZ(l _pT—Z) and L is the

Efficient Software Implementation of LFSR and Boolean Function 397

length of the target LFSR. Here k; ~ 3 for 7 = 3 and k, = 1 for 7 > 4. The
overall error probability of the BSC is given by p, o = %(1 —(1—2p)™2, pis the
error probability of the BSC. Number of parity check equations of weight 7 is
m(r) = % Complexity of the preprocessing stage is =k The decoding
time complexity is given by 5(7 — 1) - N - m(7). The total memory requirement
is 2N + (1 — 1) - m(d) computer words.

Fact 4.2 The condition L = 4q resists CT attack.

Reason 4.2 The time complexity of the preprocessing and decoding stages of
CT attack is given by (];]17_2;, and 5(1 — 1) - N - m(7) respectively. The memory
requirement for the attack is 2N+ (7—1)m(7). Here T, (weight of the parity check
equation) is 3, 4 or 5. So, clearly the complexity of the attack is proportional

to the cipher text bit requirement N. Now N 1is given as 90721 We can
underestimate N as N ~ 2ﬁ, (a;(p) > 0). Putting T = 5, the minimum cipher
text bit requirement is N = 2%, Putting L = 4q, we get N ~ 29. Hence, for
L = 4q, the complexity of of the CT attack is =~

It is of interest to see how the recently published algebraic attacks [6] works on
the nonlinear combiner model designed with the criteria described here.

4.2 Fixing Boolean Function and LFSR Parameters

We have already noted that ¢ = 22++12 = 2™~ "*1 For a given value of ¢,
1. we first need to decide about n, m and
2. once n,m are fixed, the length of each LFSR is calculated.

Now the important question is deciding n and m. First of all, we are inter-
ested about resilient functions with maximum possible nonlinearity and 3-valued
Walsh spectra which needs the condition m > % — 2 [20]. It is known that
the algebraic degree of such function is v = n —m — 1 [23]. Further from the
viewpoint of software implementation, it is better to have lesser values of n, m,
i.e., less number of LFSRs which makes the software more efficient (see Subsec-
tion 3.1 for details). Thus the requirement is to get n, m satisfying the conditions
(i) m > 2 —2, and (ii) 2" " < e

High algebraic degree of the Boolean function ensures high linear complex-
ity for the output key stream K obtained from the Boolean function f [7]. For
achieving high linear complexity one needs n-variable m-resilient Boolean func-
tions with the maximum possible algebraic degree n—m—1 [21]. It is now known
that the resilient function with maximum nonlinearity must have the maximum
algebraic degree too [20].

From Definition 6, length of an equivalent LFSR L = Z;nﬂ . As the
attacker will target the smallest length equivalent LFSRs, we need the average

L

length of an LFSR (or degree of its connection polynomial) dg, = o

398 S. Chowdhury and S. Maitra

Next we fix the degree of the LFSRs dy,ds, ..., d, and the criteria for con-
nection polynomials. The degrees need to be pairwise coprime [12, Page 224] in
order to maximize linear complexity of the running key sequence K. Also we
need that d;, +d;, +...+d;,, ., > L for any subset of m + 1 LFSRs. Now we
consider the following fact.

Fact 4.3 The connection polynomial 1(x) of equivalent LFSR must have weight
> 10, but weight of the connection polynomial ¢;(x),1 <i < n, of the individual
LFSRs S; should be low (< 10).

Reason 4.3 To resist the attacks of Meier and Stafflebach [15], the connection
polynomial ¥(x) of equivalent LFSR must have a high (> 10) weight (already
explained in Subsection 4). The number of logical operations required for gener-
ating the output from an LFSR is dependent on the number of XOR operations
(i.e., the number of taps) in ils recurrence relation. So, for the sake of fast im-
plementation in software, we need connection polynomial of individual LFSRs of
low weight (see Subsection 3.1 for details). These two apparently contradictory
requirements are achievable. For example, consider three trinomials of degree
dy,ds,ds, say. If properly chosen, the product polynom/z'al may have weight as

high as 27. Thus we have to ensure that weight of [¢;,(x) should be high,

for any subset (of LFSRs) having size m’ (m+1<m’ <n).

Now consider about 7-nomial multiples of 1(x) = H;”:Jrll ci,(x) of degree L. It
has been explained in [1,14] that the expected degree of the least degree 7-nomial
multiple of ¥(x) is of the order of 9771, The most important attack presented
using T-nomial multiples is the CT attack [1]. In that case, the value of 7 has
been taken as 3,4,5. Note that, even if 7 = 5, the minimum degree 7-nomial
multiple is of the order 2% = 27 and the CT attack seems to be infeasible under
this circumstances.

5 A Concrete Scheme

On the basis of the design criteria discussed so far, we analyse a specific scheme
of the nonlinear combiner model with key length ¢ = 256. We consider a block
size of b = 64 bits. As discussed in Section 4, we start with L = 4¢ = 1024.
However, considering ¢ = 0.125 (i.e., p = 0.375), the actual value of L can be
decreased to ~ 1000. We take a (6, 2, 3,24) Boolean function. Here n = 6, m = 2
satisfies thei two conditions (i) m > % — 2, and (ii) 2™ "** < e. We follow
the Construction 31 with f = (1 ® X3)X; @ X3X», ie., f1 = X1, fo = Xo. In
this case no operation is required to calculate fi, fo and hence I; = Iy = 0. So,
16 logical operations are needed to get an output of 1 block from the Boolean
function.

The average degree of the connection polynomials are d,, = &3?0 ~ 333. We
choose the LFSRs of length 332, 333, 337, 343, 353, 377 and take the primitive
trinomials 232 G 212 @ 1, 3B @ 2B @1, 3 @ 2 @ 1, 38 @ 220 @ 1,

Efficient Software Implementation of LFSR and Boolean Function 399

2353 @ 2% @ 1, 2377 @ 27 @ 1. Note that the degrees are mutually coprime.
Considering the three (m +1 = 2+ 1 = 3) least lengths out of these 6 LFSRs,
L = 1002, which is greater than our initial design assumption (i.e., 1000). Take

the initial state vector considering all the LFSRs, i.e., in total 2075 bits. Since

we choose the LFSRs of degree mutually coprime, this state will return after
(2332 _ 1)(2333 _ 1)(2337 _ 1)(2343 _ 1)(2353 _ 1)(2377 _ 1) ~ 22075 states.

Table 4. Minimum weight of the connection polynomial of composite LFSRs.

No. of LFSRs|Minimum |Corresponding
taken (m’) weight degree

3 25 1062

1 75 1395

5 209 1698

6 495 2075

Now we look at the possible minimum weights of the connection polynomial
(1(x)) corresponding to the equivalent LESRs (see Table 4). This is obtained for
different subsets (size m’) of the 6 LFSRs. Here 3 < m’ < 6. The least weight
of the products of m’ connection polynomials is 25 (> 10). Clearly the criteria
given in Fact 43 is satisfied and no fast correlation attack is possible in the line
of [15]. From [14], the expected degree of the least degree 7-nomial multiple for
L = 1002 is 271 which is approximately 2°00,2334 9250 for + — 3 4 5. Finding
exact multiples of such high degrees seems to be very hard. Moreover, we have
checked (see Table 5) that the actual complexities of the CT [1] attack for our
scheme and it is always > 22°6. We have already discussed the robustness of this
scheme against the CJS attack (see Example 1 and Table 3).

Table 5. Time/ Memory complexity for Canteaut and Trabbia Attack [1]

7| Cipher text bits Memory Req. Preprocessing Comp.| Decoding Comp.
L
« + == T—2
N2 TP LN L (r 2 1) m) h 5(r —1) - N - m(r)
3 2503 2004 2003 2012
4 2337 233 2673 2349
5 22571 2255 2760 27T

As mentioned earlier in Section 1, low linear complexity still remailns a prob-
lem with this model. For this specific example, using the ANF of the Boolean
function, the linear complexity of the generated key stream is found to be ~ 228.
So 229 known plain text bits may be exploited to attack the scheme using
Berlekamp-Massey Shift Register synthesis algorithm [13]. The concrete scheme
with specific parameters are presented here to show the way of using the crite-
ria fixed in Section 4 to evolve a nonlinear combination generator scheme safe
against the existing correlation attack. We have taken trinomials (least possible
weight) as connection polynomials of individual LFSRs to maximize the speed
of LFSRs in software and still get the desired level of security. Depending on the
security requirement (i.e., key length ¢), similar schemes can be designed in the
same way using required number of LFSRs, their connection polynomials and
the Boolean function.

400 S. Chowdhury and S. Maitra

5.1 Performance in Software

We study the encryption speed of our specific scheme in software, using a simple
“C” language implementation. Here b = 64. The theoretical calculation gives
that 8 logical operations are needed to get one byte output. However, in actual
implementation we get much worse result as available in Table 6 and it needs
further effort to optimize it in software. The storage requirement for this imple-
mentation is less than 1K B for storing the LFSRs. For comparison purpose we
also present the encryption speed of other stream cipher schemes in Table 7. It
is clear that our scheme is quite fast compared to other schemes except SNOW
in Table 7.

Table 6. Key stream Generation Speed on various platforms.

Processor/RAM Operating Compiler Speed
System Mbps|cycles/byte

[PIV 1.8 GHZ/512 MB|Linux (RH 9.0)] gec O3 | 250 | 54 |
[PIV 2.4 GHZ/512 MB|Linux (RH 8.0)| gcc -O3 | 432 | 12 |

Table 7. Performance of Different Software stream Ciphers.

Scheme Processor/ OS Compiler *Spood
(Mbps)
LILI-IT [5] PIII 300MHz/Win NT Borland C++ 5.0 6
SPARCv9/Linux gce 4
SSC2 [24] Sun Ultra 1.143 MHz/Sun Solaris gcc -03 143
PII 233 MHz/Linux gee -0O3 118
Sun SPARK2 40 MHz/Sun gce-03 22
SNOW-1.0 [8]|PIII 500 MHz,/Linux gcc -O3 610
PIII 500 MHz/Win NT VC++ 520
PII 400 MHz/Linux gce -O3 380
SNOW-2.0 [9][PIV 1.8 GHz/Linux gce -O3 3,610
SOBER-t32 Sun Ultra Sparc - 76
£16 [18] 200 MHz/ Sun Solaris 14

Acknowledgment. This work has been supported partially by the ReX pro-
gram, a joint activity of USENIX Association and Stichting NLnet. The authors
also like to acknowledge Prof. Bimal Roy of Indian Statistical Institute for pro-
viding initial idea behind the design.

References

1. A. Canteaut and M. Trabbia. Improved fast correlation attacks using parity-check
equations of weight 4 and 5. In Advances in Cryptology — EUROCRYPT 2000,
LNCS Volume 1807, pages 573-588. Springer Verlag, 2000.

2. V. V. Chepyzhov, T. Johansson and B. Smeets. A Simple Algorithm for Fast
Correlation Attacks on Stream Ciphers. In Proceedings of FSE 2000, pages 181—
195, LNCS volume 1978. Springer Verlag, 2001.

3. S. Chowdhury and S. Maitra. Efficient software implementation of Linear Feedback
Shift Registers. INDOCRYPT 2001, number 2247 in Lecture Notes in Computer
Science. Pages 297-307. Springer Verlag, December 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Efficient Software Implementation of LFSR and Boolean Function 401

. P. Chose, A. Joux and M. Mitton. Fast Correlation Attacks: an Algorithmic Point

of View. In EUROCRYPT 2002, pages 209-221, LNCS volume 2332. Springer
Verlag, 2002.

A. Clark, E. Dawson, J. Fuller, J. D. Golic, H. -J. Lee, W. Millan, S. -J. Moon,
L. Simpson. The LILI-IT Keystream Generator. In Information Security and Pri-
vacy — ACISP 2002, pages 25-39, LNCS volume 2384. Springer Verlag, 2002.

N. T. Courtois and W. Meier. Algebraic attack on Stream Ciphers with linear
feedback. In Advances in Cryptology — EUROCRYPT 2003, LNCS Volume 2656,
pages 345-359. Springer Verlag, 2003.

C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers. LNCS
volume 561. Springer-Verlag, 1991.

P. Ekdahl and T. Johansson. SNOW — a New Stream Cipher. In Proceedings of
the first open NESSIE Workshop, Heverlee, Belgium, November 13-14, 2000.

P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. In
Selected Areas in Cryptography, SAC 2002, August 2002, Pages 47-61, number
2595 in Lecture Notes in Computer Science, Springer Verlag, 2003.

X. Guo-Zhen and J. Massey. A spectral characterization of correlation immune
combining functions. IEEE Transactions on Information Theory, 34(3):569-571,
May 1988.

T. Johansson and F. Jonsson. Fast correlation attacks through reconstruction of
linear polynomials. In Advances in Cryptology — CRYPTO 2000, LNCS volume
1880, pages 300-315. Springer Verlag, 2000.

R. Lidl and H. Niederreiter. Introduction to finite fields and their applications.
Cambridge University Press, 1994.

J. L. Massey. Shift-register synthesis and BCH decoding. In IEEE Transactions
on Information Theory, Vol IT-15, July 1968.

S. Maitra, K. C. Gupta and A. Venkateswarlu. Multiples of Primitive Polynomials
and Their Products over GF(2). In Selected Areas in Cryptography, SAC 2002,
August 2002, Pages 214-231, number 2595 in Lecture Notes in Computer Science,
Springer Verlag, 2003.

W. Meier and O. Stafflebach. Fast correlation attacks on certain stream ciphers.
Journal of Cryptology, 1:159-176, 1989.

M. J. Mihaljevic, M. P. C. Fossorier and H. Imai. Fast correlation attack algorithm
with list decoding and an application. In Proceedings of FSE 2001, pages 196-210,
LNCS 2355, Springer-Verlag, 2002.

E. Pasalic, S. Maitra, T. Johansson and P. Sarkar. New constructions of resilient
and correlation immune Boolean functions achieving upper bounds on nonlinearity.
In Workshop on Coding and Cryptography, Paris, January 2001. Electronic Notes
in Discrete Mathematics, Volume 6, Elsevier Science, 2001.

G. Rose and P. Hawkes. The t-Class of SOBER Stream Ciphers. In Proceedings
of the first open NESSIE Workshop, Heverlee, Belgium, 2000.

G. Rose and P. Hawkes. Turing: a fast stream cipher. In preproceedings of the FSE
2003, Lund, Sweden, 2003.

P. Sarkar and S. Maitra. Nonlinearity bounds and constructions of resilient Boolean
functions. In Advances in Cryptology — CRYPTO 2000, LNCS volume 1880, pages
515-532. Springer Verlag, 2000.

T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryp-
tographic applications. IEEE Transactions on Information Theory, IT-30(5):776—
780, September 1984.

402 S. Chowdhury and S. Maitra

22. T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE
Transactions on Computers, C-34(1):81-85, January 1985.

23. Y. V. Tarannikov. On resilient Boolean functions with maximum possible nonlin-
earity. In Proceedings of INDOCRYPT 2000, LNCS volume 1977, 19-30, 2000.

24. M. Zhang, C. Carrol and A. Chan. The software oriented stream cipher SSC2. In
Proceedings of FSE 2000, pages 31-48, LNCS volume 1978, 2001.

	Introduction
	Preliminaries
	Software Implementation
	Software Implementation of LFSRs
	Software Implementation of Boolean Function

	The Design Approach
	Design Criteria for Equivalent LFSR
	Fixing Boolean Function and LFSR Parameters

	A Concrete Scheme
	Performance in Software

	References

