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Abstract. This paper deals with the design of an API for building distributed
parallel applications in C++ which embody strict multithreaded computations. The
API is enhanced with mechanisms to deal with highly irregular non-deterministic
computations often occurring in the field of parallel symbolic computation. The
API is part of the Distributed Object-Oriented Threads System DOTS. The DOTS
environment provides support for strict multithreaded computations on highly
heterogeneous networks of workstations.

1 Introduction

High level programming models typically exhibit a high degree of abstraction, thus
shielding the programmer from many low-level details of the parallel execution pro-
cess. In this paper we deal with the multithreading parallel programming model [8]
(not to be confused with the shared memory model) which is located on a higher level
of abstraction than other commonly employed parallel models (e.g. message passing).
Within the multithreading parallel programming model, low-level synchronization, com-
munication, and task mapping are carried out completely transparently. Many parallel
algorithm models like master-slave, divide-and-conquer, branch-and-bound, and search
with dynamic problem decomposition can be realized by multithreaded computations in
a straight forward manner. This property makes the multithreading model also particu-
larly attractive for the development of the now popular Internet-computing based parallel
applications, provided it is available for highly heterogeneous distributed systems.

Parallel programs that employ the multithreading programming model are called
multithreaded programs. A multithreaded computation results from the execution of a
multithreaded program with a given input. A considerable amount of research has been
carried out on (static) scheduling techniques for multithreaded computations in order to
minimize time and/or space requirements [9,10]. In this paper we study the design of
an API (application programmers interface) that supports the creation of multithreaded
programs and multithreaded computations with dynamic thread creation. It is part of our
parallel middleware DOTS (Distributed Object-Oriented Threads System). The overall
design goal of the presented API was on the one hand to support as large a class of
multithreaded computations, while on the other hand keeping the API as lean as possible
in order to enable the rapid and easy creation as well as maintenance of parallel programs.

The rest of the paper is organized as follows. In Section 2 a graph-theoretic definition
and a classification of multithreaded computations are given. Section 3 provides details
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of the multithreading API of the DOTS parallel system environment. Section 4 gives a
summary and comparison with related work.

2 Definition and Classification of Multithreaded Computations

In this section we summarize the graph-theoretic model for multithreaded computa-
tions introduced by Blumofe and Leiserson [8] which also provides a means to classify
computations of this kind according to their expressiveness.

A multithreaded computation can be described by an execution graph. The main
structural entities of multithreaded computations are threads. Each thread is composed
of one or more unit-time tasks which represent the nodes of the execution graph. Continue
edges between tasks indicate their sequential ordering within a thread and also define
the extent of the thread.

Tasks of different threads can be executed concurrently, provided that two kinds of
dependencies between the threads of a computation are considered:

– A thread can create new threads by executing special tasks, called spawn tasks. The
resulting parent/child relationship among two threads is indicated by a spawn edge
which goes from the spawn task of the parent to the first task of the child thread.
The parent thread may pass an argument to its child thread along with its creation.
The tree composed by all threads of a computation and the corresponding spawn
edges is called spawn tree. It can be viewed as the parallel variant of a call tree.

– The second type of dependencies stem from producer/consumer relationships be-
tween two threads of a computation. A thread can produce one or more results
which are later consumed by other threads. This relationship is indicated by data-
dependency edges which go from the producing to the consuming task.

A multithreaded computation can thus be represented by a directed acyclic graph of
unit-tasks connected by continue, spawn and data-dependency edges. Such computations
are also called general multithreaded computations. In Figure 1 the execution graph of a
general multithreaded computation is given. Threads are shaded gray, spawn edges are
printed as solid arrows and data-dependency edges are printed as dotted arrows.

Subclasses of general multithreaded computations can be identified by restricting
the kinds of data-dependencies that can occur between two threads of a computation.
The simplest subclass is the class of asynchronous procedure calls. In such computations
every thread produces exactly one result which is consumed by its parent. More formally,
there is only one outgoing data-dependency edge per thread and it goes to its parent thread
(see Figure 2). In fully strict computations a thread can produce several results, but the
corresponding data-dependency edges also go to its parent thread without exceptions
(see Figure 3). The more comprehensive class of strict computations is characterized by
the property that all data-dependency edges of a thread go to an ancestor of the thread
in the spawn tree (see Figure 4).

The class of strict computations plays an important role, since it is the most com-
prehensive class of multithreaded computations for which certain properties hold [9,
10]. In particular, it is considered to be the largest class of multithreaded computations
which can be regarded as “well-structured”. We will take advantage of this property in
the design of the API for multithreading.
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Fig. 1. Execution Graph of a General Multi-
threaded Computation

Fig. 2. Execution Graph of a Computation with
Asynchronous Procedure Calls

Fig. 3. Execution Graph of a Fully Strict Multi-
threaded Computation

Fig. 4. Execution Graph of a Strict Multi-
threaded Computation

3 Multithreaded Computations in DOTS

3.1 DOTS Overview

To provide an appropriate context for the subsequent discussion on multithreading in
DOTS, we first give a brief overview of the system. DOTS is a system environment for
building and executing parallel C++ programs that integrates a wide range of different
computing platforms into a homogeneous parallel environment [3]. Up to now, it has been
deployed on heterogeneous clusters composed of the following platforms: Microsoft
Windows 95/98/NT/2000/XP, Sun Solaris, SGI IRIX, IBM AIX, FreeBSD, Linux, QNX
Realtime Platform and IBM Parallel Sysplex Cluster (clusters of IBM S/390 mainframes
running under OS /390) [4].

Although DOTS was originally designed for the parallelization of algorithms from
the realm of symbolic computation [5,7,6,21], it has also been used in other application
domains like parallel computer graphics [17]. The primary design goal of DOTS was
to provide a flexible and handy tool for the rapid prototyping of algorithms, especially
supporting highly irregular symbolic computations, e.g. in data-dependent divide-and-
conquer algorithms.

The DOTS system environment is organized in several layers. The lowest layer is the
OS adaptation layer which is implemented by the ACE (ADAPTIVE Communication
Environment) toolkit [1]. It homogenizes operating system APIs for a wide range of
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different platforms. On top of the OS adaptation layer, the DOTS run-time system is built.
It provides several low-level services like object-serialization, message exchange, TCP
connection caching and support for the internal component-architecture. Additionally,
higher level services like task migration, node directory, logging, and load distribution
are provided by the DOTS run-time.

DOTS applications can be based on several parallel programming models which are
represented by separate APIs. It is possible to mix primitives from different APIs within
an application.

– The Task API represents the basic API layer of DOTS on which all other APIs are
based. It supports object-oriented task parallel programming at a basic level using
directly the services of the DOTS run-time.

– The Active Message API provides support for object-oriented message passing.
– The Autonomous Tasks API can be employed to create task objects that operate as

mobile agents in a heterogeneous distributed system.
– The Thread API provides support for strict multithreaded computations. For the rest

of the paper we will focus on this API.

3.2 The DOTS API for Multithreading

The design of the multithreading API of DOTS was guided by three main goals:

– Providing high-level and easy-to-use primitives.
The API should provide a small number of powerful and orthogonal primitives
facilitating the creation of distributed parallel programs. Also the parallelization of
object-oriented programs should be supported.

– Support for a comprehensive class of multithreaded computations.
In order to support more complex multithreaded computations than asynchronous
procedure calls and at the same time preserving the "well-structured" property of
computations the class of strict multithreaded computations should be supported.

– Support for typical requirements of the field of symbolic computation.
Typical properties of parallel applications of this field are a high degree of irregu-
larity and non-determinism. Also primitives for cancellation are required in order to
efficiently support parallel search procedures.

The key concept of the DOTS API for multithreaded computations is the use of
thread group objects as links between different primitives of the API. A thread group
represents one or more active threads of a computation. Within a program, any number
of thread group objects can be used. A thread can be placed explicitly or implicitly into a
thread group. In the former case, the thread group object has to be supplied as argument
to a primitive. In the latter case, the corresponding thread group is determined by the
dynamic context in which a primitive is executed. For all primitives that are subsequently
applied to a thread group no distinctions are made between threads that have been placed
explicitly and threads that have been placed implicitly into the group.

The basic primitives provided by the Thread API are dots fork and dots hyperfork for
thread creation, dots join for synchronizing with the results computed by other threads
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Fig. 5. A Strict Computation with DOTS Primitives

(which are returned using dots return), and dots cancel for thread cancellation. To facili-
tate the parallelization of existing C++ programs within the multithreading programming
model, the DOTS Thread API is enhanced with object-oriented features, like argument
and result objects for threads.

If a thread is created using the dots fork primitive, it is placed explicitly into a
specified thread group. Whereas, if a thread is created using dots hyperfork, it is placed
implicitly in the same thread group as its closest ancestor in the spawn tree which has
been created using dots fork. In both cases a procedure to be executed by the child thread
and an argument-object for the child thread must be supplied.

Threads return result objects using the dots return primitive. The last result of a
thread is delivered by the final return statement of the procedure.

When dots join is called on a thread group join-any semantics is applied: The first
result which becomes available from any thread in the given group is delivered, regardless
of whether the thread has been placed explicitly or implicitly into the group. If no result
is available, the calling thread is blocked until one thread of the group delivers a result.
If a thread has finished its execution and all result objects of the thread have been joined,
it is removed from the thread group. In case dots join is applied to an empty group (i.e.
a thread group which doesn’t hold explicit or implicit threads any more), 0 is returned
by dots join. By checking this return value, the end of a computation can be determined.
(Note, that in general the joining thread cannot know how many results are available in
a thread group.)

Figure 5 depicts the realization of the strict multithreaded computation previously
shown in Figure 4 using DOTS primitives.

When applying the dots cancel primitive to a thread group object, the execution
of all threads within this group is aborted and results which have not yet been joined
are deleted. All threads are removed from the thread group. A thread can abort its own
execution process with dots abort. Analogously it is removed from its thread group and
unjoined results of the thread are deleted.

The described interaction of dots fork, dots hyperfork and thread groups enables the
programmer to succinctly formulate strict multithreaded computations. Additionally, the
join-any property of dots join together with the dots cancel primitive extend this strict
multithreading model to a flexible tool for dealing with high degrees of non-determinism,
for example occurring in highly irregular search problems. Moreover, since all primitives
are completely orthogonal the API can be applied easily.
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3.3 Example Program

In this Section we present an example program illustrating the DOTS multithreading
primitives. Figure 6 shows the (simplified) code of a parallel search process with dynamic
problem decomposition.

bool search(SearchDesc search_space) {

while(!search_space.empty()) {

// begin search step
...
if (solution_found)

return true;
...
// end search step

if (dots_task_queue_length() < SPLIT_THRESHOLD) {
// split search space and spawn new thread
SearchDesc new_search_space = split(search_space);
dots_hyperfork(search, new_search_space);

}
}

return false;
}

int main(int argc, char* argv[]) {
dots_reg(search); dots_init(argc, argv);

// read in description of search space
SearchDesc search_space; read(search_space);

DOTS_Thread_Group thread_group;
dots_fork(thread_group, search, search_space);

// dots_join returns 0 if no more threads
// are available
bool solution;
while (dots_join(thread_group, solution) > 0)

if (solution==true)
break;

if (solution) {
printf("solution found");
dots_cancel(thread_group);

} else
printf("no solution found");

return 0;
}

Fig. 6. Parallel Search with Dynamic Problem Decomposition Employing Strict Multithreading

The parallel search starts with one search thread which is forked by the main thread.
Initially, this search thread has the whole search space assigned. For load balancing,
new search threads are (dynamically) spawned. Each additional search thread receives
a part of the search space of its parent. New threads are created during the initial phase
of the parallel search in order to assign work to all available processors and every time
a processor runs out of work when it has completed the execution of a thread. Typically,
newly created threads will be assigned to a processer by a receiver initiated strategy
which is transparently provided by a built-in DOTS load distribution component. In
order to provide enough work that can be transferred to other nodes, new search threads
are created when the length of the local task queue falls below a predefined limit.

Since all additional search threads are spawned using dots hyperfork their results
need not to be joined by their parents but are directly passed to the main thread resulting
in a strict computation. In many search problems, the size of the individual search threads
cannot be predicted. The resulting non-determinism is handled by the join-any semantics
of the dots join primitive. The strict multithreading execution model decouples parent
and child threads, leading to a smaller number of active threads. A search thread can
complete its execution without prior synchronization with results of its descendants.
Moreover, dynamic search space splitting can be carried out in a distributed manner.
This enhances the scalability of the search process, compared to an alternative approach,
where the master thread is also responsible for performing search space splits and creating
corresponding search threads.
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4 Related Work

In the last decade, many parallel system environments which are able to support (dis-
tributed) multithreaded computations in some way have been developed. In this section
we carry out a classification of the more relevant of these approaches into three categories
focusing on the programming models which they provide.

4.1 Shared Memory Multithreading Based on Distributed Shared Memory
(DSM)

The central theme of approaches to multithreading that fall into this category is to support
the shared memory multithreading programming model, e.g. provided by many modern
operating systems, on parallel architectures with distributed memory as transparently as
possible. Examples of DSM multithreading systems are DSM-Threads [18], Millipede
[16] or DSM-PM2 [2].

Since there are no restrictions for carrying out communication between threads in the
shared memory model, even general multithreaded computations can be realized with
the system environments belonging into this category. But the APIs of these platforms
have always to be located on a comparably low-level of abstraction, so the formulation
of structured multithreaded computations, like the strict ones, in principle cannot lead
to equally structured and compact multithreaded programs.

Additionally, due to the consistency problems caused by the replication of shared
data objects, all approaches to DSM multithreading have to cope with the problem
of combining efficiency and programmability (transparency) on large scale distributed
(heterogeneous) parallel machines. Up to now, no sufficient solutions for this problem
domain exist [22].

For applications that do not further profit from DSM, using DOTS can ensure the
efficient applicability in larger scale heterogeneous distributed systems and at the same
time enabling rapid application development using its high level API for multithreading.

4.2 HPC Middleware for Integrating Communication and Multithreading

The system platforms discussed in this section pursue the tight integration of commu-
nication and multithreading. However, the main intention of their parallel programming
models is not to carry out communication transparently, resulting in a lower level of
abstraction. Typical representatives are Nexus [15], Panda [20] or Athapascan-0 [11].

These system platforms are primarily designed to be used as compiler targets or
as middleware for building higher-level parallel system platforms. Due to their general
nature, general multithreading can be realized with all of these platforms but commu-
nication is not transparent on the application programming level. Using such low level
programming models can lead to artificially complex programs of well structured com-
putations like strict computations.
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4.3 Platforms Supporting the Fork/Join Multithreading Programming Model

Systems in this category are the most similar to DOTS; they support distributed multi-
threading by providing a fork/join like API. This approach to distributed multithreading
carries out communication completely transparently by using argument-result seman-
tics. However, communication between the threads of a computation is restricted to
specific points during the execution of a thread.

DTS [12] (which is the predecessor of DOTS) realizes asynchronous remote proce-
dure calls in C and Fortran. No support for object-oriented programming is provided in
DTS and its deployment is limited to distributed systems composed of UNIX nodes.

Cilk [19] is a language for multithreaded parallel programming that represents a
superset of ANSI C. It uses pre-compilation techniques for static code instrumentation
in order to support the Cilk runtime system. There exists a prototype implementation of
a distributed version of Cilk, called distributed Cilk [14] that spans clusters of SMPs.

The current version of the Cilk language features a very compact and easy to use set
of parallel keywords, but no support for strict multithreaded computations is included.
DOTS is library based and therefore avoids typical problems of systems that extend stan-
dard languages like the lack of standard development tools (e.g. debuggers). Moreover,
DOTS is based on C++ and supports object-oriented programming. Since distributed
Cilk is currently available only on a few platforms, its usability in highly heterogeneous
distributed environments is limited.

Virtual Data Space (VDS) [13] is a load balancing system for irregular applications
also supporting strict multithreading. In contrast to DOTS the VDS API for strict com-
putations is very complex. For example, the VDS Fibonacci program presented in [13]
needs about double the number of lines of code than an equivalent DOTS program of
the same functionality.

VDS is implemented in C and therefore provides no direct support for object-oriented
programming and it is not available for a wider range of common platforms, resulting
in limited support for heterogeneous high performance computing.

5 Conclusion

In this paper we presented an API for building parallel programs based on the mul-
tithreading parallel programming model. Our approach is distinguished from related
work by supporting the comprehensive class of strict multithreaded computations while
at the same time keeping the API compact and and easy to use by completely orthog-
onal primitives . Additionally, the API includes primitives for efficiently dealing with
non-determinism occurring in highly irregular computations.
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[7] Blochinger, W., Sinz, C., and Küchlin, W. Parallel propositional satisfiability checking
with distributed dynamic learning. J. Parallel Computing (2003). To appear.

[8] Blumofe, R. D., and Leiserson, C. E. Space efficient scheduling of multithreaded com-
putations. In Proc. of the Twenty Fifth Annual ACM Symp. on Theory of Computing (San
Diego, CA, May 1993), pp. 362–371.

[9] Blumofe, R. D., and Leiserson, C. E. Scheduling multithreaded computations by work
stealing. In 35th Annual Symp. on Foundations of Computer Science (FOCS ’94) (Mexico,
November 1994), pp. 356–368.

[10] Blumofe, R. D., and Leiserson, C. E. Space-efficient scheduling of multithreaded com-
putations. SIAM Journal Computing 27, 1 (Feb 1998), 202–229.

[11] Briat, J., Ginzburg, I., Pasin, M., and Plateau, B. Athapascan runtime : Efficiency
for irregular problems. In Proc. of the Europar’97 Conference (Passau, Germany, August
1997), Springer Verlag, pp. 590–599.
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