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Abstract. Montgomery multiplication normally spends over 90% of its
execution time in inner loops executing some kind of multiply-and-add
operations. The performance of these critical code sections can be greatly
improved by customizing the processor’s instruction set for low-level
arithmetic functions. In this paper, we investigate the potential of archi-
tectural enhancements for multiple-precision Montgomery multiplication
according to the so-called Finely Integrated Product Scanning (FIPS)
method. We present instruction set extensions to accelerate the FIPS
inner loop operation based on the availability of a multiply/accumulate
(MAC) unit with a wide accumulator. Finally, we estimate the execution
time of a 1024-bit Montgomery multiplication on an extended MIPS32
core and discuss the impact of the multiplier latency.

1 Introduction

An embedded system is in general designed for a pre-defined application or class
of applications (i.e. an application domain) with typically fixed functionality.
This has motivated the development of processors customized to the needs of a
particular application (domain), the so-called application-specific and domain-
specific processors. The design space that spans domain-specific processors has
several degrees of freedom, including the approach to parallel processing, the
elements of special-purpose hardware, the structure of memory architectures,
the types of on-chip communication mechanisms, and the use of peripherals [13].
By spending silicon where it truly matters, domain-specific processors are faster
and/or more energy efficient than general-purpose processors (GPPs) for the
class of applications they have been designed for. Therefore, a domain-specific
processor can be seen as a cross between an ASIC and a GPP, i.e. it combines the
performance and efficiency of an ASIC with the flexibility and programmability
of a GPP.

It is widely accepted that domain-specific processors play a significant role
in the embedded systems world and will become even more important in future.
However, designing a fully domain-specific processor “from scratch” is a tedious
task, involving not only the hardware design effort, but also the development
of supporting tools like compilers or assemblers. A less aggressive approach to
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achieve domain specialization is possible via processor customization based on
instruction set extensions. That way, an existing instruction set architecture
(ISA) is extended by special instructions for performance-critical operations [17].
The circuitry which actually performs a given type of operation on operands in
general-purpose registers is called a functional unit (FU). Typical options for
domain-specialization include the adding of new FUs, extending existing FUs
(such as adding extra functionality to the ALU), and introducing new interfaces
between FUs [12].

A steadily growing number of micro-processor vendors and intellectual prop-
erty (IP) providers license configurable and extensible processor cores to their
customers, e.g. ARC Tangent-A4 [1], Tensilica Xtensa [9], Hewlett-Packard &
STMicroelectronics Lx platform [8], as well as MIPS Technologies Pro Series
[24]. By using a common base instruction set, the design process can focus on
the application-specific extensions, which significantly reduces verification effort
and hence shortens the design cycle. The result of this application-specific cus-
tomizations of a common base architecture are families of closely related and
largely compatible processors. These families can share development tools (com-
pilers, debuggers, simulators) and even binary compatible code which has been
written for the common base architecture. Critical code portions are customized
using the application-specific instruction set extensions [12,31].

In recent years, instruction set extensions for multimedia workloads have be-
come a prominent feature in desktop computers (e.g. Intel’s MMX). Instruction
set extensions also provide some promising opportunities to implement public-
key cryptography (PKC) in embedded systems such as smart cards. A processor
with cryptography extensions offers a degree of flexibility and scalability that
goes far beyond of what is possible with a cryptographic co-processor. In the
context of cryptographic hardware, the term scalability refers to the ability to
process operands of arbitrary size. An implementation of PKC on a processor
with cryptography extensions is perfectly scalable since it is basically a software
implementation (the only limiting factor is the available memory). Moreover,
software implementations are flexible as they permit to use the “best” algorithm
for the miscellaneous arithmetic operations involved in PKC. For instance, squar-
ing of a long integer can be done much faster than conventional multiplication
[18]. Most hardware multipliers do not implement special squaring algorithms
since this would greatly complicate their architecture.

Contrary to multimedia extensions, there exist only very few research papers
concerned with optimized instruction sets for PKC. Previous work [6] and [27]
focussed on the ARM7 architecture. However, we selected the MIPS32 instruc-
tion set architecture [22] for our research because it is one of the most popular
architectures in the embedded systems area and gathered a considerable market
share in the 32-bit smart card sector [23]. In this paper, we analyze how in-
struction set extensions for Montgomery multiplication [25] can be implemented
efficiently and what functionality is required to achieve peak performance. We
applied hardware/software co-design techniques to define and evaluate the cus-
tom instructions and the FU. This is necessary since the application-specific FU
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(basically a multiply/accumulate unit in our case) is directly controlled by the
instruction stream. Our primary goal was to develop instruction set extensions
and architectural enhancements which are simple to incorporate into common
RISC architectures like the MIPS32. In particular, we aim to avoid non-trivial
modifications of the processor core like the addition of extra registers or extra
buses. That way, the extended processor remains fully compatible to the base
architecture (MIPS32 in our case).

2 Multiple-Precision Arithmetic

A general problem in public-key cryptography is the implementation of arith-
metic with high-precision operands (≥ 1024 bits) on processors with short word
size (8, 16, 32, or 64 bits). In the typical case, the operand length exceeds the
word size of the processor by one to two orders of magnitude. Hence, we are
forced to represent these operands as multi-word data structures (i.e. multiple-
precision numbers) and to perform arithmetic operations by means of software
routines that manipulate these structures. In the following, we use uppercase
letters to denote multiple-precision integers, while lowercase letters, usually in-
dexed, represent individual words (w-bit digits). For example, an n-bit integer
A can be written as an array (as−1, . . . , a1, a0) consisting of s = �n/w� words
(w is the processor’s word size in bits, i.e. ai ≤ 2w − 1).

A =
s−1∑

i=0

ai · 2i·w = as−1 · 2(s−1)·w + · · ·+ a2 · 22w + a1 · 2w + a0 (1)

2.1 Multiple-Precision Multiplication

The classical algorithm for multiple-precision multiplication is the well-known
pencil-and-paper method which requires s2 single-precision multiplications to
form the product of two s-word integers [14]. In basic terms, each word aj of the
multiplicand A is multiplied by each word bi of the multiplier B, and the partial
products aj · bi are summed up with respect to their weight 2(i+j)·w.

A ·B = A ·
s−1∑

i=0

bi · 2i·w =
s−1∑

i=0

A · bi · 2i·w =
s−1∑

i=0

s−1∑

j=0

aj · bi · 2(i+j)·w (2)

The algorithm for computing A ·B consists of an outer loop and a relatively
simple inner loop in which a calculation of the form a× b + c + d is carried out
[18]. Given single-precision (w-bit) words a, b, c, d, the result of a× b + c + d can
be stored in two registers (i.e. it occupies at most 2w bits) because

a× b + c + d ≤ (2w − 1)× (2w − 1) + (2w − 1) + (2w − 1) ≤ 22w − 1 (3)

Each iteration of the inner loop performs a (w×w)-bit multiplication and two
additions along with a couple of memory accesses. Note that adding a single-
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Fig. 1. Comparison of pencil-and-paper method and Comba’s method (Source: [10])

precision word to a two-word product actually involves two ADD instructions1

since a single-precision addition may produce a carry which has to be processed
properly.

A slightly different approach for fast multiple-precision multiplication, known
as Comba’s method [5], aims to achieve better performance by reducing the num-
ber of memory store operations. This method is based on the recognition that
multiplication is essentially a convolution of the words of the multiplicand and
multiplier, followed by a carry propagation between the convolution sums to
obtain the final result in radix-2w representation. The partial products aj · bi

are accumulated on a “column-by-column” basis (instead of the “row-by-row”
approach used by the pencil-and-paper method). That way, the product A ·B
is formed by computing each word of the result at a time, starting with the
least significant word. The main difference to the standard algorithm is the or-
der of partial product generation/accumulation and that the carry propagation
is deferred to the outer loop. However, the number of single-precision multi-
plications is the same, namely s2. Comba’s method minimizes the number of
memory accesses by only writing a word of the result to memory when it has
been completely evaluated [10] (see Figure 1).

A straightforward implementation of Comba’s method ends up in a nested
loop structure. The operation carried out in the inner loop is essentially multiply-
and-accumulate a× b + S — two operands are multiplied and the product is

1 More precisely, an ADD and an ADDC (add with carry) instruction are required.
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added to a cumulative sum S. In general, a sum of k double-precision products
requires 2w + �log2(k)� bits of storage to avoid overflow or loss of precision. An
Assembly-language implementation can cope with this extra precision of S by
simply accumulating the partial products into three registers.

On most architectures, Comba’s method is likely to perform better than
the pencil-and-paper method, especially when the inner loops are coded in As-
sembly language. Comba’s method is generally used to implement long integer
multiplication on processors with a multiply/accumulate (MAC) unit [3,7]. Most
digital signal processors (DSPs) feature a MAC unit with a “wide” accumula-
tor so that a certain number of products can be accumulated without loss of
precision. For instance, Motorola’s 56k-series of signal processors incorporates a
(24× 24 + 56)-bit MAC unit, i.e. the accumulator register provides eight extra
bits (the so-called “guard bits”) for overflow protection.

2.2 Multiple-Precision Squaring

Squaring allows some specific optimizations by exploiting the symmetry in the
multiplication of two identical operands. The partial products aj · ai appear once
when i = j, and twice in the case of i �= j. However, all terms of the form aj · ai

and ai · aj are the same and need to be computed only once and then left-shifted
in order to be doubled, i.e. aj · ai + ai · aj = 2 · aj · ai.

A ·A =
s−1∑

i=0

s−1∑

j=0

aj · ai · 2(i+j)·w =
s−1∑

i=0

a2
i · 2i·w + 2

s−1∑

i=0

s−1∑

j=i+1

aj · ai · 2(i+j)·w (4)

An inspection of the above equation reveals that an s-word squaring operation
requires only (s2 + s)/2 single-precision multiplications (assuming that the mul-
tiplication by 2 is accomplished with ADDC instructions). Squaring is therefore
almost twice as fast as conventional multiplication.

2.3 Montgomery Multiplication

One of the most efficient techniques for computing a modular multiplication
A ·B mod N was published by Peter Montgomery in 1985 [25]. Montgomery’s
algorithm uses a non-conventional representation of the residue classes modulo
N and replaces the division by N with an addition of a multiple of N followed by
a shift operation. Every integer A < N is represented by its so-called N -residue
(or Montgomery image) defined as Ā = A ·R mod N . The factor R is generally
selected as the least power of 2 greater than N , i.e. R = 2n. There is clearly a
one-to-one relationship between the the N -residues and the “original” integers
in the range [0, N − 1]. The key advantage of N -residue representation is that
it allows very fast computation of the Montgomery product, which is defined as
the N -residue of the product of two integers whose N -residues are given.

P̄ = MonPro(Ā, B̄) = Ā · B̄ · 2−n mod N (5)
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Algorithm 1. Montgomery multiplication (FIPS method)

Input: n-bit modulus N , 2n−1 ≤ N < 2n, operands A, B < N , n′
0 = −n−1

0 mod 2w.
Output: Montgomery product P = A ·B · 2−n mod N .
1: (t, u, v)← 0
2: for i from 0 by 1 to s− 1 do
3: for j from 0 by 1 to i− 1 do
4: (t, u, v)← (t, u, v) + aj · bi−j

5: (t, u, v)← (t, u, v) + pj ·ni−j

6: end for
7: (t, u, v)← (t, u, v) + ai · b0

8: pi ← v ·n′
0 mod 2w

9: (t, u, v)← (t, u, v) + pi ·n0

10: v ← u, u← t, t← 0
11: end for
12: for i from s by 1 to 2s− 1 do
13: for j from i− s + 1 by 1 to s− 1 do
14: (t, u, v)← (t, u, v) + aj · bi−j

15: (t, u, v)← (t, u, v) + pj ·ni−j

16: end for
17: pi−s ← v
18: v ← u, u← t, t← 0
19: end for
20: ps ← v
21: if P ≥ N then P ← P −N end if

Montgomery arithmetic requires pre-processing (to obtain the N -residues of the
operands) and post-processing (to eliminate the constant factor 2n). Therefore,
the conversion to/from N -residues is only carried out before/after a lengthy
computation like modular exponentiation. We do not deal with the underlying
mathematics here since it is covered in a number of text books, e.g. [18].

The authors of [15] described various ways of implementing Montgomery
multiplication in software. Roughly speaking, the algorithms for computing the
Montgomery product can be categorized according to two simple criteria. The
first criterion is whether multiplication and reduction are performed separated or
integrated. In the separated approach, the modular reduction takes place after
the product A ·B has been completely formed. The integrated approach alter-
nates between multiplication and reduction. Both coarse and fine integration
are possible, depending on the frequency of switchings between multiplication
and reduction steps. The second criterion is the principal order in which the
operands are evaluated. One form is the operand scanning, where an outer loop
moves through the words of one of the operands (similar to the pencil-and-paper
method). Another form is product scanning, where the outer loop moves through
the words of the result itself — just like Comba’s method.

An efficient technique to compute the Montgomery product is the so-called
Finely Integrated Operand Scanning (FIOS) method [15]. The FIOS method
interleaves multiplication and reduction phases and performs them even in the
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same inner loop. This finely integration is preferable over the coarsely integra-
tion (e.g. CIOS method [15]) in which multiplication and reduction take place
in two separate inner loops. In particular, the FIOS method requires less mem-
ory accesses and minimizes the loop overhead since the increment of the loop
counter and the branch instruction occur only once. The inner loop of the FIOS
method carries out calculations of the form (u, v)← a× b + c + d, similar to the
pencil-and-paper multiplication2. We refer to [11] for a detailed discussion of
implementation aspects regarding the FIOS method.

The second approach for combining multiplication and reduction steps into
a single inner loop is the so-called Finely Integrated Product Scanning (FIPS)
method, which can be phrased according to Algorithm 1. This method was first
described in [7] and is the standard way to realize Montgomery multiplication on
a DSP. Each iteration of the inner loop executes two multiply-and-accumulate
operations of the form a× b + S, i.e. the products aj · bi−j and pj ·ni−j are
added to a cumulative sum. This cumulative sum is stored in the three single-
precision words t, u, and v, whereby the triple (t, u, v) represents the integer
value t · 22w + u · 2w + v.

Other characteristics of the FIPS method are the more costly loop control
(two nested loops instead of one) and the “reversed” addressing. The pointers
to the current words of A and P move from less to more significant positions,
whilst the pointers to the words of B and N move in opposite direction (i.e. they
are decremented during the iterations of the inner loop). The operation at lines
10 and 18 of Algorithm 1 is essentially a w-bit right-shift of the cumulative sum
(t, u, v) with zeroes shifted in.

3 The MIPS32 Instruction Set Architecture

The MIPS32 architecture is a superset of the previous MIPS I and MIPS II
instruction set architectures and incorporates new instructions for standardized
DSP operations like “multiply-and-add” (MADD) [22]. MIPS32 uses a load/store
data model with 32 general-purpose registers (GPRs) of 32 bits each. The fixed-
length, regularly encoded instruction set includes the usual arithmetic/logical
instructions, load and store instructions, jump and branch instructions, as well
as co-processor instructions.

The 4Km processor core is a high-performance implementation of the MIPS32
instruction set architecture [20]. Key features of the 4Km are a 5-stage pipeline
with branch control, a fast multiply/divide unit (MDU) supporting single-cycle
(32× 16)-bit MAC operations, and up to 16 kB of instruction and data caches
(modified Harvard architecture). Most instructions occupy the execute stage
of the pipeline only for a single clock cycle. The 4Km is widely used in digital
consumer products, cellular phones, and networking devices — application fields
in which security becomes increasingly important.

2 The tuple (u, v) denotes a double-precision (2w-bit) quantity with u and v repre-
senting the w most/least significant bits, i.e. (u, v) = u · 2w + v.
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Fig. 2. Integer Unit (ALU) and Multiply/Divide Unit (MDU) of the 4Km.

MIPS processors implement a delay slot for load instructions, i.e. loads re-
quire extra cycles to complete before they exit the pipeline. For this reason, the
instruction after the load must not “use” the result of the load instruction. MIPS
branch instructions’ effects are also delayed by one instruction; the instruction
following the branch instruction is always executed, regardless of whether the
branch is taken or not. The “bare” MIPS32 processors support a single address-
ing mode: Indexed addressing. In indexed addressing, an offset is encoded in the
instruction word along with a base register. The offset is added to the base reg-
ister’s contents to form an effective address. Indexed addressing is useful when
incrementing through the elements of an array as the addresses can be easily
constructed at run-time.

3.1 MDU Pipeline of the 4Km Core

The 4Km processor core contains an autonomous multiply/divide unit (MDU)
with a separate pipeline for multiply, multiply-and-add, and divide operations
(see Figure 2). This pipeline operates in parallel with the integer unit (IU)
pipeline and does not necessarily stall when the IU pipeline stalls (and vice
versa). Long-running (multi-cycle) MDU operations, such as a divide, can be
partially masked by other integer unit instructions.

The 4Km MDU consists of a (32× 16)-bit Booth recoded3 multiplier, two
result/accumulation registers (referenced by the names HI and LO), a divide
state machine, and the necessary control logic. The MIPS32 architecture defines
the result of a multiply operation to be placed in the HI and LO registers. Using
MFHI (move from HI) and MFLO (move from LO) instructions, these values can
be transferred to general-purpose registers. The MIPS32 has also a “multiply-
and-add” (MADD) instruction, which multiplies two 32-bit words and adds the
product to the 64-bit concatenated values in the HI/LO register pair. Then,
the resulting value is written back to the HI and LO registers. Various signal
processing routines can make heavy use of that instruction, which optimizing
compilers automatically generate when appropriate.

3 Modified Booth recoding halves the number of partial products by using a signed
digit radix-4 representation for one of the operands (see [4] for more details).
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The targeted multiply instruction MUL (multiply with register write) directs
its result to a GPR instead of the HI/LO register pair. All other multiply and
multiply-and-add operations write to the HI/LO register pair. The integer oper-
ations, on the other hand, write to the general-purpose registers. Because MDU
operations write to different registers than integer operations, following integer
instructions can execute before the MDU operation has completed [21].

In our previous work [11] we demonstrated that an Assembly implementa-
tion of the FIOS inner loop requires (at least) 20 “native” MIPS32 instructions.
Consequently, the FIOS inner loop can not be executed in less than 20 clock
cycles, even if we assume that the 4Km is a “perfect” RISC processor without
pipeline stalls, load or branch delays, and cache misses. A straightforward As-
sembly implementation of the FIPS inner loop would require even more cycles
since the 64-bit accumulator of the 4Km is rather unappropriate for multiple-
precision arithmetic. However, these shortcomings can be remedied by simple
enhancements of the processor core, which will be demonstrated in the following
sections. More precisely, augmenting the 4Km core with a “wide” accumulator
allows to execute the FIPS inner loop in nine clock cycles.

4 Architectural Support for the FIPS Method

The FIPS Montgomery multiplication (Algorithm 1) comprises two nested loops
with identical inner loop operations. Each iteration of the inner loop performs
two multiplications and adds the products to a cumulative sum. Therefore, the
FIPS method is very efficient on processors with a multiply/accumulate (MAC)
unit. In this section we propose a simple enhancement of the 4Km MAC unit
and two custom instructions for the FIPS method.

The MAC unit of the 4Km was designed with having DSP/multimedia work-
loads in mind. Signal processing routines mostly perform operations on small
integers (e.g. 8-bit pixel color values, 16-bit audio samples), which means that
a 64-bit accumulator serves its purpose perfectly well. However, in long integer
arithmetic we want to exploit the full 32-bit precision of the registers. Comba’s
method and the FIPS Montgomery multiplication would profit from a “wide”
accumulator so that a certain number of 64-bit products can be summed up
without loss of precision. For instance, extending the accumulator by eight guard
bits means that we can accumulate up to 256 products, which is sufficient for a
2048-bit Montgomery multiplication when w = 32. Moreover, register HI must
be able to accommodate 40 bits instead of 32. The extra hardware cost is neg-
ligible, and a slightly longer critical path in the MAC’s final adder is irrelevant
for most applications, especially for smart cards.

The MADDU (Multiply and Add Unsigned) instruction multiplies two 32-bit
words, treating them as unsigned integers, and adds the product to the concate-
nated values in the HI/LO register pair. Then, the resulting value is written back
to the HI and LO registers [22]. This is exactly the operation performed twice
in the inner loop of the FIPS Montgomery multiplication. Although MADDU is a
native MIPS32 instruction, we nonetheless need two custom instructions for the
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Fig. 3. Memory location of multiple-precision integers A, B, N , and P

FIPS method to perform well. The first instruction is used in the outer loop,
and the second instruction facilitates the FIPS Montgomery squaring.

4.1 First Proposed Instruction: SHA

The MFHI (Move from HI ) instruction copies only the least significant 32 bits of
the HI register to the destination register. Of course, this raises the question of
how to access the guard bits. A simple solution is to augment the processor with
a custom instruction for shifting the concatenated values in the HI/LO register
pair 32 bits to the right (with zeroes shifted in). We call this instruction SHA,
which stands for Shift Accumulator value. The SHA instruction can be used to
perform the operations at lines 10 and 18 of Algorithm 1. Executing SHA copies
the contents of HI to LO and the eight guard bits to HI. The hardware cost of
the SHA instruction is negligible.

4.2 Second Proposed Instruction: M2ADDU

The product scanning technique is not only applicable to Montgomery multipli-
cation but also to Montgomery squaring. However, the “finely” integration of
squaring and reduction is most effective when the processor offers an instruc-
tion for calculations of the form 2× a× b + S. This instruction, which we call
M2ADDU, multiplies two 32-bit quantities, doubles the product, and accumulates
it to the concatenated values in the HI/LO register pair. The multiplication by 2
is simply realized via a hard-wired left shift and requires essentially no additional
hardware (except of a few multiplexors).

The availability of M2ADDU makes the optimization of squaring easier. FIPS
Montgomery squaring is approximately 18% faster than FIPS Montgomery mul-
tiplication. This is because reduction requires always the same effort, regardless
of whether it is integrated into multiplication or squaring.

4.3 Optimized Assembly Code for the FIPS Inner Loop

Long integer arithmetic is generally characterized by a large number of memory
accesses since operands of very high precision (e.g. 1024 bits) can not be kept
in the register file. Therefore, it is desirable to minimize the overhead caused
by address calculations. In our implementation, we place the multiple-precision
operands A, B, N , and P in contiguous locations in memory, as illustrated in
Figure 3 for n = 1024 bits (each word consists of four bytes).
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Loop: LW Rb, 0(Rk) # load B[i-j] into Rb
LW Ra, 0(Rj) # load A[j] into Ra
LW Rn, 128(Rk) # load N[i-j] into Rn
MADDU Ra, Rb # (HI,LO) += Ra * Rb
LW Rp, 384(Rj) # load P[j] into Rp
ADDIU Rk, Rk, -4 # Rk = Rk - 4
MADDU Rp, Rn # (HI,LO) += Rp * Rn
BNE Rk, Rz, Loop # branch if Rk != Rz
ADDIU Rj, Rj, 4 # Rj = Rj + 4

Fig. 4. Inner loop of the FIPS Montgomery multiplication

Figure 4 shows an Assembly routine for the inner loop of the FIPS Mont-
gomery multiplication (Algorithm 1). The code is optimized for an operand
length of n = 1024 bits and takes advantage of the indexed addressing mode for
fast address calculation. Our implementation starts with LW instructions to load
the operands aj and bi−j into two general-purpose registers. The first MADDU
instruction computes the product aj · bi−j and accumulates it to a running to-
tal stored in the HI/LO register pair. Note that the extended precision of the
accumulator and the HI register guarantee that there is no overflow or loss of
precision. The operands pj and ni−j are loaded immediately before and after the
first MADDU instruction. Two ADDIU instructions, which implement simple pointer
arithmetic, are used to fill a load and branch delay slot, respectively. The sec-
ond MADDU is executed immediately before the branch instruction. There is no
SW (store word) instruction in the inner loop since the memory write operations
take place at the outer loop. The instruction sequence depicted in Figure 4 is
carefully ordered to avoid pipeline stalls caused by load or branch delays.

Algorithm 1 moves through the individual words of A and P in ascending
order and through the words of B and N in descending order. Therefore, we
maintain two pointers in the inner loop; the first one is stored in register Rj and
points to the current word aj , and the second one is stored in Rk and points
to bi−j . The contents of register Rj is incremented by 4 each time the loop
repeats, whereas Rk is decremented by 4. For n = 1024, the offset between aj

and pj is exactly 384 bytes, and the offset between bi−j and ni−j is 128 bytes
(see Figure 3). The current addresses of pj and ni−j can be easily constructed
at run-time with help of the indexed addressing mode. Note that the contents
of register Rk is also used to test the loop termination condition. Before entering
the inner loop, register Rz is initialized with the address of a31. Thus, the inner
loop is iterated exactly i− 1 times4.

Algorithm 1 contains two inner loops. The second j-loop is almost identical
to the first one described before, except that the registers Rj, Rk, and Rz have
to be initialized with different addresses. Moreover, the branch instruction must
be adapted accordingly, i.e. register Rj has to be used to determine the loop
4 It is not necessary to maintain an extra loop count variable since we can also use

the address pointers for that purpose.
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Table 1. Comparison of architectural enhancements for public-key cryptography

1024-bit 1024-bit 1024-bit
Implementation Mod. mul. Mod. squ. Mod. exp. Exp. alg. CRT

# cycles # cycles ms (MHz)

Dhem [6] ?? ?? 480 (32) Slid. wd. Yes
Phillips et al. [27] ?? ?? 875 (25) Slid. wd. Yes
Prev. work [11] 11,500 9,700 800 (20) Binary No

This work 10,300 8,500 425 (33) Binary No

termination. Our custom instruction SHA is applicable in the outer loop at lines
10 and 18, respectively. The operation at line 8 of Algorithm 1 can be performed
with the targeted multiply instruction, MUL, which calculates only the lower part
of a product and writes it to a general-purpose register5.

For a simple estimation of the execution time let us assume that the pro-
cessor is equipped with a fully-parallel (32× 32)-bit multiplier able to execute
the MADDU instruction in a single clock cycle. In this case, the inner loop of the
FIPS Montgomery multiplication requires nine cycles for one iteration if there
are no cache misses. However, a major advantage of the FIPS method is that
it does not need a single-cycle multiplier to reach peak performance (which is
not the case with FIOS — see [11]). The influence of the multiplier latency will
be discussed in Section 5.2. An optimized implementation of FIPS Montgomery
squaring is almost 18% faster than generic FIPS Montgomery multiplication.

5 Simulation Results and Discussion

We used the SystemC language [29] to develop a functional model of the extended
MIPS32 architecture and the software algorithms. First, the algorithms were
coded in plain C with the inner loop operations modelled at a high abstraction
level. Then, the inner loops were refined to Assembly instructions and their
execution was simulated on a cycle-accurate model of the extended MIPS32 core.

5.1 Performance and Hardware Cost

Given a single-cycle multiplier, our simulations demonstrate that a 1024-bit FIPS
Montgomery multiplication can be executed in 10,300 clock cycles. The custom
instruction M2ADDU makes FIPS Montgomery squaring almost 18% faster, i.e.
8,500 cycles. Thus, a 1024-bit modular exponentiation according to the binary
method can be performed in about 14 · 106 clock cycles, which corresponds to
an execution time of 425 msec when the processor is clocked at 33 MHz. A
comparison with related work (see Table 1) clearly demonstrates the efficiency
5 Reference [22] says that the contents of HI and LO are unpredictable after a MUL

instruction. However, Algorithm 1 requires that MUL does not overwrite the registers
HI and LO. This has to be considered when using multi-cycle multiplier.
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Table 2. Performance of 32-bit RISC cores with crypto extensions (at 33 MHz)

Company Product 1024-bit RSA

ARM Limited SecurCore SC200 [2] 594 msec
MIPS Technologies, Inc. SmartMIPS 4KSc [23,19] 320 msec
NEC Electronics, Inc. V-WAY32 µPD79215000 [26] 436 msec
STMicroelectronics SmartJ ST22XJ64 [28] 380 msec

of our proposed extensions, the more so as the timings reported in [6,27] were
achieved with a sliding window technique for exponentiation. In our previous
work [11], we proposed two custom instructions, MADDH and MADDL, to accelerate
Montgomery multiplication according to the FIOS method. These instructions
allow to execute the FIOS inner loop in ten clock cycles, which results in the tim-
ings shown in Table 1. However, the performance of the FIOS method depends
heavily on the multiplier latency (see next subsection). We point out that an
execution time of 425 msec for a 1024-bit modular exponentiation is comparable
to the performance of the commercial products specified in Table 2.

Architectural upgrades required to implement instruction set extensions are
mainly localized to the Instruction Decode (ID) and Execute (EXE) pipeline
stages [12]. The approach presented in this paper entails the addition of only
two custom instructions; therefore the extra control logic for the instruction
decoder is marginal. A conventional (32× 32 + 64)-bit multiply/accumulate unit
can be easily equipped with a wide accumulator — a slight increase in area and
delay is tolerable for most applications. The transistor count of a fully-parallel
(single-cycle) (32× 32)-bit Booth-recoded multiplier is roughly 28,000 [4].

Montgomery multiply and square operations produce different power traces.
A careless implementation of the modular exponentiation could be exploited by
an attacker to distinguish squares from multiplies. That way, the attacker can
obtain the bits of the private key if the modular exponentiation is performed
according to the binary exponentiation method. Some countermeasures against
side-channel analysis have been proposed in the recent past, see e.g. [16,30].

5.2 Influence of the Multiplier Latency

The inner loop of the FIPS method depicted in Figure 4 executes two MADDU
instructions. Note that the result of a MADDU operation is written to the HI/LO
register pair, i.e. MADDU operations do not occupy the write port of the register
file (see Figure 2). Therefore, MADDU has an “empty” slot when it is executed
on a (32× 16)-bit multiplier since neither the register file’s read ports nor the
write port are occupied during the second cycle. This means that other arith-
metic/logical instructions can be executed during the latency period of the MADDU
operation. In other words, MADDU does not stall the IU pipeline (even when it is
realized as a multi-cycle instruction) as long as there are independent instruc-
tions available which do not use the result of MADDU.
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The FIPS method allows to mask the latency period of the MADDU operations
if we order the instruction sequence properly. Our experimental results indicate
that a (32× 16)-bit multiplier also allows to execute the inner loop of the FIPS
method in nine clock cycles. Even a MIPS32 core with a (32× 12)-bit multiplier6

would not require more than nine cycles to execute the Assembly code shown in
Figure 4. This clearly demonstrates that the FIPS method does not necessarily
require a single-cycle multiplier to reach peak performance. For instance, a fully
parallel (32× 32)-bit multiplier is not able to execute the FIPS inner loop faster
than a serial/parallel multiplier which requires three clock cycles to complete a
MADDU operation.

On the other hand, the performance of the architectural enhancements for
the FIOS method proposed in [11] depends heavily on the latency of the multi-
plier. The two custom instructions MADDH and MADDL introduced in [11] perform
multiply-and-add operations of the form a× b + c + d and write either the higher
or the lower part of the result to a general-purpose register. If, for instance, the
MIPS32 core contains a (32× 16)-bit multiplier, then the (32× 32)-bit opera-
tions take two clock cycles to complete. Both MADDH and MADDL occupy the read
ports of register file during the first cycle and the write port during the second
cycle. Consequently, no other arithmetic/logical instruction can be scheduled
in parallel, which means that MADDH and MADDL always force a stall of the IU
pipeline in order to maintain their register file write slot (during the write-back
phase). A (32× 16)-bit multiplier would increase the execution time of the FIOS
inner loop by two clock cycles, i.e. any iteration of the inner loop takes twelve
cycles instead of ten [11]. Therefore, a multi-cycle multiplier deteriorates the
performance of the architectural enhancements for the FIOS method, which is
not necessarily the case for the FIPS method.

5.3 Performance Scalability

An execution time of about 425 msec for a 1024-bit modular exponentiation is
reasonable for smart card applications and tolerated by most users. The trivial
way to further increase the performance is to crank up the clock speed. On the
other hand, we can also increase the performance by dedicating more hardware
resources. Processor customization offers many options to achieve this:

– Implement auto-increment/decrement addressing modes. This eliminates the
need to perform the pointer arithmetic “by hand”, making it possible to
execute the FIPS inner loop in seven clock cycles, and a 1024-bit modular
exponentiation in less than 350 msec.

– Perform memory accesses in parallel with other operations (execute one op-
eration and simultaneously load operands for the next one from memory).

– Use a multiple bus architecture that allows multiple (parallel) memory ac-
cesses in one clock cycle. Several DSPs, e.g. Motorola 56k or Analog Devices
210x, have two memory banks which are accessible in parallel.

6 Note that Intel’s StrongARM SA-110 processor contains a (32× 12)-bit multiplier.
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– Hardware support for looping (“zero overhead looping”) allows tight loops to
be repeated without wasting time for updating and testing the loop counter.

– Use a number of MAC units in parallel, following an SIMD approach. The
FIPS method allows to utilize an arbitrary number of execution units, with-
out the carry propagation becoming a performance bottleneck.

There are also a variety of algorithmic and software-related optimizations to in-
crease the performance. Examples for the former include the Chinese Remainder
Theorem (for RSA private key operations) and the application of an advanced
exponentiation method. Software optimization techniques may involve (partial)
loop unrolling and the full use of available registers.

6 Summary of Results and Conclusions

In this paper, we introduced simple architectural enhancements to increase
the software performance of Montgomery multiplication according to the FIPS
method. We proposed two custom instructions and analyzed their performance
on an extended MIPS32 core. Our experiments show that a 1024-bit modular
exponentiation can be performed in 425 msec when the processor is clocked at
33 MHz. All presented concepts (i.e. the extended MIPS32 core and the software
routines) have been verified by co-simulation with the SystemC language.

The proposed extensions blur the traditional line between general-purpose
hardware (processor core) and application-specific hardware, thereby enabling
fast yet flexible implementations of Montgomery multiplication. Moreover, the
architectural enhancements entail only minor tweaks in the processor core and
require almost no additional hardware (in relation to the hardware cost of a
cryptographic co-processor). The extended core remains fully compatible to the
MIPS32 architecture. Another benefit of the presented approach is that writ-
ing and debugging software is much cheaper than designing, implementing, and
testing a cryptographic co-processor.

The execution time of a 1024-bit modular exponentiation can be reduced to
350 msec when the processors supports an auto-increment/decrement addressing
mode. This result is comparable to the performance of commercial smart card
RISC cores like the SmartMIPS, which requires, according to [19], approximately
320 msec at the same clock frequency. The major advantage of the proposed
architectural enhancements is the fact that a single-cycle (32× 32)-bit multiplier
is not necessary to reach peak performance. Therefore, the FIPS method together
with the wide accumulator approach allows to achieve a good trade-off between
area and performance.
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