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Abstract. Grid systems connect high-performance servers via the
Internet and make them available to application programmers. This pa-
per addresses the challenge of software development for Grids, by means
of reusable algorithmic patterns called skeletons. Skeletons are generic
program components, which are customizable for a particular applica-
tion and can be executed remotely on high-performance Grid servers.
We present an exemplary repository of skeletons and show how a partic-
ular application, FFT (Fast Fourier Transform), can be expressed using
skeletons and then executed using RMI (Remote Method Invocation).
We describe a prototypical Java-based Grid system, present its optimized
RMI mechanism, and report experimental results for the FFT example.

1 Introduction

Grid systems connect high-performance computational servers via the Internet
and make them available to application programmers. While the enabling infra-
structures for Grid computing are fairly well developed [1], initial experience
has shown that entirely new approaches are required for Grid programming [2].
A particular challenge is the phase of algorithm design: since the type and con-
figuration of the servers on which the program will be executed is not known in
advance, it is difficult to make the right design decisions, to perform program
optimizations and estimate their impact on performance.

We propose to address Grid programming by providing the application
programmers with two kinds of software components on the server side: (1) tra-
ditional library functions, and (2) reusable, high-level patterns, called skeletons.
Skeletons are generic algorithmic components, customizable for particular appli-
cations by means of their functional parameters. Time-intensive skeleton calls are
executed remotely on high-performance Grid servers, where architecture-tuned,
efficient parallel implementations of the skeletons are provided.

The contributions and organization of the paper are as follows: We present
the structure of our Grid system based on Java and RMI and explain the advan-
tages of skeletons on the Grid (Sect. 2). We introduce a repository of skeletons
for expressing parallel and distributed aspects of Grid applications (Sect. 2.1),
discuss the inefficiency of standard Java RMI on the Grid and propose using
future-based RMI (Sect. 2.2). We show how a mathematical specification of
FFT is expressed using our skeletons, develop a skeleton-based Java program
and report experimental performance results for it (Sect. 3). We conclude by
discussing our results in the context of related work.
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2 Our Grid Prototype

Our prototypical Grid environment (Fig. 1) consists of two university LANs – one
at the Technical University of Berlin and the other at the University of Erlangen.
They are connected by the German academic internet backbone (WiN), covering
a distance of approx. 500 km. There are three high-performance servers in our
Grid: a shared-memory multiprocessor SunFire 6800, a MIMD supercomputer
of type Cray T3E, and a Linux cluster with SCI network. Application program-
mers work from clients (PCs and workstations). A central entity called “lookup
service” is used for resource discovery. The reader is referred to [3] for details of
the system architecture and the issues of resource discovery and management.

ServersInternetClients

Cray T3E

Linux Cluster

Lookup Service

Shared Network Links
WAN

SunFire 6800
a=skeleton1();
b=skeleton2();
c=localMethod(b);
d=skeleton3(a,c);
...
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Fig. 1. System architecture and interaction of its parts

We propose developing application programs for such Grid systems using a
set of reusable, generic components, called skeletons. As shown in the figure, a
program on a client is expressed as a sequential composition of skeleton calls
and local calls. The servers in the Grid provide architecture-tuned implemen-
tations of the skeletons: multithreaded, MPI-based, etc. Applications composed
of skeletons can thus be assigned for execution to particular servers in the Grid
with a view to achieving better performance.

Time-intensive skeleton calls are executed remotely on servers which provide
implementations for the corresponding skeleton (arrow 1©in the figure). If two
subsequent skeleton calls are executed on different servers, then the result of the
first call must be communicated as one of inputs for the second call (arrow 2©).
This situation is called composition of skeletons.
Using skeletons for programming on the Grid has the following advantages:
– Skeletons’ implementations on the server side are usually highly efficient

because they can be carefully tuned to the particular server architecture.
– The once-developed, provably correct implementation of a skeleton on a

particular server can be reused by different applications.
– Skeletons hide the details about the executing hardware and the server’s

communication topology from the application programmer.
– Skeletons provide a reliable model for performance prediction, providing a

sound information base for selecting servers.
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2.1 A Repository of Skeletons

In the following, we describe a (by no means exhaustive) collection of skeletons.
Since at least some of the skeletons’ parameters are functions, skeletons can be
formally viewed as higher-order functions. In practice, functional parameters are
provided as program codes, in our system as Java bytecodes.

We begin our presentation with simple skeletons that express data parallelism:

Map: Apply a unary function f to all elements of a list:
map(f, [x1, . . . , xn]) = [f(x1), . . . , f(xn)]

Scan: Compute prefix sums of a list by traversing the list from left to right and
applying a binary associative operator ⊕:
scan(⊕, [x1, . . . , xn]) = [x1, (x1⊕ x2), . . . , (· · ·(x1⊕ x2)⊕ x3)⊕· · ·⊕ xn) ]

A more complex data-parallel skeleton, DH (Distributable Homomorphism) [4],
expresses a divide-and-conquer pattern with parameter operators ⊕ and ⊗:

DH: Formally, dh(⊕,⊗, x) transforms a list x = [x1, . . . , xn] of size 2l into a
result list y = [y1, . . . , yn], whose elements are computed as follows:

yi =
{

ui ⊕ vi, if i ≤ n/2
ui−n/2 ⊗ vi−n/2, otherwise (1)

where u = dh(⊕,⊗, [x1, . . . , xn/2]) and v = dh(⊕,⊗, [xn/2+1, . . . , xn]).

In addition to these data-parallel skeletons, we provide two auxiliary skeletons,
whose aim is efficient communication between client and server:

Replicate: Create a new list containing n times element x: repl(x, n) =
[x, . . . , x]. The repl skeleton can be called remotely on a server to create
there a list of n identical elements, instead of sending the whole list over the
network.

Apply: Applies a unary function f to a parameter x: apply(f, x) = f(x).
The apply skeleton is used to remotely execute a function f by shipping its
code to the server, rather than moving the data to the client, executing the
function locally and then sending the result to the server again.

Our skeleton-based Grid programmimg environment for the system shown in
Fig. 1 is built on top of Java and RMI. We chose the Java platform mostly for
reasons of portability (see [5] for “10 reasons to use Java in Grid computing”).

In the system, skeletons are offered as Java (remote) interfaces, which can be
implemented in different ways on different servers. To be as flexible as possible,
all skeletons operate on Objects or arrays of Object. For example, the interface
for the scan skeleton contains a single method

public Object [] invoke(Object [], BinOp oplus);

To use the scan skeleton, the client first finds a server for execution, using the
lookup service (see [3] for details). After obtaining an RMI reference to the scan
implementation on the server, the skeleton is executed via RMI by calling the
invoke method with appropriate parameters.
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2.2 Future-Based RMI for the Grid

Using the RMI mechanism in Grid programs has the important advantage that
the outsourcing of skeleton calls to remote servers is transparent for the program-
mer: remote calls are coded in exactly the same way as local calls. However, since
the RMI mechanism was developed for client-server systems, it is not optimal
for the Grid. We illustrate this using the following example: a composition of
two skeleton calls, with the result of the first call being used as an argument of
the second call (skeleton1 and skeleton2 are remote references):

result1 = skeleton1.invoke (...);
result2 = skeleton2.invoke(result1 ,...);

Executing such a composition of methods using standard RMI, the result of
a remote method invocation is always sent back directly to the client. This is
exemplified for the above example in Fig. 2 (left). When skeleton1 is invoked
( 1©), the result is sent back to the client ( 2©), then to skeleton2 ( 3©). Finally,
the result is sent back to the client ( 4©). For typical applications consisting of
many composed skeletons, this feature of RMI results in very high time overhead.

Server1

Server2

Client

2

4

3

1

Client

Server2

Server1

3

6

4
5

21

Fig. 2. Skeleton composition using plain RMI (left) and future-based RMI (right)

To eliminate this overhead, we have developed so-called future-based RMI :
an invocation of a skeleton on a server initiates the skeleton’s execution and then
returns immediately, without waiting for the skeleton’s completion (see Fig. 2,
right). As a result of the skeleton call, a future reference is returned to the client
( 2©) and can be used as a parameter for invoking the next skeleton ( 3©). When
the future reference is dereferenced ( 4©), the dereferencing thread on the server
is blocked until the result is available, i. e. the first skeleton actually completes.
The result is then sent directly to the server dereferencing the future reference
( 5©). After completion of skeleton2, the result is sent to the client ( 6©).

Compared with plain RMI, our future-based mechanism substantially reduces
the amount of data sent over the network, because only a reference to the data is
sent to the client; the result itself is communicated directly between the servers.
Moreover, communications and computations overlap, effectively hiding latencies
of remote calls. We have implemented future-based RMI on top of SUN Java RMI
and report experimental results in Sect. 3.3. (see [6] for further details).

Future references are available to the user through a special Java interface
RemoteReference. There are only few differences when using future-based RMI
compared with the use of plain RMI: (1) instead of Objects, all skeletons return
values of type RemoteReference, and (2) skeletons’ interfaces are extended by
invoke methods, accepting RemoteReferences as parameters.
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3 Case Study: Programming FFT Using Skeletons

By way of an example application, we consider the Fast Fourier Transformation
(FFT). The FFT of a list x = [x0, . . . , xn−1] of length n = 2l yields a list whose
i-th element is defined as (FFT x)i =

∑n−1
k=0 xkωki

n , where ωn denotes the n-th
complex root of unity, i. e. ωn = e2π

√−1/n.

3.1 Expressing FFT with Skeletons

We now outline how the FFT can be expressed as a composition of skeletons (see
[4] for details). The FFT can be written in divide-and-conquer form as follows,
where u = [x0, x2, . . . , xn−2] and v = [x1, x3, . . . , xn−1]:

(FFTx)i =
{

(FFTu)i ⊕̂i,n (FFTv)i if i < n/2
(FFTu)i−n/2 ⊗̂i−n/2,n (FFTv)i−n/2 else (2)

where a ⊕̂j,m b = a + ωj
mb , and a ⊗̂j,m b = a − ωj

mb .
The formulation (2) is close to the dh skeleton format from Sect. 2.1, except

for ⊕̂ and ⊗̂ being parameterized with the position i of the list element and the
length n of the input list. Therefore we express the FFT as instance of the dh
skeleton, applied to a list of triples (xi, i, n), with operator ⊕ defined on triples as
(x1, i1, n1)⊕ (x2, i2, n2) = (x1 ⊕̂i1,n1 x2, i1, 2n1). Operator ⊗ is defined similarly.

Computing FFT using skeletons: As skeletons are higher-order functions, we
first provide a functional program for FFT, which is then transformed to Java in
a straightforward manner. The FFT function on an input list x can be expressed
using skeletons by transforming the input list into a list of triples, applying the
dh skeleton and finally taking the first elements of the triples for the result list:

FFT = map(π1) ◦ dh (⊕,⊗) ◦ apply(triple)

where triple is a user-defined function that transforms a list [x1, . . . , xn] to
the list of triples [(x1, 1, 1), . . . , (xi, i, 1), . . . , (xn, n, 1)], and ◦ denotes function
composition from right to left, i. e. (f ◦ g) (x) = f(g(x)).

Both operators ⊕̂ and ⊗̂ in (2) repeatedly compute the roots of unity ωi
n.

Instead of computing these for every call, they can be computed once a priori and
stored in a list Ω = [ω1

n, . . . , ω
n/2
n ], accessible by both operators, thus reducing

computations. Using the relation ωm = ω
n/m
n , the computation of ωi

m in ⊕̂/⊗̂
can be replaced with π(ni/m, Ω), where π(k, Ω) selects the k-th entry of Ω.
Therefore, ⊕̂ can be expressed as a ⊕̂j,m,Ω b = a + π(nj/m, Ω)b . Operator ⊗̂
can be expressed using Ω analogously. Thus, ⊕/⊗ are parameterized with Ω; we
express this by writing ⊕(Ω)/ ⊗ (Ω) in the following.

Now, we can express the computation of Ω using the repl and the scan
skeletons, and arrive at the following skeleton-based program for the FFT:

Ω = scan(∗) ◦ repl(n/2, ωn)
FFT = map(π1) ◦ dh (⊕(Ω),⊗(Ω)) ◦ apply(triple) (3)

where ∗ denotes complex number multiplication.
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3.2 Skeleton-Based Java Program for FFT

The Java code for the FFT, obtained straightforwardly from (3), is as follows:

//repl,scan,map,dh are remote refs to skeletons on servers
// compute roots of unity

RemoteReference r = repl.invoke(length , omega_n );
RemoteReference omegas = scan.invoke(r, new ScanOp ());

// instantiate operators for dh
oplus = new FFTOplus(omegas );
otimes = new FFTOtimes(omegas );

//fft
r = apply.invoke(inputList , new TripleOp ());
r = dh.invoke(oplus, otimes , r);
r = map.invoke(r, new projTriple ());

//get result
result = r.getValue ();

At first, the roots of unity are computed, using the repl and scan skeletons.
Both repl and scan are RMI references to the skeletons’ implementation on a
remote server, obtained from the lookup service. Execution of the skeletons is
started using the invoke methods. Variable OmegaN passed to the repl skeleton
corresponds to ωn and omegas corresponds to Ω. As a binary operator for scan,
complex multiplication is used, implemented in class ComplexMult. The oper-
ators ⊕(Ω) and ⊗(Ω) for the dh-skeleton are instantiated as objects of classes
FFTOplus and FFTOtimes on the client side. The constructor for the parameters
receives the list Ω as an argument. Each operator stores a reference to the list
in a private variable in order to access it later for computations.

Next, the FFT itself is computed in three steps. First the input list is trans-
formed to a list of triples, using the apply skeleton with a user-defined function.
Then the dh-skeleton is called on the list of triples, using the two customizing
operators defined earlier. Finally, the list of result values is retrieved from the
list of triples using the map skeleton with an instance of the user-defined class
projTriple.

In a preliminary step (omitted in the code presented above), the program
obtains from the lookup service a remote reference for each skeleton used in the
program (repl, scan, map and dh). The program is executed on the client side;
all calls to the invoke method of the involved skeletons are executed remotely
on servers via RMI.

3.3 Experimental Results

We measured the performance of the skeleton-based FFT program using the
testbed of Fig. 1. We used a SunFire 6800 with 12 US-III+ 900 MHz processors in
Berlin as our server and an UltraSPARC-IIi 360 MHz as client in Erlangen, both
using SUN’s JDK1.4.1 (HotSpot Client VM in mixed mode). Because there were
several other applications running on the server machine during our experiments,
a maximum of 8 processors was available for measurements.
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Fig. 3 shows the runtimes for different problem sizes (ranging from 215 to 218)
and four different versions of the program: the first running locally on the client
(“local FFT”), second using plain RMI, third version using future-based RMI,
and the fourth version where the FFT is executed as a single server sided method
called from the client (“ideal remote”). We consider the fourth version as ideal,
as there is no overhead for remote composition of skeletons for that version: it
corresponds to copying the whole program to the server and executing it there.
For the plain RMI version, only the scan and dh skeletons are executed on the
server, because all parameters and results are transmitted between client and
server for each method call using plain RMI, so that executing the repl , apply
and map skeleton remotely would slow down the program unnecessarily. For the
future-based RMI version, all skeletons are executed on the server.
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Fig. 3. Measured runtimes for the FFT programs

The figure shows ten measurements for each program version, with the aver-
age runtimes for each parameter size connected by lines. The plain RMI version is
much (three to four times) slower than the future-based RMI version and unable
to outperform the local, client sided FFT. Thus, the communication overhead
outweighs the performance gain for execution on the server.

By contrast, the future-based RMI version eliminates most of the overhead
and is three to four times faster than the local version. Compared with the “ideal
remote” case the runtimes are almost identical. For large input lists (217 and 218),
the future-based version is even slightly faster than the remote version. This is
due to the fact, that the future-based version invokes skeletons asynchronously,
so the apply skeleton is already called while the scan skeleton is still running.
Thus, using future-based RMI allows an efficient execution of programs with
compositions of remote methods, in particular compositions of skeletons.

4 Conclusions and Related Work

In this paper, we have addressed the challenging problem of software design for
heterogeneous Grids, using a repository of reusable algorithmic patterns called
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skeletons, that are executed remotely on high-performance Grid servers. While
the use of skeletons in the parallel setting is an active research area, their appli-
cation for the Grid is a new, intriguing problem.

We have described our prototypical Grid system. Java and RMI were chosen
to implement our system in order to obtain a highly portable solution. Other pro-
mising opportunities include, e. g. the Lithium system [7] for executing mainly
task-parallel skeletons in Java. We have proposed a novel, future-based RMI
mechanism, which substantially reduces communication overhead for compositi-
ons of skeleton calls. It differs from comparable approaches because it combines
hiding network latencies using asynchronous methods (as in [8,9]) and reducing
network dataflow by allowing server/server communication (e. g. found in [10]).

We have proposed an exemplary (and by no means exhaustive) repository of
skeletons, which includes several elementary data-parallel functions, the divide-
and-conquer skeleton DH, and two auxiliary skeletons which are helpful in a
Grid environment. We have demonstrated how a mathematical description of
FFT (Fast Fourier Transform) can be expressed using our skeletons, leading to
an efficient Java program with remote calls for skeletons.

At present, each skeleton call is executed on a single Grid node. We plan
to allow distribution of skeletons across several nodes in the future, at least for
task-parallel and simple data-parallel skeletons.
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