
Cost Constrained Fixed Job Scheduling

Qiwei Huang1, Errol Lloyd2

1 UTStarcom Inc.
33 Wood Ave. South, Iselin, NJ 08830,U.S.A

qhuang@utstar.com
2 Dept. of Computer and Information Sciences

University of Delaware, Newark, DE 19716,U.S.A.
elloyd@cis.udel.edu

Abstract. In this paper, we study the problem of cost constrained fixed job
scheduling (CCFJS). In this problem, there are a number of processors, each of
which belongs to one of several classes. The unit time processing cost for a
processor varies with the class to which the processor belongs. There are N jobs,
each of which must be processed from a given start time to a given finish time
without preemption. A job can be processed by any processor, and the cost of
that processing is the product of the processing time and the processor’s unit
time processing cost. The problem is to find a feasible scheduling of the jobs
such that the total processing cost is within a given cost bound. This problem
(CCFJS) arises in several applications, including off-line multimedia gateway
call routing. We show that CCFJS can be solved by a network flow based
algorithm when there are only two classes of processors. For more than two
classes of processors, we prove that CCFJS is not only NP-Complete, but also
that there is no constant ratio approximation algorithm. Finally, we present an
approximation algorithm, derive its worst-case performance ratio (non
constant), and show that it has a constant approximation ratio in several special
cases.

1 Introduction
Fixed job scheduling (sometimes called interval scheduling) has been studied

extensively. In fixed job scheduling, we need to process without preemption a given
set of jobs on several processors, such that a job starts at a given time and finishes at a
given time. Many variations of fixed job scheduling have been considered in the
literature (cf. Fischetti, Martello & Toth [1,2], Kolen & Kroon [3,4,5,6], Kroon, Sen,
& Deng [7], and Jansen [8]), and the computational complexity of those variants has
been established. In particular, Kroon, Sen, & Deng [7] studied the optimal cost
chromatic partition problem (OCCP), one variation of fixed job scheduling with
processor-dependent processing cost. In that problem, a sufficient number of
processors are available. A job can be processed by any one processor during a fixed
time interval, and if job j is carried out by processor p, then the associated processing
cost is pk . The objective is to find a feasible non-preemptive schedule to achieve the
minimum total processing cost.

In this paper, we study cost constrained fixed job scheduling (CCFJS), which is
similar to [7]. In CCFJS, there are a number of processors, each of which belongs to

one of several classes. The unit time processing cost for a processor varies with the
class to which the processor belongs. Each job requires processing by one and only
one processor without preemption. The cost of processing a job is the unit time
processing cost of the processor times the job’s processing time. The problem is to
find a feasible scheduling of the jobs within a given cost bound, or equivalently, to
find a feasible scheduling of minimum cost. The difference between CCFJS and
OCCP is that, in OCCP, the processing cost of a job depends only on the processor: if
a number of jobs are processed by the same processor, they have the same processing
costs; In CCFJS, the processing cost of a job depends not only on the processor, but
also on the processing time (the processing cost is equal to the product of the unit time
processing cost of that processor and the processing time).

CCFJS arises in off-line multimedia gateway call routing. Multimedia gateways
interconnect different media networks (circuit-switched PSTN, packet-switched IP,
ATM, wireless). A multimedia gateway routes each incoming call to one of its media
networks. Media networks differ in the unit time media cost for calls routed to the
network, and each media network has a bandwidth capacity on the number of
simultaneous calls. The media cost of a call is equal to the call duration times the unit
time media cost of the network to which the call is routed. The goal of call routing is
to minimize the media cost (or equivalently within its cost bound) taken over all calls.

In section 2, we formally define CCFJS and provide relevant terminology. In
section 3, we show that CCFJS can be solved by a network flow based algorithm (i.e.
in polynomial time) when there are only two classes of processors. In section 4, we
show that for more than two classes of processors, CCFJS is not only NP-Complete,
but also that there is no constant ratio approximation algorithm. In section 5, we
present an approximation algorithm, derive its worst-case performance ratio (non
constant), and show that it has a constant approximation ratio in several special cases.

2 Problem Descriptions and Terminology
In this section, we formally define CCFJS as a decision problem. The optimization

version of the problem should be clear.
Instance of CCFJS: A cost bound 0BC > ; Jobs 1 , ... NJ J , and for each job iJ , a

start time is and a finish time
i

f (0 i is f≤ <); K classes of processors, and for each

class 1, ...j K= , the number jB of processors, and the unit time processing cost jC

for processors in this class. Let
1

K

i
i

B B
=

=∑ be the total number of processors. We

assume that 1 20 ... KC C C< < < < .
Question: Does there exist a feasible schedule for the N jobs, such that the cost

1

()
N

iT j i i B
i

C C f s C
=

= − ≤∑ ? Here,
ij

C is the unit time processing cost of the processor

on which job iJ is processed.
Relative to the specification of CCFJS, a feasible schedule is an assignment of each

job to a processor such that each job must be processed by one processor from its

given start time to its given finish time without preemption, and each processor can
process at most one job at a time.

Throughout this paper, we make use of the following terminology: Jobs iJ and

()jJ i j≠ are compatible if the time intervals [,)i is f and [,)j js f do not overlap. Job

iJ is active at time t if [,)i it s f∈ . Rank(t) is the number of active jobs at time t.

Further, Rank(iJ) is the maximum number of active jobs (including iJ itself) at any

point of time [,)i it s f∈ . To avoid trivial infeasible instances, we assume throughout
the paper that:
 ()()(1, 2,)max iRank J i N B= ≤ (2.1)
A null job has zero processing time with start time equal to finish time. Adding null
jobs to an instance of CCFJS doesn’t affect the feasibility of the problem since null
jobs introduce no cost. A feasible schedule has the following fundamental property:

Partition Property: n of the total N jobs (n<N) can be processed by P processors
(P<B) if and only if the remaining N n− jobs can be processed by B P− processors.

3 A Polynomial Time Algorithm for Two Classes of Processors
In this section, we show that when there are two classes of processors (i.e. K=2),

CCFJS can be solved in polynomial time. The algorithm we give has two steps: (1)
Build a flow network based on each job’s start time and finish time along with the
total number of processors; (2) Apply a minimum cost network flow algorithm [9] to
obtain a minimum total cost for the constructed flow network. It will follow that if the
minimum total cost is greater than BC , then CCFJS has no feasible solution;
otherwise CCFJS has a feasible solution.

3.1 Construct a Flow Network

The algorithm that we give constructs a flow network in the form of a layered
directed acyclic graph (DAG). Each layer has exactly B vertices and each edge
connects two vertices from two adjacent layers. Each vertex represents a job, and will
be assigned a weight equal to the job’s processing time. A path represents a sequence
of jobs that can be processed by the same processor. Clearly, any two jobs on the same
path must be compatible. Further, if any P vertex-disjoint paths (0 P B< <) are
removed from the flow network, then in the remaining flow network, there will exist
B P− vertex-disjoint paths, such that each remaining vertex belongs to exactly one of
the B P− vertex-disjoint paths (i.e. the Partition Property holds). In section 3.2, we
will let P be equal to 2B , and the jobs on the resulting 2B vertex-disjoint paths will be

assigned to processors of class 2. Likewise, the jobs on the remaining 1B vertex-
disjoint paths will be assigned to the processors of class 1.

3.1.1 Building a Layered DAG

The algorithm Build_Layered_DAG described below has two inputs: the total
number of processors B and an array of N jobs stored in J[1..N]. The output is a

layered DAG in which each layer contains exactly B vertices, and each edge is
directed from a vertex in one layer to a vertex in the next higher layer.

Algorithm Build_Layered_DAG(Input J[1..N], B; Output G=(V,E))
Sort and store the 2N values of J[k].start_time and J[k].finish_time (k=1..N) into
ascending order in A[1..2N];
V ← {s, t}; L ← 1; F ← 0;
weight(s) ←0; weight(t) ← 0; Layer[0] ←{s};
for i ← 1 to N+1 do Layer[i] ←NULL;
for i ← 1 to 2N do

 j←A[i].index;
 if A[i].type = start_time
 Layer[L] ← Layer[L] ∪ vertex(J[j]); // Add job J[j] into Layer L
 weight(vertex(J[j]))←J[j].proc_time; // Set job J[j]’s weight to its length
 F ← 0;
 else /* A[i].type = finish_time */

 if (F =0)
 F ← 1;
 //Duplicate vertices of layer L into layer L+1
 Layer[L+1] ← Layer[L];
 //Set duplicated vertices’ weight to zero
 weight(v) ← 0 for each [1]v Layer L∈ + ;
 Add an adequate number of vertices with weight zero (null jobs)

into layer L, such that laye L has exactly B number of vertices;
 L←L+1; //Advance the current layer L to L+1

 //Remove job J[j] from the current layer L
Layer[L] ← Layer[L] - vertex(J[j]);

Layer[L] ←{t};
for i ← 1 to L-1 do V←V ∪ Layer[i];
for every vertex []v Layer i∈

if v has a duplicated vertex [1]u Layer i∈ + then E ← E ∪ (v,u);
else for each non-duplicated vertex [1]u Layer i∈ + , E ← E ∪ (v,u) ;

Assign capacity one and weight zero to each edge;

The data structures used in the algorithm are: Each element of J[1..N] has three
fields: J[k].start_time is job kJ ’s start time, J[k].finish_time is job kJ ’s finish time

and J[k].proc_time is job kJ ’s processing time. Clearly, J[k].start_time+
J[k].proc_time= J[k].finish_time. Array [1..2]A N stores the sorted start and finish
times of all the jobs. Each element of A has three fields: A[i].type (start_time or
finish_time) indicates whether it is a start time or a finish time; A[i].value is either the
start or the finish time depending on the A[i].type; A[i].index is the job’s index in

[1..]J N . Each element of array Layer[1..N+2] is used to store the vertices of a given
layer.

Build_Layered_DAG works as follows: The algorithm first sorts the 2N time
values into ascending order, and stores them in array A[1..2N]. If the finish time of a
job is the same as the start time of other jobs, the finishing times are placed before the
starting times in A[1..2N]. Then, the algorithm processes A[i] with index i increasing
from 1 to 2N. If A[i].type is start_time, then a vertex representing job J[A[i].index] is
added to layer L, and the weight of the vertex is set to J[A[i].index].proc_time. If
A[i].type is finish_time, then each vertex of layer L is duplicated and placed in a new
layer (L+1). The weight of each duplicated vertex in this new layer is set to zero, and
the vertex of job J[A[i].index] is removed from the new layer. Note that if there are
contiguous elements of A[i].type equal to finish_time, then the algorithm keeps on
removing the vertex of job J[A[i].index] from the new layer until encountering the
first A[i].type equal to start_time. (i.e. a new layer is constructed only for the first of a
series of finish_times). Note that the number of vertices in the new layer is at most B
from the assumption (2.1). If the old layer has fewer than B vertices, the algorithm
adds enough vertices with weight zero into the old layer to ensure that it has exactly B
vertices (vertices with weight zero represent null jobs).

After building the final layer, the algorithm adds edges: for each vertex v in layer k
(not the final layer), if v has a duplicated vertex u in layer k+1, add edge (v,u);
otherwise add edge (v,u) for each non-duplicated vertex u in the layer k+1. The
running time of Build_Layered_DAG is 2(log)O N N NB+ .

3.1.2 An Example

 A(3)
 B(5)
 C(9) F(3)
 D(3) E(3) G(3)

Fig. 1. Job Sequence Input for Build_Layered_DAG, B=3

 Layer 1 Layer 2 Layer 3 Layer 4

Fig. 2. Output Layered DAG from Fig. 1

s(0)

A(3)

B(5)

C(9)

D(3)

B(0)

C(0)

E(3)

Null

C(0)

G(3)

F(3)

C(0)

t(0)

Figure 1 shows seven jobs with start times and finish times in sorted order. Each
job’s processing time is shown in parentheses. Figure 2 is the layered DAG produced
by Build_Layered_DAG. Each vertex’s weight is indicated in the parentheses.

3.1.3 Properties of the Layered DAG

In this section we prove the following theorem about the properties of the layered
DAG. These properties are clearly illustrated in the example above.

Theorem (3.1) The graph (,)G V E= generated by Build_Layered_DAG has the
following properties: 1. (,)G V E= is a DAG in which each layer (except the first and
the last) has exactly B vertices, and any two vertices (except for the null jobs vertices)
in that layer are not compatible. 2. Each vertex in a layer can have at most one
duplicated vertex in the next layer. 3. Each edge connects two vertices from two
adjacent layers. 4. Each vertex u is located on at least one path from s to t (an s-t path).
5. There exist exactly B vertex disjoint s-t paths in the graph, such that each vertex
(except s and t) belongs to exactly one of those B paths. Note that the selection of
those B paths may not be unique. 6. If any P vertex-disjoint paths (0 P B< <) are
removed (except s and t) from (,)G V E= , then the remaining flow network has the
above 1-5 properties with B replaced by B P− . 7. A set of m jobs can be processed
by P processors subject to the Partition Property if and only if there exist P
(0 P B< <) vertex-disjoint s-t paths in (,)G V E= containing all non-duplicated and
duplicated vertices of those m jobs. These P vertex-disjoint paths may not be unique.

The first 4 properties and property 6 follow easily from the algorithm. Property 5
can be proved by using induction on the number of layers constructed. In property 7,
the “if” part is straightforward and the “only if” part can be proved by using induction
on the number of processors P. The details of the proofs are omitted here due to space
limitation.

3.2 The Algorithm and Its Correctness
Having constructed a flow network, we use a minimum cost network flow

algorithm [9] to find 2B vertex-disjoint paths with minimum total weight. Clearly, all

vertices not on those 2B vertex-disjoint paths can fit into 2 1B B B− = vertex-disjoint
paths. In Two_Class_Scheduling described below, input J[1..N] is the same as the
input for Build_Layered_DAG, 1B and 2B are the numbers of processors of the two

processor classes, and 1C and 2C are the unit time processing costs of those classes.

We assume 1C < 2C . The algorithm returns the minimum cost *
TC . Note that

*
T BC C≤ (BC is the cost bound) decides the feasibility of the scheduling.

Algorithm Two_Class_Scheduling(Input J[1..N], 1B , 2B , 1C , 2C ; Output *
TC)

Build_Layered_DAG(Input J[1..N], 1B + 2B ; Output G’=(V’,E’));
Convert G’=(V’,E’) into an edge capacitated flow network G=(V,E) using the

standard techniques (i.e. split each vertex ' { , }u V s t∈ − into two vertices
u’ and u” and add an directed edge (u’,u”) with direction the same as
s t→ direction, capacity equal to one and weight equal to vertex u’s
weight).

Compute a minimum cost flow in G=(V,E) with flow value of 2B [9];
Assign the jobs that are on the minimum cost flow to class 2 processors, and let

*
2L be the total processing time of such jobs; Assign the jobs that are not

on the minimum cost flow to class 1 processors and let *
1L be the total

processing time of such jobs.
Calculate the total cost

1

* *

1 2 2

*
TC L C L C← ∗ + ∗ .

The following theorem establishes the correctness of the algorithm:
Theorem (3.2): Two_Class_Scheduling correctly computes the minimum cost and

the feasibility of CCFJS when there are only two classes of processors.
Proof: For given N jobs, let L be the total processing time. Given a scheduling, let

1L be the total processing time on class 1 processors and 2L be the total processing

time on class 2 processors. Thus L= 1L + 2L . Since 1C < 2C , the cost 1 1 2 2* *L C L C+

of processing all of the jobs is minimized if 2L is minimized. From property 7 of

theorem (3.1), 2L is minimized if and only if all the jobs contributing to 2L are on the

minimum cost flow with flow value 2B . Thus, the theorem is established.
For the flow network G=(V,E) where all capacities are one, the running time of the

best minimum cost flow algorithm is 2(| | | | log | |)O VE V V+ ([9]), which is also the
running time of Two_Class_Scheduling.

4 Complexity for More Than Two Classes of Processors
In this section, we show that CCFJS is not only NP-Complete, but also that there is

no constant ratio approximation algorithm for CCFJS when the number of classes of
processors is more than two.

Theorem (3.3): If and 1(is a constant)P NP r r≠ ≥ , then there is no polynomial
time approximation algorithm with ratio bound r for CCFJS when the number of
classes of processors is at least 3.

Proof: The proof is by contradiction. Suppose that for some 1r ≥ , there is a
polynomial time approximation algorithm A for CCFJS with ratio bound r, i.e.

*/A TC C r≤ where AC is the cost returned by the algorithm A and *
TC is the optimal

solution. We will show how to use A to solve instances of Numerical 3-Dimensional

Matching (N3DM) in polynomial time. Since N3DM problem is NP-Complete [10],
our theorem follows. Recall the definition of N3DM [10]:

INSTANCE of N3DM: Integers , and , , for 1, 2, ...i i it d a b c i t= , satisfying the

following relations:

()
1

t

i i i
i

a b c td
=

+ + =∑ and 0 , , for 1, 2, ...i i ia b c d i t< < = .

QUESTION: Are there permutations and ρ σ of {1, 2, ..., }t , such that:

() ()i i ia b c dρ σ+ + =

(1,...,)i t= ?

Consider a particular instance of N3DM. We construct an instance of CCFJS
instance (inspired in part from [7]) as follows. Define

 4 249U dt r= (3.4)
 2 4 2 27 49 7V U dt r dt r dt r= − = − (3.5)
 2 4 2 27 3 49 7 3W U dt r d dt r dt r d= + + = + + (3.6)
 4 2 298 7 4Z W U d dt r dt r d= + + = + + (3.7)
Define K=3, () 23 2

1 2 314 14 5 / 5 / / , 1/ and 7C dt dt dt r d r Z C r C t= + − + = = . It

can be easily verified that 1 2 30 C C C< < < . Define 449BC dt= , 2
1 2, B t B t t= = −

and 2
3B t= . In this instance of CCJFS, the total number of processors is

2
1 2 3 2B B B B t= + + = . Next, we choose 2 2t t+ distinct rational numbers (see figure

3) ,, and i j i jE F X with , 1, 2, ...,i j t= such that:

 ,2 3j i jiU F U d E U d X U d< < + < < + < < +

 (3.8)

0 V U U+ d U+2d U+3d W Z

 jF iE ,i jX

Fig. 3. Job instance construction relationship

Then, we define 26N t t= + jobs. We will identify these jobs by their start time
and finish time pairs, rather then by separate names. In that context, these jobs are as
follows:

,

,

,

[0,) (1, 2, ...,) [,) (, 1, 2, ...,)

(1) times [,) (1, 2, ...,) [,) (, 1, 2, ...,)

[,) (, 1, 2

i i i j

j j i j

i j i j

E i t E X i j t

t V F j t F X i j t

X W a b i j

= =

− = =

+ + =

,

, ...,) [,) (1, 2, ...,)

(1) times [,) (1, 2, ...,) [,) (1, 2, ...,)

[, 3) (, 1, 2, ...)

k

i j

i j

t W d c Z k t

t U E i t U F j t

X U d i j t

+ − =

− = =

+ =

This completes the construction of the instance of CCFJS. Clearly, this
construction requires polynomial time, and it is easy to verify that the instance
satisfies (2.1). Assume algorithm A is applied to the above instance of CCFJS. We
show that A BC r C∗≤ if and only if the instance of N3DM has a solution, thus
algorithm A can solve the instance of N3DM in polynomial time.

To show that the instance of N3DM has a solution when A BC r C∗≤ , we prove the
following lemmas:

Lemma (3.9): Jobs [0,) (1, 2, ...,)iE i t= can only be assigned to class 1
processors.

Proof: Suppose a job [0,)iE is assigned to a non class 1 processor. Thus the unit
time processing cost for this job is at least 1/r. From (3.8) and (3.4), the processing
time of this job is 4 249iE U d U dt r> + > = . Thus 449A BC dt r r C> = ∗ , a
contradiction.

Lemma (3.10): Jobs (1) times [,) (1, 2, ...,)jt V F j t− = can only be assigned to
class 2 processors.

Proof: Jobs (1) times [,) (1, 2, ...,)jt V F j t− = can’t be assigned to class 1
processors due to lemma (3.9). The rest of proof is similar to the proofs of lemma
(3.9).

Lemma (3.11): Jobs (1) times [,) (i 1, 2, ...,) it U E t− = and [,)jU F for

1, 2,...,j t= can only be assigned to class 3 processors.
Proof: Immediate result of lemmas (3.9) and (3.10).
Lemmas (3.12): Jobs [,) (1, 2, ...,)kW d c Z k t+ − = can only be assigned to class 1

processors.
Proof: Similar to the proofs of lemma (3.9).
Lemma (3.13): Jobs ,[,) (, 1, 2, ...,)i j jiX W a b i j t+ + = can’t be assigned to class

3 processors, and there is no idle time for each of the class 1 and class 2 processors
during [3 ,)U d W+ .

Proof: Similar to the proofs of lemma (3.9).
Lemma (3.14): Jobs ,[, 3) for , 1, 2, ...i jX U d i j t+ = can only be assigned to class

3 processors.
Proof: Immediate result of lemma (3.13)
Lemma (3.15): There is no idle time for each of the 22t processors during time

[, 3)U U d+ .
Proof: Obvious from the definition of the jobs.
After proving the above lemmas, now we show that there is no idle time for each of

the class 1 processors during time interval [,]W W d+ and the instance of N3DM has

a solution. From lemmas (3.9), (3.12), (3.13) and (3.15), it follows that jobs [0,),iE

,[,),i jiE X ,[,)i j i jX W a b+ + and [,)kW d c Z+ − (, 1, 2, ...,)i k t= must be

assigned to class 1 processors. Each i and k occur exactly once. From lemmas (3.10),
(3.13) and (3.15), it follows that jobs (1)t − times ,[,), [,)j j i jV F F X ,

,[,)i j i jX W a b+ + must be assigned to class 2 processors, where each

 (1, 2, ...,)j j t= occurs exactly (1)t − times. Thus from lemma (3.13), for the jobs

,[,)i j i jX W a b+ + assigned to class 1 processors, each (1, 2, ...,)j j t= occurs
exactly once. From lemmas (3.11), (3.14) and (3.15), it follows that jobs
(1) times t − , ,[,), [,) and [, 3)i i i j i jU E E X X U d+ must be assigned to class 3

processors, where each (1, 2, ...,)i i t= occurs (1)t − times, and that jobs

[,) and jU F ,[,) (1, 2, ...,)j i jF X j t= must be assigned to class 3 processors. Finally,

from the fact that ()
1

i i i
i

t
a b c td

=

+ + =∑ and the conclusions that each i, j and k occurs

exactly once for jobs ,[,)i j i jX W a b+ + and [,)kW d c Z+ − assigned to class 1
processors, it follows that there is no idle time for each of the class 1 processors
during time interval [,]W W d+ . Thus i j kW a b W d c+ + = + − . If we define

() and ()i j i kρ σ= = , then () () for 1, 2, ..., i i i i ta b c dρ σ =+ + = and the instance of
N3DM has a solution.

Now suppose the instance of N3DM has a solution, the jobs assignment can follow

the above proof (see figure 4). The total processing cost

()3 2 2 2 2

4

* 14 14 5 / 5 / / () (2) / 3 7

49 *

A

B B

C tZ dt dt dt r d r Z t t W d V r t d t

dt C r C

= + − + + − ∗ + − + ∗ ∗

= = ≤
Thus algorithm A can solve N3DM in polynomial time, which contradicts the
assumption that .P NP≠

From theorem (3.3), we can easily prove the following corollary by letting r=1 and

A TC C= :
Corollary (3.16) CCFJS is NP-Complete.

5 An Approximation Algorithm
In this section, we present an approximation algorithm based on network flows,

derive its worst-case performance ratio (non constant), and show that it has a constant
approximation ratio in some special cases.

Class 1 processors: ()1

3 2
1, 14 14 5 / 5 / /B t C dt dt dt r d r Z= = + − +

0
1E 11X 1 1W a b+ + 3W d c+ − Z

0
2E 23X 2 3W a b+ + 1W d c+ − Z

0
3E 32X 3 2W a b+ + 2W d c+ − Z

Class 2 processors: 2

2 2, 1/B t t C r= − =
0 V

1F 21X 2 1W a b+ + Z

0 V
1F 31X 3 1W a b+ + Z

0 V
2F 12X 1 2W a b+ + Z

0 V
2F 22X 2 2W a b+ + Z

0 V
3F 13X 1 3W a b+ + Z

0 V
3F 33X 3 3W a b+ + Z

Class 3 processors: 2 2

3 3, 7B t C t= =
0 U

1E 12X 3U d+ Z

0 U
1E 13X 3U d+ Z

0 U
2E 21X 3U d+ Z

0 U
2E 22X 3U d+ Z

0 U
3E 31X 3U d+ Z

0 U
3E 33X 3U d+ Z

0 U
1F 11X 3U d+ Z

0 U
2F 32X 3U d+ Z

0 U
3F 23X 3U d+ Z

Fig. 4. An CCFJS Instance when t=3

5.1 The Algorithm Approximate_Cost

Recall in section 3 for the two classes of processors case, the minimum cost flow is
computed with flow value equal to the number of processors of the most expensive
class of processors. The jobs that are on the minimum cost flow are assigned to the
processors of the expensive class, and the remaining jobs are assigned to the
processors of the cheap class. Adapting this method to three or more classes of
processors, in the algorithm Approximate_Cost, we consider partitioning the classes
of processors into an expensive set and a cheap set. We then compute the minimum

cost flow with flow value equal to the sum of the number of processorss of the
expensive set of processors. Each job that is on that minimum cost flow will be
assigned to one of the processors in the expensive set, and each job that is not on that
minimum cost flow will be assigned to one of the processors in the cheap set. In order
to assign each job in the two sets to a particular class of processor, we use a greedy
approach: specifically, we compute the minimum cost flow with flow value equal to
the number of processors of the most expensive class and assign the jobs that are on
that minimum cost flow to processors of that most expensive class. We then remove
those jobs and the processors of that class and iterate until every job is assigned to a
processor of a particular class. Since we don’t know in advance how to partition the
processors into an expensive set and a cheap set, we perform the above computation
for each possible partition (for K classes of processors, there are K-1 partitions), and
retain the partition and the associated assignment of jobs to the processors that yield
the smallest cost.

5.2 Algorithm Complexity and Performance Ratio

Similarly to section 3.2, the running time of Approximate_Cost is
2 2 2(| | | | log | |)O K VE K V V+ . Note that we are not partitioning the expensive set

and the cheap set recursively (instead, we use the greedy approach described above).
Recursive partitioning will lead to exponential complexity in terms of K. Before we
analyze the performance ratio of the algorithm, we first provide the following theorem
and corollary (recall that we assume 1 20 ... KC C C< < < <):

Theorem (3.17) In Approximate_Cost, for 1,...,i K= , let iX be the total

processing time assigned to class i processors, let iy be the minimum total processing

time assigned to a single class i processor, and let iY be the maximum total processing
time assigned to a single class i processor. Then

 1 1 1 2 21 2 2 .../ / /K KK KY y Y y Y yX B X B X B≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ (3.18)

Corollary (3.19) Let
1

K

i
i

X X
=

=∑ be the total processing time, and approx_cost be

the cost returned. Then approx_cost
1 1 1

/
K K K

i i i i i
i i i

XC X C B B
= = =

= ≤∑ ∑ ∑ (3.20)

In Approximate_Cost, a minimum cost network flow algorithm is applied between

each pair (, 1)()i i i K+ < classes of processors, such that the flow value includes 1iB +

without iB . Thus theorem (3.17) can be proved by using minimum cost network flow
property. Corollary (3.19) can be proved by showing that when

1 1 2 2/ / ... /K KX B X B X B= = = , approx_cost reaches its upper bound

1 1

/
K K

i i i
i i

X C B B
= =

∑ ∑ .

Consider a particular partition in Approximate_Cost where the cheap set includes
processors from class 1 to class j (j=1…K-1) and the expensive set includes processors
from class j+1 to K. After the minimum cost flow is computed, let 1.. jX be the total

processing times and _1jc be the cost of jobs that are assigned to the cheap set, and let

1..j KX + be the total processing times and _ 2jc be the cost of jobs that are assigned to

the expensive set. Let jc be the final cost as calculated in that partition. Analogous to
corollary (3.19), we have:

_1 _ 2

1 1 1 1

1 1 1 1

1.. 1..

_1 _ 2 1.. 1..

/ ,

/ /

, /
j j K K

j i i i j i i i
i i i j i j

j j K K

i i i i i i
i i i j i j

j j K

j j j j j K

c X C B B c X C B B

c c c X C B B X C B B

= = = + = +

= = = + = +

+

+

≤ ≤

≤ += +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 (3.21)

Let optc be the optimal processing cost. Since 10 ... KC C< < < , the optimal value

optc will not decrease if 2 ..., jC C decreases to 1C and 2 ...,j KC C+ decrease to 1jC + .
Thus,

 1.. 1 1.. 1j j K jopt X C X Cc + +≥ + (3.22)

 11

1

11
1.. 1..

11

1.. 1 1.. 1
1

11

max ,

K

i ji

K

j

Kj

i ii i
i ji

j j Kj K j

i i ii i i
j i ji

j
j j K j

ii
i ji

opt

C BC B
X X

B C BB C Bc

c X C X C C BC B

= +=

+

= +=
+

= +=

+ +

= +=

+

≤ ≤
+

∑∑

∑ ∑∑ ∑

∑∑
 (3.23)

Since the algorithm returns the smallest cost for each j,
 min{ 1, 2, ..., 1} /|j optc j K cρ = = − (3.24)

Finally from (3.23) and (3.24),

 11

11
11

min max , 1, 2,..., 1,

K

i ji
K

j

j

i ii i

j

ii
i ji

C BC B
j K

C BC B
ρ = +=

+
= +=

≤ = −

∑∑

∑∑
 (3.25)

Example 1 1 2 2 3 33, 3, 100, 6, 50, 12, 25K C B C B C B= = = = = = = .

By applying (3.25), we have 4 / 3ρ ≤ . In practical situations (for example in the
off-line multimedia gateway call routing), the more expensive the processors, the less

the number of processors. In this example, 1 1 2 2 3 3C B C B C B= = . In general, if K>2 is a

constant and 1 1 2 2 ... K KC B C B C B= = = , then from (3.25), / 2Kρ ≤ , i.e. ρ is
bounded by a constant.
Example 1 1 2 2 3 3 4 44, 1, 100, 2, 100, 4, 100, 8, 100K C B C B C B C B= = = = = = = = =

By applying (3.25), we have 3 / 2ρ ≤ . In this example, 1 2 3 4B B B B= = = ,

1 / 2 (1, 2, 3)i iC C i+ = = . In general, if K>2 is a constant, 1 2 ... KB B B= = = , and

1 / (1, ..., 1)i iC C q i K+ = = − is a constant, then from (3.25),
/ 2 1

0

2 /
K

j

j

q Kρ
−

=

≤ ∑ , i.e. ρ

is also bounded by a constant.

6 Summary

In this paper, we have studied the problem of CCFJS and we present a complete
classification of its computational complexity. We show that CCFJS is polynomial
solvable when there are only two classes of processors. We prove that the general
CCFJS is NP-Complete and that there is no constant ratio approximation algorithm.
We further present an approximation algorithm and analyze its worse case
performance ratio.

References
[1] Matteo Fischetti, Silvano Martello, Paolo Toth, The Fixed Job Schedule Problem with

Spread-Time Constraints, Operations Research. 35(6), 849-858, 1987.
[2] Matteo Fischetti, Silvano Martello, Paolo Toth, The Fixed Job Schedule Problem with

Working-Time Constraints, Operations Research. 37(3), 395-403, 1989.
[3] Antoon W.J. Kolen, Leo G. Kroon, On the Computational Complexity of (Maximum)

Class Scheduling, European Journal of Operational Research, 54, 23-38, 1991.
[4] Antoon W.J. Kolen, Leo G. Kroon, License Class Design: Complexity and

Algorithms, European Journal of Operational Research, 63, 432-444, 1992
[5] Antoon W.J. Kolen, Leo G. Kroon, On the Computational Complexity of (Maximum)

Shift Class Scheduling, European Journal of Operational Research, 64, 138-151, 1993.
[6] Antoon W.J. Kolen, Leo G. Kroon, An Analysis of Shift Class Design Problems,

European Journal of Operational Research, 79, 417-430, 1994.
[7] Leo G. Kroon, Arunabha Sen, Haiyong Deng, Asim Roy, The optimal cost chromatic

partition problem for trees and interval graphs, Graph Theoretical Concepts in
Computer Science, LNCS, vol. 1197, Springer-Verlag, New York/Berlin, 1996.

[8] Klaus Jansen, Approximation Results for the Optimal Cost Chromatic Partition
Problem, Journal of Algorithms, 34, 54-89, 2000.

[9] Ravindra K.Ahuja, Thomas L.Magnanti, James B.Orlin, Network Flows. Prentice
Hall, 1993

[10] Michael R.Garey, David S.Johnson, Computer and Intractability, A Guide to the
Theory of NP-Completeness. Twenty-second printing, 2000.

