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Abstract. In this paper, we study the problem of cost constrained fixed job 
scheduling (CCFJS). In this problem, there are a number of processors, each of 
which belongs to one of several classes. The unit time processing cost for a 
processor varies with the class to which the processor belongs. There are N jobs, 
each of which must be processed from a given start time to a given finish time 
without preemption. A job can be processed by any processor, and the cost of 
that processing is the product of the processing time and the processor’s unit 
time processing cost. The problem is to find a feasible scheduling of the jobs 
such that the total processing cost is within a given cost bound. This problem 
(CCFJS) arises in several applications, including off-line multimedia gateway 
call routing. We show that CCFJS can be solved by a network flow based 
algorithm when there are only two classes of processors. For more than two 
classes of processors, we prove that CCFJS is not only NP-Complete, but also 
that there is no constant ratio approximation algorithm. Finally, we present an 
approximation algorithm, derive its worst-case performance ratio (non 
constant), and show that it has a constant approximation ratio in several special 
cases. 

1   Introduction 
Fixed job scheduling (sometimes called interval scheduling) has been studied 

extensively. In fixed job scheduling, we need to process without preemption a given 
set of jobs on several processors, such that a job starts at a given time and finishes at a 
given time. Many variations of fixed job scheduling have been considered in the 
literature (cf. Fischetti, Martello & Toth [1,2], Kolen & Kroon [3,4,5,6], Kroon, Sen, 
& Deng [7], and Jansen [8]), and the computational complexity of those variants has 
been established. In particular, Kroon, Sen, & Deng [7] studied the optimal cost 
chromatic partition problem (OCCP), one variation of fixed job scheduling with 
processor-dependent processing cost. In that problem, a sufficient number of 
processors are available. A job can be processed by any one processor during a fixed 
time interval, and if job j is carried out by processor p, then the associated processing 
cost is pk . The objective is to find a feasible non-preemptive schedule to achieve the 
minimum total processing cost. 

In this paper, we study cost constrained fixed job scheduling (CCFJS), which is 
similar to [7]. In CCFJS, there are a number of processors, each of which belongs to 



  

one of several classes. The unit time processing cost for a processor varies with the 
class to which the processor belongs. Each job requires processing by one and only 
one processor without preemption. The cost of processing a job is the unit time 
processing cost of the processor times the job’s processing time. The problem is to 
find a feasible scheduling of the jobs within a given cost bound, or equivalently, to 
find a feasible scheduling of minimum cost.  The difference between CCFJS and 
OCCP is that, in OCCP, the processing cost of a job depends only on the processor: if 
a number of jobs are processed by the same processor, they have the same processing 
costs; In CCFJS, the processing cost of a job depends not only on the processor, but 
also on the processing time (the processing cost is equal to the product of the unit time 
processing cost of that processor and the processing time). 

CCFJS arises in off-line multimedia gateway call routing. Multimedia gateways 
interconnect different media networks (circuit-switched PSTN, packet-switched IP, 
ATM, wireless). A multimedia gateway routes each incoming call to one of its media 
networks. Media networks differ in the unit time media cost for calls routed to the 
network, and each media network has a bandwidth capacity on the number of 
simultaneous calls. The media cost of a call is equal to the call duration times the unit 
time media cost of the network to which the call is routed. The goal of call routing is 
to minimize the media cost (or equivalently within its cost bound) taken over all calls. 

In section 2, we formally define CCFJS and provide relevant terminology. In 
section 3, we show that CCFJS can be solved by a network flow based algorithm (i.e. 
in polynomial time) when there are only two classes of processors. In section 4, we 
show that for more than two classes of processors, CCFJS is not only NP-Complete, 
but also that there is no constant ratio approximation algorithm. In section 5, we 
present an approximation algorithm, derive its worst-case performance ratio (non 
constant), and show that it has a constant approximation ratio in several special cases. 

2   Problem Descriptions and Terminology 
In this section, we formally define CCFJS as a decision problem. The optimization 

version of the problem should be clear. 
Instance of CCFJS: A cost bound 0BC > ; Jobs 1 , ... NJ J , and for each job iJ , a 

start time is  and a finish time 
i

f  ( 0 i is f≤ < ); K classes of processors, and for each 

class 1, ...j K= , the number jB  of processors, and the unit time processing cost jC  

for processors in this class. Let 
1

K

i
i

B B
=

=∑  be the total number of processors. We 

assume that 1 20 ... KC C C< < < < . 
Question:  Does there exist a feasible schedule for the N jobs, such that the cost 

1

( )
N

iT j i i B
i

C C f s C
=

= − ≤∑ ? Here, 
ij

C  is the unit time processing cost of the processor 

on which job iJ  is processed.  
Relative to the specification of CCFJS, a feasible schedule is an assignment of each 

job to a processor such that each job must be processed by one processor from its 



  

given start time to its given finish time without preemption, and each processor can 
process at most one job at a time. 

Throughout this paper, we make use of the following terminology: Jobs iJ  and 

( )jJ i j≠  are compatible if the time intervals [ , )i is f  and [ , )j js f  do not overlap. Job 

iJ  is active at time t if [ , )i it s f∈ . Rank(t) is the number of active jobs at time t. 

Further, Rank( iJ ) is the maximum number of active jobs (including iJ  itself) at any 

point of time [ , )i it s f∈ . To avoid trivial infeasible instances, we assume throughout 
the paper that: 
                           ( )( )( 1, 2, .... )max iRank J i N B= ≤                                                  (2.1) 
A null job has zero processing time with start time equal to finish time. Adding null 
jobs to an instance of CCFJS doesn’t affect the feasibility of the problem since null 
jobs introduce no cost.  A feasible schedule has the following fundamental property: 

Partition Property:  n of the total N jobs (n<N) can be processed by P processors 
(P<B) if and only if the remaining N n−  jobs can be processed by B P−  processors. 

3   A Polynomial Time Algorithm for Two Classes of Processors 
In this section, we show that when there are two classes of processors (i.e. K=2), 

CCFJS can be solved in polynomial time. The algorithm we give has two steps: (1) 
Build a flow network based on each job’s start time and finish time along with the 
total number of processors; (2) Apply a minimum cost network flow algorithm [9] to 
obtain a minimum total cost for the constructed flow network. It will follow that if the 
minimum total cost is greater than BC , then CCFJS has no feasible solution; 
otherwise CCFJS has a feasible solution. 

3.1    Construct a Flow Network 

The algorithm that we give constructs a flow network in the form of a layered 
directed acyclic graph (DAG). Each layer has exactly B vertices and each edge 
connects two vertices from two adjacent layers. Each vertex represents a job, and will 
be assigned a weight equal to the job’s processing time. A path represents a sequence 
of jobs that can be processed by the same processor. Clearly, any two jobs on the same 
path must be compatible. Further, if any P vertex-disjoint paths ( 0 P B< < ) are 
removed from the flow network, then in the remaining flow network, there will exist 
B P−  vertex-disjoint paths, such that each remaining vertex belongs to exactly one of 
the B P−  vertex-disjoint paths (i.e. the Partition Property holds). In section 3.2, we 
will let P be equal to 2B , and the jobs on the resulting 2B  vertex-disjoint paths will be 

assigned to processors of class 2. Likewise, the jobs on the remaining 1B  vertex-
disjoint paths will be assigned to the processors of class 1. 

3.1.1 Building a Layered DAG 

The algorithm Build_Layered_DAG  described  below  has  two  inputs:  the  total 
number of processors B and an array of N jobs stored in J[1..N]. The output is a 



  

layered DAG in which each layer contains exactly B vertices, and each edge is 
directed from a vertex in one layer to a vertex in the next higher layer. 
------------------------------------------------------------------------------------------------------- 
Algorithm Build_Layered_DAG(Input J[1..N], B; Output G=(V,E))  
Sort and store the 2N values of J[k].start_time and J[k].finish_time (k=1..N)  into 
ascending order in A[1..2N]; 
V ← {s, t};  L ← 1;  F ← 0;  
weight(s) ←0;  weight(t) ← 0; Layer[0] ←{s}; 
for i ← 1 to  N+1 do  Layer[i] ←NULL; 
for i ← 1 to  2N do 

  j←A[i].index; 
  if A[i].type = start_time 
        Layer[L] ← Layer[L] ∪  vertex(J[j]); // Add job J[j] into Layer L 
        weight(vertex(J[j]))←J[j].proc_time;  // Set job J[j]’s weight to its length 
       F ← 0; 
 else /* A[i].type = finish_time */ 

  if  (F =0) 
  F ← 1; 
  //Duplicate vertices of layer L into layer L+1 
  Layer[L+1] ← Layer[L]; 
  //Set duplicated vertices’ weight to zero  
  weight(v)  ← 0  for each [ 1]v Layer L∈ + ;   
 Add an adequate number of vertices with weight zero (null jobs) 

into layer L, such that laye L has exactly B number of vertices; 
 L←L+1;  //Advance the current layer L to L+1 

 //Remove job J[j] from the current layer L 
Layer[L] ← Layer[L] - vertex(J[j]);   

Layer[L] ←{t}; 
for i ← 1 to L-1 do V←V ∪  Layer[i]; 
for every vertex [ ]v Layer i∈  

if  v has a duplicated vertex [ 1]u Layer i∈ +   then E ← E ∪  (v,u); 
else for each non-duplicated vertex [ 1]u Layer i∈ + , E ← E ∪  (v,u) ; 

Assign capacity one and weight zero to each edge; 
 

The data structures used in the algorithm are: Each element of J[1..N] has three 
fields:  J[k].start_time is job kJ ’s start time, J[k].finish_time is job kJ ’s finish time 

and J[k].proc_time is job kJ ’s processing time. Clearly, J[k].start_time+ 
J[k].proc_time= J[k].finish_time.  Array [1..2 ]A N  stores the sorted start and finish 
times of all the jobs. Each element of A has three fields: A[i].type (start_time or 
finish_time) indicates whether it is a start time or  a finish time;  A[i].value is either the 
start or the finish time depending on the A[i].type; A[i].index  is the job’s index in 

[1.. ]J N . Each element of array Layer[1..N+2] is used to store the vertices of a given 
layer. 



  

Build_Layered_DAG works as follows: The algorithm first sorts  the 2N time 
values into ascending order, and stores them in array A[1..2N]. If the finish time of a 
job is the same as the start time of other jobs, the finishing times are placed before the 
starting times in A[1..2N]. Then, the algorithm processes A[i] with index i increasing 
from 1 to 2N. If A[i].type is start_time, then a vertex representing job J[A[i].index] is 
added to layer L,  and the weight of the vertex is set to J[A[i].index].proc_time. If 
A[i].type is finish_time, then each vertex of layer L is duplicated and placed in a new 
layer (L+1). The weight of each duplicated vertex in this new layer is set to zero, and  
the vertex of job J[A[i].index] is removed from the new layer. Note that if there are 
contiguous elements of A[i].type equal to finish_time, then the algorithm keeps on 
removing the vertex of job J[A[i].index]  from the new layer until encountering the 
first  A[i].type equal to start_time. (i.e. a new layer is constructed only for the first of a 
series of finish_times). Note that the number of vertices in the new layer is at most B 
from the assumption (2.1). If the old layer has fewer than B vertices, the algorithm 
adds enough vertices with weight zero into the old layer to ensure that it has exactly B 
vertices (vertices with weight zero represent null jobs). 

After building the final layer, the algorithm adds edges: for each vertex v in layer k 
(not the final layer), if v has a duplicated vertex u in layer k+1, add edge (v,u); 
otherwise add edge (v,u) for each non-duplicated vertex u in the layer k+1. The 
running time of Build_Layered_DAG is 2( log )O N N NB+ . 

3.1.2 An Example 

 A(3) 
 B(5) 
     C(9) F(3) 
 D(3)  E(3) G(3) 
  

Fig. 1. Job Sequence Input for Build_Layered_DAG, B=3 

 
 
 
 
 
 
 
 
 
 Layer 1          Layer 2             Layer 3          Layer 4 

Fig. 2. Output Layered DAG from Fig. 1 
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Figure 1 shows seven jobs with start times and finish times in sorted order. Each 
job’s processing time is shown in parentheses. Figure 2 is the layered DAG produced 
by Build_Layered_DAG. Each vertex’s weight is indicated in the parentheses. 
 
3.1.3 Properties of the Layered DAG 

In this section we prove the following theorem about the properties of the layered 
DAG. These properties are clearly illustrated in the example above. 

Theorem (3.1) The graph ( , )G V E=  generated by Build_Layered_DAG has the 
following properties: 1. ( , )G V E=  is a DAG in which each layer (except the first and 
the last) has exactly B vertices, and any two vertices (except for the null jobs vertices) 
in that layer are not compatible. 2. Each vertex in a layer can have at most one 
duplicated vertex in the next layer. 3. Each edge connects two vertices from two 
adjacent layers. 4. Each vertex u is located on at least one path from s to t (an s-t path). 
5. There exist exactly B vertex disjoint s-t paths in the graph, such that each vertex 
(except s and t) belongs to exactly one of those B paths. Note that the selection of 
those B paths may not be unique. 6. If any P vertex-disjoint paths ( 0 P B< < ) are 
removed (except s and t) from ( , )G V E= , then the remaining flow network has the 
above 1-5 properties with B replaced by B P− . 7. A set of m jobs can be processed 
by P processors subject to the Partition Property if and only if there exist P 
( 0 P B< < ) vertex-disjoint s-t paths in ( , )G V E=  containing all non-duplicated and 
duplicated vertices of those m jobs. These P vertex-disjoint paths may not be unique. 

The first 4 properties and property 6 follow easily from the algorithm. Property 5 
can be proved by using induction on the number of layers constructed. In property 7, 
the “if” part is straightforward and the “only if” part can be proved by using induction 
on the number of processors P. The details of the proofs are omitted here due to space 
limitation. 

3.2    The Algorithm and Its Correctness 
Having constructed a flow network, we use a minimum cost network flow 

algorithm [9] to find 2B  vertex-disjoint paths with minimum total weight. Clearly, all 

vertices not on those 2B  vertex-disjoint paths can fit into 2 1B B B− =  vertex-disjoint 
paths. In Two_Class_Scheduling described below, input J[1..N] is the same as the 
input for Build_Layered_DAG, 1B and 2B  are the numbers of processors of the two 

processor classes, and 1C  and 2C  are the unit time processing costs of those classes. 

We assume 1C < 2C . The algorithm returns the minimum cost *
TC  . Note that 

*
T BC C≤  ( BC  is the cost bound) decides the feasibility of the scheduling.  

 
 
 
 



  

Algorithm Two_Class_Scheduling(Input J[1..N], 1B , 2B , 1C , 2C ; Output *
TC ) 

Build_Layered_DAG(Input J[1..N ], 1B + 2B ; Output G’=(V’,E’)); 
Convert G’=(V’,E’) into an edge capacitated flow network G=(V,E) using the 

standard techniques (i.e. split each vertex ' { , }u V s t∈ −  into two vertices 
u’ and u” and add an directed edge (u’,u”) with direction the same as 
s t→  direction, capacity equal to one and weight equal to vertex u’s 
weight). 

Compute a minimum cost flow in G=(V,E) with flow value of 2B [9]; 
Assign the jobs that are on the minimum cost flow to class 2 processors, and let 

*
2L  be the total processing time of such jobs; Assign the jobs that are not 

on the minimum cost flow to class 1 processors and let *
1L  be the total 

processing time of such jobs. 
Calculate the total cost 

1

* *

1 2 2

*
TC L C L C← ∗ + ∗ . 

 
The following theorem establishes the correctness of the algorithm: 
Theorem (3.2): Two_Class_Scheduling correctly computes the minimum cost and 

the feasibility of CCFJS when there are only two classes of processors. 
Proof: For given N jobs, let L be the total processing time. Given a scheduling, let 

1L  be the total processing time on class 1 processors and 2L  be the total processing 

time on class 2 processors. Thus L= 1L + 2L . Since 1C < 2C , the cost 1 1 2 2* *L C L C+  

of processing all of the jobs is minimized if 2L  is minimized. From property 7 of 

theorem (3.1), 2L  is minimized if and only if all the jobs contributing to 2L  are on the 

minimum cost flow with flow value 2B . Thus, the theorem is established. 
For the flow network G=(V,E) where all capacities are one, the running time of the 

best minimum cost flow algorithm is 2(| | | | log | |)O VE V V+ ([9]), which is also the 
running time of Two_Class_Scheduling. 

4    Complexity for More Than Two Classes of Processors 
In this section, we show that CCFJS is not only NP-Complete, but also that there is 

no constant ratio approximation algorithm for CCFJS when the number of classes of 
processors is more than two. 

Theorem (3.3): If and 1(  is a constant)P NP r r≠ ≥ , then there is no polynomial 
time approximation algorithm with ratio bound r for CCFJS when the number of 
classes of processors is at least 3. 

Proof: The proof is by contradiction. Suppose that for some 1r ≥ , there is a 
polynomial time approximation algorithm A for CCFJS with ratio bound r, i.e. 

*/A TC C r≤  where AC  is the cost returned by the algorithm A and *
TC  is the optimal 

solution.  We will show how to use A to solve instances of Numerical 3-Dimensional 



  

Matching (N3DM) in polynomial time. Since N3DM problem is NP-Complete [10], 
our theorem follows. Recall the definition of N3DM [10]: 

INSTANCE of N3DM: Integers ,   and ,  ,   for 1, 2, ...i i it d a b c i t= , satisfying the 

following relations:
 

( )
1

t

i i i
i

a b c td
=

+ + =∑  and 0 , ,  for 1, 2, ...i i ia b c d i t< < = . 

QUESTION:  Are there permutations and ρ σ  of {1, 2, ..., }t , such that: 

( ) ( )i i ia b c dρ σ+ + =
 
( 1,..., )i t= ? 

Consider a particular instance of N3DM. We construct an instance of CCFJS 
instance (inspired in part from [7]) as follows. Define 

 4 249U dt r=                                                                          (3.4) 
 2 4 2 27 49 7V U dt r dt r dt r= − = −                                          (3.5) 
 2 4 2 27 3 49 7 3W U dt r d dt r dt r d= + + = + +                         (3.6) 
 4 2 298 7 4Z W U d dt r dt r d= + + = + +                                 (3.7) 
Define K=3, ( ) 23 2

1 2 314 14 5 / 5 / / ,  1/  and 7C dt dt dt r d r Z C r C t= + − + = = . It 

can be easily verified that 1 2 30 C C C< < < . Define 449BC dt= , 2
1 2,  B t B t t= = −  

and 2
3B t= . In this instance of CCJFS, the total number of processors is 

2
1 2 3 2B B B B t= + + = . Next, we choose 2 2t t+  distinct rational numbers (see figure 

3) ,,   and  i j i jE F X  with , 1, 2, ...,i j t=  such that: 

 ,2 3j i jiU F U d E U d X U d< < + < < + < < +
               

   (3.8) 

 
0                                     V            U          U+ d          U+2d       U+3d       W            Z 

 
                                                      jF             iE            ,i jX  

Fig. 3. Job instance construction relationship 

Then, we define 26N t t= +  jobs. We will identify these jobs by their start time 
and finish time pairs, rather then by separate names. In that context, these jobs are as 
follows: 

 

,

,

,

[0, )  ( 1, 2, ..., )                                               [ , ) ( , 1, 2, ..., )

( 1) times [ , ) ( 1, 2, ..., )                           [ , ) ( , 1, 2, ..., )

[ , )  ( , 1, 2

i i i j

j j i j

i j i j

E i t E X i j t

t V F j t F X i j t

X W a b i j

= =

− = =

+ + =

,

, ..., )                          [ , ) ( 1, 2, ..., )

( 1) times [ , ) ( 1, 2, ..., )                            [ , ) ( 1, 2, ..., )

[ , 3 ) ( , 1, 2, ... )

k

i j

i j

t W d c Z k t

t U E i t U F j t

X U d i j t

+ − =

− = =

+ =

 



  

This completes the construction of the instance of CCFJS. Clearly, this 
construction requires polynomial time, and it is easy to verify that the instance 
satisfies (2.1). Assume algorithm A is applied to the above instance of CCFJS. We 
show that A BC r C∗≤  if and only if the instance of N3DM has a solution, thus 
algorithm A can solve the instance of N3DM in polynomial time. 

To show that the instance of N3DM has a solution when A BC r C∗≤ , we prove the 
following lemmas: 

Lemma (3.9): Jobs [0, )  ( 1, 2, ..., )iE i t=  can only be assigned to class 1 
processors. 

Proof: Suppose a job [0, )iE  is assigned to a non class 1 processor. Thus the unit 
time processing cost for this job is at least 1/r. From (3.8) and (3.4), the processing 
time of this job is 4 249iE U d U dt r> + > = . Thus 449A BC dt r r C> = ∗ , a 
contradiction. 

Lemma (3.10): Jobs ( 1) times [ , )  ( 1, 2, ..., )jt V F j t− =  can only be assigned to 
class 2 processors. 

Proof: Jobs ( 1) times [ , )  ( 1, 2, ..., )jt V F j t− =  can’t be assigned to class 1 
processors due to lemma (3.9).  The rest of proof is similar to the proofs of lemma 
(3.9). 

Lemma (3.11): Jobs ( 1) times [ , )  (i 1, 2, ..., ) it U E t− =  and [ , )jU F  for 

1, 2,...,j t=  can only be assigned to class 3 processors. 
Proof: Immediate result of lemmas (3.9) and (3.10). 
Lemmas (3.12): Jobs [ , ) ( 1, 2, ..., )kW d c Z k t+ − =  can only be assigned to class 1 

processors. 
Proof: Similar to the proofs of lemma (3.9). 
Lemma (3.13): Jobs ,[ , )  ( , 1, 2, ..., )i j jiX W a b i j t+ + =  can’t be assigned to class 

3 processors, and there is no idle time for each of the class 1 and class 2 processors 
during [ 3 , )U d W+ . 

Proof: Similar to the proofs of lemma (3.9). 
Lemma (3.14): Jobs ,[ , 3 ) for , 1, 2, ...i jX U d i j t+ =  can only be assigned to class 

3 processors. 
Proof: Immediate result of lemma (3.13) 
Lemma  (3.15): There is no idle time for each of the 22t processors during time 

[ , 3 )U U d+ .  
Proof: Obvious from the definition of the jobs. 
After proving the above lemmas, now we show that there is no idle time for each of 

the class 1 processors during time interval [ , ]W W d+  and the instance of N3DM has 

a solution. From lemmas (3.9), (3.12), (3.13) and (3.15), it follows that jobs [0, ),iE  

,[ , ),i jiE X  ,[ , )i j i jX W a b+ +  and [ , )kW d c Z+ −  ( , 1, 2, ..., )i k t=  must be 



  

assigned to class 1 processors. Each i and k occur exactly once. From lemmas (3.10), 
(3.13) and (3.15), it follows that jobs ( 1)t −  times ,[ , ),  [ , )j j i jV F F X , 

,[ , )i j i jX W a b+ +  must be assigned to class 2 processors, where each 

 ( 1, 2, ..., )j j t=  occurs exactly ( 1)t −  times. Thus from lemma (3.13), for the jobs 

,[ , )i j i jX W a b+ +  assigned to class 1 processors, each ( 1, 2, ..., )j j t=  occurs 
exactly once. From lemmas (3.11), (3.14) and (3.15), it follows  that jobs 
( 1) times t −  , ,[ , ), [ , ) and [ , 3 )i i i j i jU E E X X U d+  must be assigned to class 3 

processors, where each  ( 1, 2, ..., )i i t= occurs ( 1)t −  times, and that jobs 

[ , ) and jU F  ,[ , ) ( 1, 2, ..., )j i jF X j t=  must be assigned to class 3 processors. Finally, 

from the fact that ( )
1

i i i
i

t
a b c td

=

+ + =∑ and the conclusions that each i, j and k occurs 

exactly once for jobs ,[ , )i j i jX W a b+ +  and [ , )kW d c Z+ − assigned to class 1 
processors, it follows that there is no idle time for each of the class 1 processors 
during time interval [ , ]W W d+ . Thus i j kW a b W d c+ + = + − . If we define 

( )  and ( )i j i kρ σ= = , then ( ) ( ) for 1, 2, ..., i i i i ta b c dρ σ =+ + =  and the instance of 
N3DM has a solution. 

 
Now suppose the instance of N3DM has a solution, the jobs assignment can follow 

the above proof (see figure 4). The total processing cost 

( )3 2 2 2 2

4

* 14 14 5 / 5 / / ( ) ( 2 ) / 3 7

49 *

A

B B

C tZ dt dt dt r d r Z t t W d V r t d t

dt C r C

= + − + + − ∗ + − + ∗ ∗

= = ≤
Thus algorithm A can solve N3DM in polynomial time, which contradicts the 
assumption that .P NP≠  
 

From theorem (3.3), we can easily prove the following corollary by letting r=1 and 

A TC C= : 
Corollary (3.16) CCFJS is NP-Complete. 

5   An Approximation Algorithm 
In this section, we present an approximation algorithm based on network flows, 

derive its worst-case performance ratio (non constant), and show that it has a constant 
approximation ratio in some special cases. 
 
 

 
 

 



  

Class 1 processors:  ( )1

3 2
1,  14 14 5 / 5 / /B t C dt dt dt r d r Z= = + − +  

0 
1E  11X                 1 1W a b+ +  3W d c+ −              Z 

0 
2E  23X                  2 3W a b+ +  1W d c+ −          Z 

0 
3E  32X               3 2W a b+ +  2W d c+ −       Z 

 
Class 2 processors:  2

2 2,  1/B t t C r= − =  
0 V 

1F  21X                2 1W a b+ +                        Z 

0 V 
1F  31X                     3 1W a b+ +                 Z 

0 V 
2F  12X                1 2W a b+ +                   Z 

0 V 
2F  22X           2 2W a b+ +                      Z 

0 V 
3F  13X                1 3W a b+ +               Z 

0 V 
3F  33X                           3 3W a b+ +             Z 

 
Class 3 processors:  2 2

3 3,  7B t C t= =  
0 U 

1E  12X  3U d+                     Z 

0 U 
1E  13X  3U d+                     Z 

0 U 
2E  21X  3U d+                     Z 

0 U 
2E  22X  3U d+                     Z 

0 U 
3E  31X  3U d+                     Z 

0 U 
3E  33X  3U d+                     Z 

0 U 
1F  11X  3U d+                     Z 

0 U 
2F  32X  3U d+                     Z 

0 U 
3F  23X  3U d+                     Z 

Fig. 4. An CCFJS Instance when t=3 

5.1 The Algorithm Approximate_Cost 

Recall in section 3 for the two classes of processors case, the minimum cost flow is 
computed with flow value equal to the number of processors of the most expensive 
class of processors. The jobs that are on the minimum cost flow are assigned to the 
processors of the expensive class, and the remaining jobs are assigned to the 
processors of the cheap class. Adapting this method to three or more classes of 
processors, in the algorithm Approximate_Cost, we consider partitioning the classes 
of processors into an expensive set and a cheap set.  We then compute the minimum 



  

cost flow with flow value equal to the sum of the number of processorss of the 
expensive set of processors. Each job that is on that minimum cost flow will be 
assigned to one of the processors in the expensive set, and each job that is not on that 
minimum cost flow will be assigned to one of the processors in the cheap set. In order 
to assign each job in the two sets to a particular class of processor, we use a greedy 
approach: specifically, we compute the minimum cost flow with flow value equal to 
the number of processors of the most expensive class and assign the jobs that are on 
that minimum cost flow to processors of that most expensive class. We then remove 
those jobs and the processors of that class and iterate until every job is assigned to a 
processor of a particular class. Since we don’t know in advance how to partition the 
processors into an expensive set and a cheap set, we perform the above computation 
for each possible partition (for K classes of processors, there are K-1 partitions), and 
retain the partition and the associated assignment of jobs to the processors that yield 
the smallest cost.  

5.2 Algorithm Complexity and Performance Ratio 

Similarly to section 3.2, the running time of Approximate_Cost is 
2 2 2( | | | | log | |)O K VE K V V+ . Note that we are not partitioning the expensive set 

and the cheap set recursively (instead, we use the greedy approach described above). 
Recursive partitioning will lead to exponential complexity in terms of K. Before we 
analyze the performance ratio of the algorithm, we first provide the following theorem 
and corollary (recall that we assume 1 20 ... KC C C< < < < ): 

Theorem (3.17) In Approximate_Cost, for 1,...,i K= , let iX  be the total 

processing time assigned to class i processors, let iy  be the minimum total processing 

time assigned to a single class i processor, and let iY  be the maximum total processing 
time assigned to a single class i processor. Then  

 1 1 1 2 21 2 2 .../ / /K KK KY y Y y Y yX B X B X B≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥         (3.18) 

Corollary (3.19) Let 
1

K

i
i

X X
=

=∑  be the total processing time, and approx_cost be 

the cost returned. Then approx_cost
1 1 1

/
K K K

i i i i i
i i i

XC X C B B
= = =

= ≤∑ ∑ ∑               (3.20) 

 
In Approximate_Cost, a minimum cost network flow algorithm is applied between 

each pair ( , 1)( )i i i K+ <  classes of processors, such that the flow value includes 1iB +  

without iB . Thus theorem (3.17) can be proved by using minimum cost network flow 
property.  Corollary (3.19) can be proved by showing that when 

1 1 2 2/ / ... /K KX B X B X B= = = , approx_cost reaches its upper bound 

1 1

/
K K

i i i
i i

X C B B
= =

∑ ∑ . 



  

Consider a particular partition in Approximate_Cost where the cheap set includes 
processors from class 1 to class j (j=1…K-1) and the expensive set includes processors 
from class j+1 to K. After the minimum cost flow is computed, let 1.. jX  be the total 

processing times and _1jc  be the cost of jobs that are assigned to the cheap set, and let 

1..j KX +  be the total processing times and _ 2jc  be the cost of jobs that are assigned to 

the expensive set. Let jc  be the final cost as calculated in that partition.  Analogous to 
corollary (3.19), we have: 

 
_1 _ 2

1 1 1 1

1 1 1 1

1.. 1..

_1 _ 2 1.. 1..

/ ,

/ /

,   /  
j j K K

j i i i j i i i
i i i j i j

j j K K

i i i i i i
i i i j i j

j j K

j j j j j K

c X C B B c X C B B

c c c X C B B X C B B

= = = + = +

= = = + = +

+

+

≤ ≤

≤ += +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
   (3.21) 

Let optc  be the optimal processing cost.  Since 10 ... KC C< < < , the optimal value 

optc  will not decrease if 2 ..., jC C  decreases to 1C  and 2 ...,j KC C+  decrease to 1jC + .                                    
Thus, 

 1.. 1 1.. 1j j K jopt X C X Cc + +≥ +                                                    (3.22) 

 11

1

11
1.. 1..

11

1.. 1 1.. 1
1

11

max ,

K

i ji

K

j

Kj

i ii i
i ji

j j Kj K j

i i ii i i
j i ji

j
j j K j

ii
i ji

opt

C BC B
X X

B C BB C Bc

c X C X C C BC B

= +=

+

= +=
+

= +=

+ +

= +=

+

≤ ≤
+

 
 
 
  
 

∑∑

∑ ∑∑ ∑

∑∑
         (3.23) 

 
Since the algorithm returns the smallest cost for each j,  
 min{ 1, 2, ..., 1} /|j optc j K cρ = = −                                      (3.24) 

 
Finally from (3.23) and (3.24),  

 11

11
11

min max , 1, 2,..., 1,

K

i ji
K

j

j

i ii i

j

ii
i ji

C BC B
j K

C BC B
ρ = +=

+
= +=

≤ = −

  
  
  
  

    

∑∑

∑∑
                         (3.25) 

 
Example 1 1 2 2 3 33, 3, 100, 6, 50, 12, 25K C B C B C B= = = = = = = .   

By applying (3.25), we have 4 / 3ρ ≤ . In practical situations (for example in the 
off-line multimedia gateway call routing), the more expensive the processors, the less 



  

the number of processors. In this example, 1 1 2 2 3 3C B C B C B= = . In general, if K>2 is a 

constant and 1 1 2 2 ... K KC B C B C B= = = , then from (3.25), / 2Kρ ≤ , i.e. ρ  is 
bounded by a constant.  
Example 1 1 2 2 3 3 4 44, 1, 100, 2, 100, 4, 100, 8, 100K C B C B C B C B= = = = = = = = =  

By applying (3.25), we have 3 / 2ρ ≤ . In this example, 1 2 3 4B B B B= = = , 

1 / 2 ( 1, 2, 3)i iC C i+ = = . In general, if K>2 is a constant, 1 2 ... KB B B= = = , and 

1 / ( 1, ..., 1)i iC C q i K+ = = −  is a constant, then from (3.25), 
/ 2 1

0

2 /
K

j

j

q Kρ
−

=

≤ ∑ , i.e. ρ  

is also bounded by a constant. 
 

6   Summary 

In this paper, we have studied the problem of CCFJS and we present a complete 
classification of its computational complexity. We show that CCFJS is polynomial 
solvable when there are only two classes of processors. We prove that the general 
CCFJS is NP-Complete and that there is no constant ratio approximation algorithm. 
We further present an approximation algorithm and analyze its worse case 
performance ratio. 
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