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Abstract. This paper describes the motivation, design and performance
of EventSpace, a configurable data collecting, management and observa-
tion system used for monitoring low-level synchronization and commu-
nication behavior of parallel applications on clusters and multi-clusters.
Event collectors detect events, create virtual events by recording times-
tamped data about the events, and then store the virtual events to a
virtual event space. Event scopes provide different views of the appli-
cation, by combining and pre-processing the extracted virtual events.
Online monitors are implemented as consumers using one or more event
scopes. Event collectors, event scopes, and the virtual event space can
be configured and mapped to the available resources to improve mon-
itoring performance or reduce perturbation. Experiments demonstrate
that a wind-tunnel application instrumented with event collectors, has
insignificant slowdown due to data collection, and that monitors can re-
configure event scopes to trade-off between monitoring performance and
perturbation.

1 Introduction

As the complexity and problem size of parallel applications and the number of
nodes in clusters increase, communication performance becomes increasingly im-
portant. Of eight scalable scientific applications investigated in [12], most would
benefit from improvements to MPI’s collective operations, and half would benefit
from improvements in point-to-point message overhead and reduced latency.

The performance of collective operations has been shown to improve by a
factor of 1.98 by using better mappings of computation and data to the clusters
[2]. Point-to-point communication performance can also be improved by tuning
configurations. In order to tune the performance of collective and point-to-point
communication, fine-grained information about the applications communication
events is needed to compute how the application behaves.
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In this paper we describe EventSpace, an approach and a system for online
monitoring the communication behavior of parallel applications. It is the first
step toward a system that can dynamically reconfigure an applications commu-
nication structure and behavior.

For low-level performance analysis [3,11] and prediction [14,5], large amounts
of data may be needed. For some purposes the data must be consumed at a high
rate [9]. When the data is used to improve the performance of an application
at run-time, low perturbation is important [8,10]. To meet the needs of different
monitors the system should be flexible, and extensible. Also the sample rate,
latency, perturbation, and resource usage should be configurable [8,5,11]. Finally,
the complexity of specifying the properties of such a system must be handled.

The approach is to have a virtual event space, that contains traces of an ap-
plications communication (including communication used for synchronization).
Event scopes are used by consumers to extract and combine virtual events from
the virtual event space, providing different views of an applications behavior. The
output from event scopes can be used in applications and tools for adaptive ap-
plications, resource performance predictors, and run-time performance analysis
and visualization tools. When triggered by communication events, event collec-
tors create a virtual event, and store it in the virtual event space. A virtual event
comprises timestamped data about the event.

The EventSpace system is designed to scale with regards to the number of
nodes monitored, the amount of data collected, the data observing rate, and the
introduced perturbation. Complexity is handled by separating instrumentation,
configuration, data collection, data storage, and data observing.

The prototype implementation of the EventSpace system is based on the
PATHS [1] system. PATHS allows configuring and mapping of an applications
communication paths to the available resources. PATHS use the concept of wrap-
pers to add code along the communication paths, allowing for various kinds of
processing of the data along the paths. PATHS use the PastSet [13] distributed
shared memory system. In PastSet tuples are read from and written to named
elements.

In EventSpace, an application is instrumented when the configurable com-
munication paths are specified. Event collectors are implemented as PATHS
wrappers integrated in the communication system. They are triggered by PastSet
operations invoked through the wrapper. The virtual event space is implemented
by using PastSet. There is one trace element per event collector.

Event scopes are implemented using scalable hierarchical gather trees, used
to gather data from a set of trace elements. PATHS wrappers to filter, sort,
convert, or reduce data can be added to the tree as needed. To trade-off between
performance and perturbation the tree can be mapped to the available resources,
and wrapper properties can be set.

This paper proceeds as follows. In section 2 we discuss related work. The
architecture and implementation of EventSpace are described in sections 3 and
4. Monitors using EventSpace are described in section 5. The performance of
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EventSpace is evaluated in section 6. In section 7 we draw conclusions and outline
future work.

2 Related Work

There are several performance analysis tools for parallel programs [6]. Generally
such tools provide coarse grained analysis with focus on processor utilization [11].
EventSpace supplements these tools by providing detailed information about the
internal behavior of the communication system.

NetLogger [11] provides detailed end-to-end application and system level
monitoring of high performance distributed systems. Analysis is based on life-
lines describing the temporal trace of an object through the distributed system.
EventSpace provides data for similar paths inside the communication system.
However, data is also provided for joined and forked paths forming trees, used
to implement collective operations and barriers.

There are several network performance monitoring tools [5,7]. While these
often monitor low level network data, EventSpace is used by monitors monitoring
paths that are used to implement point-to-point and collective communication
operations. Such a path may in addition to a TCP connection, have code to
process the data, synchronization code, and buffering.

JAMM [10] is a monitoring sensor management system for Grid environ-
ments. Focus is on automating the execution of monitoring sensors and the col-
lection of data. In JAMM sensors generate events that can be collected, filtered
and summarized by consumers using event gateways. In EventSpace, events are
generated by sensors integrated in the communication system, and consumers
collect, filter, and preprocess data using event scopes. Event scopes are imple-
mented by extending the PATHS system, allowing the data flow to be configured
at a fine granularity.

The Network Weather Service [14] is a system service producing short-term
forecast for a set of network and computational resources. In EventSpace moni-
toring is per application, hence data is only collected for the resources used by
the application simplifying the resource usage control.

EventSpace, and many other monitoring systems [5,8,11,14] separate pro-
ducers and consumers, and allow intermediates to filter, broadcast, cache, and
forward data. Most monitoring systems also have a degree of configurability [5,
8,11,14]. In EventSpace focus is on allowing all parts of the monitoring to be
configured and tuned at a fine granularity.

3 EventSpace Architecture

The architecture of the EventSpace system is given in figure 1. An application is
instrumented by inserting event collectors into its communication paths. Each
event collector record data about communication events, creates a virtual event
based on the data, and stores it in a virtual event space. Different views of the
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Fig. 1. EventSpace overview.

communication behavior can be provided by extracting and combining virtual
events provided by different event collectors. Consumers use an event scope to
do this.

An event collector record operation type, operation parameters, and start
and completion times1 of all operations sent through it. Typically, several event
collectors are placed on a path to collect data at multiple points.

EventSpace is designed to let event collectors create and store events, with
low overhead introduced to the monitored communication operations. Shared
resources used to extract and combine virtual events are not used until the data
is actually needed by consumers. We call this lazy event processing. By using
lazy processing we can, without heavy performance penalties, collect more data
than may actually be needed. This is important because we do not know the
actual needs of the consumers, and we expect the number of writes to be much
larger than the number of reads [9].

EventSpace is designed to be extensible and flexible. The event collectors and
event scopes can be configured and tuned to trade off between introduced pertur-
bation and data gathering performance. It is also possible to extend EventSpace
by adding other event collectors, and event scopes.

The communication paths used by event collectors and event scopes can also
be instrumented and monitored. Consequently, a consumer can monitor its own,
another consumer’s, or an event collectors performance and overhead.

4 EventSpace Implementation

The implementation of EventSpace is built on top of PATHS and PastSet.
Presently, the monitored applications must also use PATHS and PastSet.

PastSet is a structured distributed shared memory system in the tradition
of Linda [4]. A PastSet system comprises a number of user-level tuple servers
hosting PastSet elements. An element is a sequence of tuples of the same type.
Tuples can be read from and written to the element using blocking operations.

PATHS supports mapping of threads to processes, processes to hosts, specify-
ing and setting up physical communication paths to individual PastSet elements,
1 Using the Pentium timestamp counter.
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and insertion of code in the communication paths. This code is executed every
time the path is used.

A path is specified by listing the stages from a thread to a PastSet element. At
each stage the wrapper type and parameters used to initialize an actual instance
of the wrapper are specified. A wrapper is typically used to run code before and
after forwarding the PastSet operation to the next stage in the path.

Paths can be joined or forked forming a tree structure. This supports imple-
mentation of collective operations, barriers and EventSpace gather trees.

The threads, elements, and all communication paths used used by an appli-
cation are specified in a pathmap. It also contains information about which paths
are instrumented, and the properties of event collectors and trace elements. The
path specifications are generated by path generate functions. As input to these
functions three maps are used: (1) An application map describing which threads
access which elements. (2) A cluster map, describing the topology and the nodes
on each cluster. (3) An application to cluster map, that describes the mapping
of threads and elements to the nodes.

Threads can use elements in an access and location transparent manner,
allowing the communication to be mapped onto arbitrary cluster configurations
simply by reconfiguring the pathmap. Presently, run-time reconfiguration of the
pathmap is not implemented.

4.1 Event Collectors

When triggered, an event collector creates a virtual event in the form of a trace
tuple, and writes it to a trace element. A virtual event space is implemented by
a number of trace elements in PastSet. Each trace element can have a differ-
ent size, lifetime, and be stored in servers locally or remotely from where the
communication event took place.

The trace tuple is written to a trace element using a blocking PastSet opera-
tion. As a result it is important to keep the introduced overhead low. If the trace
element is located in the same process as the event collector (a local server), the
write only involves a memory copy and some synchronization code. To keep the
introduced overhead low, trace tuples are usually stored locally.

Tuples can be removed either by explicit calls, or automatically discarded
when the number of tuples is above a specified threshold (specified on a per
element basis). Presently, for persistent storage some kind of archive consumers
are needed.

The recorded data is stored in a 36 byte tuple. Since write performance
is important, tuples are stored in binary format, using native byte ordering.
For heterogeneous environments, the tuple content can be parsed to a common
format when it is observed.

By using PATHS to specify the path from an event collector wrapper to a
trace element, we can specify the location of the trace element, its size, and its
properties.
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Presently, the amount of tracing cannot dynamically be adjusted as in [8,11].
However, when a consumer decides to start monitoring a part of the system, a
backlog of collected events can be examined.

4.2 Event Scopes

An event scope is used to gather and combine virtual events providing a spe-
cific view of an applications communication behavior. It can also do some pre-
processing on the virtual events. An event scope is implemented using a config-
urable gather tree. The tree is built using PATHS wrappers. Even if a tree can
involve many trace elements with wrappers added at arbitrary places, the com-
plexity of building and configuring it is reduced due to the hierarchical nature
of views, resulting in a regular structure of the tree. For example, the Heart-
beat view in figure 2a, comprises two node views, each comprising two thread
views. The tree can be built hierarchically by creating similar sub-trees for each
sub-view. Any number of event scopes can be dynamically built by different
consumers using the applications pathmap as input.

The desired performance and perturbation of a gather tree are achieved by
mapping the tree to available resources and setting properties of the wrappers.
Data can be reduced or filtered close to the source, to avoid sending all data
over a shared resource such as Ethernet, or a slow Internet link. Also some data
preprocessing can be done on the compute clusters, thereby reducing the load
on the node where the consumer is running. Since data is gathered on-demand,
shared resources such as CPU, memory and networks are only used when needed.
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Fig. 2. (a) Heartbeat gather tree. (b) Data collected for a reduce operation tree.

5 Monitors – Consumers of Virtual Events

In this section we describe several monitors that use event scopes to extract and
process virtual events.
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5.1 Heartbeat Monitor

The Heartbeat monitor has the task of establishing whether a thread has reached
a stable state where no further progress can take place or not. The monitor uses
an event scope as shown in figure 2a, to find the last virtual event for each
thread of the application. The event scope extract the latest virtual event for
every communication path used by a thread, and then selects the last of these
events (“reduce”). The output (“gather”) from the event scope is one single
timestamp for each thread representing the last event happening in each thread.

After a set time the monitor use the event scope to reduce and gather new
timestamps. These are compared with the previous values. If no change is de-
tected the thread has had no progress.

5.2 Get Event Monitor

GetEventMon just consumes virtual events without further processing of the
data. In [3] the data collected by GetEventMon is used for performance analysis
and visualization of the behavior of an application.

GetEventMon uses an event scope with a gather tree similar to Heartbeat’s,
except that all reduce wrappers are replaced with gather wrappers.

5.3 Collective Operation Monitor

ColOpMon monitors the performance of MPI type collective operation, imple-
mented and instrumented using PATHS. As these operations use broadcast,
gather, scatter, and reduce trees, we collect data about the activity in the trees
for later extraction from the virtual event space, and analysis by ColOpMon.

ColOpMon is a multi-threaded distributed application, with its own
pathmap. It has threads monitoring the performance of each internal tree node,
and one thread monitoring the contribution times of threads participating in the
collective operation.

In figure 2b the different views for (a part of) a reduce operation tree are
shown, where four threads, T1 - T4 on nodes A and B, do a partial reduce on
each node before the global reduce on node C. The path is instrumented using
event collectors that store events in trace elements TE1 - TE8. An internal node
monitor thread gathers, does clock synchronization, and analyzes events from the
departure and arrival views. A contribution time monitor gathers and analyzes
events from the contribute view.

6 Experiments

To demonstrate the feasibility of the approach and the performance of the
EventSpace prototype, we monitor a wind-tunnel application.

The hardware platform comprise two clusters:
4W: Eight four-way Pentium Pro 166 MHz, 128 MB RAM.
8W: Four eight-way Pentium Pro 200 MHz, 2GB RAM.
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The clusters use TCP/IP over a 100 Mbps Ethernet for intra and inter-cluster
communication. Communication to and from the 4W cluster goes through a two-
way Pentium II 300 MHz with 256 MB RAM, while the 8W nodes are directly
accessible.

The wind-tunnel is a Lattice Gas Automaton doing particle simulation. We
use eight 2N×N matrices. Each matrix is split into 140 slices, which are assigned
to 140 threads. Each thread uses 12 PastSet elements to exchange the border
rows of its slices with threads computing on neighboring slices. We use three
different problem sizes: large, medium and small.

Large is the largest problem size that does not trigger paging on the 4W
nodes, while medium and small are 1/2 and 1/8 of the size of large2.

For the large problem size, border rows are exchanged approximately every
300 ms (and thus virtual events are produced at about 3.3 Hz). For medium and
small, rows are exchanged every 70 ms and every 5 ms respectively. The discard
threshold is set to 200 tuples for all 2240 trace elements. Less than 0.5 MB of
memory on a 4W node is used for trace tuples.

6.1 Event Collecting Overhead

The overhead introduced to the communication path by a single event collector
wrapper is measured by adding event collector wrappers before and after it. The
average overhead, calculated using recorded timestamps in these wrappers, is
1.1 µs on a 1.8 GHz Pentium 4 and 6.1 µs on a 200 MHz 8W node. This is
comparable to overheads reported for similar systems [8,11].

For large and medium, the slowdown due to data collection is insignificant.
For small, the slowdown is 1.03.

Further experiments are needed to determine if the insignificant and small
slowdowns are due to unused cluster resources, and the effect of the overhead
introduced by event collectors on other applications.

6.2 Event Scope Perturbation and Performance

In this section we document how reconfiguring an event scope can be used to
trade-off between the rate at which virtual events can be observed for a given
view, and the perturbation of monitored application. We measure how many
times a monitor can pull, using an event scope, one tuple from all trace elements
in a view during a run of the wind-tunnel. All monitors are run on a computer
outside the cluster3, if not otherwise stated.

GetEventMon consumes events from a single trace element, a thread view
with 14 elements, and a node view with 266 elements (19 thread views) with no
slowdown for large, and 1.03 for small. Events are consumed at 2500 Hz, 1500
Hz, and 200 Hz respectively.
2 As the size of the matrices, N, increase the computation increase by O(N2), and the

communication by N. For large, N is 7680.
3 A 1.8 GHz Pentium 4 with 2 GB RAM.
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When consuming events from a multi-cluster view with 1948 trace elements
(140 thread views), the wind-tunnel has no slowdown for large. However when
using the small problem size, the event scope introduces a slowdown of 1.36.
Using a different gather tree shape increases the observe rate from 58 Hz to 106
Hz, and the slowdown to 1.50. Reconfiguring the event scope to use less threads,
reduces the slowdown to 1.07, and the observe rate to 25 Hz.

When consuming from another multi-cluster view for large, with only two
trace elements per thread, there is no difference in sample rates and slowdown
when consuming events sequentially and concurrently. However, when more pro-
cessing are added to the communication paths the concurrent version is faster,
due to better overlap of communication and computation.

The event scopes used by the collective operation monitor, ColOpMon, results
in a slowdown of 1.17. We discovered that an event scope actually perturbs
the wind-tunnel more than the computation intensive internal node monitoring
threads running on the clusters. By reconfiguring the event scope to use less
resources the slowdown is reduced to 1.08 (the observe rates are also decreased
by about 50%).

When running four monitors concurrently, the slowdown is about the same
as the largest slowdown caused by a single monitor (ColOpMon). For the con-
sumers running on the computer outside the cluster, observe rates are reduced
by 10-50%. For the ColOpMon internal monitor threads running on the clusters,
observe rates are unchanged.

7 Conclusions and Future Work

The contributions of this work are two-fold: (i) we describe the architecture and
design of a tunable, and configurable framework for low-level communication
monitoring, and (ii) we demonstrate its feasibility and performance.

The approach is to have event collectors integrated in the communication
system, that when triggered by communication events, create a virtual event that
contains timestamped information about the event. The virtual events are then
stored in a virtual event space from where they can be extracted by consumers
using different event scopes.

Low-level communication monitoring is implemented by adding event collec-
tion code to communication paths. The data is stored in a structured shared
memory. The data is extracted, combined and pre-processed using configurable
communication paths. The architecture and its implementation, allows con-
sumers, producers, and data management issues to be clearly separated. This
makes handling the complexity simpler.

We have described several monitors using EventSpace, and given initial per-
formance results. The results show that a wind-tunnel application instrumented
with event collectors, has insignificant slowdown due to data collection. We have
also documented how event scopes can be reconfigured to trade-off between mon-
itoring performance and perturbation.
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Currently, we are using other types of applications and monitors to evaluate
the performance and configurability of the system. We are also using EventSpace
to analyze and predict the performance of MPI type collective operations, with
the purpose of dynamically adapting these for better performance.
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