Skip to main content

Lower Bounds on the Size of Quantum Automata Accepting Unary Languages

  • Conference paper
Theoretical Computer Science (ICTCS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2841))

Included in the following conference series:

Abstract

In this paper, we study measure-once 1-way quantum automata accepting unary languages, i.e., of type L ⊂ {a}* . We give two lower bounds on the number of states of such automata accepting certain languages.

  1. 1

    We prove the existence of n-periodic languages requiring \(\Omega (\sqrt{\frac{n}{log n}})\) states to be recognized. This should be compared with results in the literature stating that every n-periodic language can be recognized with \(O(\sqrt{n})\) states.

  2. 2

    We give a lower bound on the number of states of automata accepting the finite language L < n = {a k ∈ L | k < n}, for a given L. This bound is obtained by using quantum information theory arguments.

Partially supported by MURST, under the project “Linguaggi formali: teoria ed applicazioni”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: Proc. 39th Symposium on Foundations of Computer Science, pp. 332–342 (1998)

    Google Scholar 

  2. Benioff, P.: Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys. 29, 515–546 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertoni, A., Carpentieri, M.: Regular languages accepted by quantum automata. Information and Computation 165, 174–182 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertoni, A., Carpentieri, M.: Analogies and differences between quantum and stochastic automata. Theoretical Computer Science 262, 69–81 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertoni, A., Mereghetti, C., Palano, B.: Quantum computing: 1-way quantum automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, Springer, Heidelberg (2003) (to be published)

    Chapter  Google Scholar 

  6. Bertoni, A., Mereghetti, C., Palano, B.: Golomb rulers and difference sets for succinct quantum automata. Int. J. Found. Comp. Sci. (2003) (to be published)

    Google Scholar 

  7. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. Technical Report TR-99-03, Department of Computer Science, University of British Columbia (2000)

    Google Scholar 

  8. Bertoni, A., Torelli, M.: Elementi di matematica combinatoria. ISEDI (1977) (in Italian)

    Google Scholar 

  9. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26, 1411–1473 (1997); A preliminary version appeared in Proc. 25th ACM Symp. On Theory of Computation, pp. 11–20 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. London Ser. A 400, 97–117 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feynman, R.: Simulating physics with computers. Int. J. Theoretical Physics 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  12. Golovkins, M., Kravtsev, M.: Probabilistic Reversible Automata and Quantum Automata. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 574–583. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proc. 28th ACM Symposium on Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  14. Gruska, J.: Quantum Computing. McGraw-Hill, New York (1999)

    Google Scholar 

  15. Gruska, J.: Descriptional complexity issues in quantum computing. J. Automata, Languages and Combinatorics 5, 191–218 (2000)

    MATH  MathSciNet  Google Scholar 

  16. Holevo, A.S.: Some estimates of the information transmitted by quantum communication channels. Problemy Peredachi Informatsii 9, 3–11 (1973); English translation in Problems of Information Transmission 9, 177–183 (1973)

    MATH  MathSciNet  Google Scholar 

  17. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: 38th Symposium on Foundations of Computer Science, pp. 66–75 (1997)

    Google Scholar 

  18. Marcus, M., Minc, H.: Introduction to Linear Algebra. The Macmillan Company, Basingstoke (1965); Reprinted by Dover (1988)

    MATH  Google Scholar 

  19. Marcus, M., Minc, H.: A Survey of Matrix Theory and Matrix Inequalities. Prindle, Weber & Schmidt (1964); Reprinted by Dover (1992)

    Google Scholar 

  20. Mereghetti, C., Palano, B.: On the size of one-way quantum finite automata with periodic behaviors. Theoretical Informatics and Applications 36, 277–291 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Moore, C., Crutchfield, J.: Quantum automata and quantum grammars. Theoretical Computer Science 237, 275–306 (2000); A preliminary version of this work appears as Technical Report in 1997

    Article  MATH  MathSciNet  Google Scholar 

  22. Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: Proc. 40th Symposium on Foundations of Computer Science. pp. 369–376 (1999)

    Google Scholar 

  23. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26, 1484–1509 (1997); A preliminary version appeared in Proc. 35th IEEE Symp. on Foundations of Computer Science, pp. 20–22 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bertoni, A., Mereghetti, C., Palano, B. (2003). Lower Bounds on the Size of Quantum Automata Accepting Unary Languages. In: Blundo, C., Laneve, C. (eds) Theoretical Computer Science. ICTCS 2003. Lecture Notes in Computer Science, vol 2841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45208-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45208-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20216-5

  • Online ISBN: 978-3-540-45208-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics