
c-Perfect Hashing Schemes for Binary Trees,
with Applications to Parallel Memories

(Extended Abstract)

Gennaro Cordasco1, Alberto Negro1, Vittorio Scarano1, and
Arnold L. Rosenberg2

1 Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”,
Università di Salerno, 84081, Baronissi (SA) – Italy

{alberto,vitsca,cordasco}@dia.unisa.it
2 Dept. of Computer Science,

University of Massachusetts Amherst
Amherst, MA 01003, USA
rsnbrg@cs.umass.edu

Abstract. We study the problem of mapping tree-structured data to an
ensemble of parallel memory modules. We are given a “conflict tolerance”
c, and we seek the smallest ensemble that will allow us to store any n-
vertex rooted binary tree with no more than c tree-vertices stored on the
same module. Our attack on this problem abstracts it to a search for the
smallest c-perfect universal graph for complete binary trees. We construct
such a graph which witnesses that only O

(
c(1−1/c) · 2(n+1)/(c+1)

)
mem-

ory modules are needed to obtain the required bound on conflicts, and
we prove that Ω

(
2(n+1)/(c+1)

)
memory modules are necessary. These

bounds are tight to within constant factors when c is fixed—as it is with
the motivating application.

1 Introduction

Motivation. This paper studies the efficient mapping of data structures onto a
parallel memory system (PMS, for short) which is composed of several modules
that can be accessed simultaneously (by the processors of, say, a multiprocessor
system). Mapping a data structure onto a PMS poses a challenge to an algo-
rithm designer, because such systems typically are single-ported: they queue
up simultaneous accesses to the same memory module, thereby incurring delay.
The effective use of a PMS therefore demands efficient mapping strategies for
the data structures that one wishes to access in parallel—strategies that min-
imize, for each memory access, the delay incurred by this queuing. Obviously,
different mapping strategies are needed for different data structures, as well as
for different ways of accessing the same data structure. As a simple example of
the second point, one would map the vertices of a complete binary tree quite
differently when optimizing access to levels of the tree than when optimizing
access to root-to-leaf paths.

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 911–916, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

912 G. Cordasco et al.

The preceding considerations give rise to the problem studied here. Given
a data structure represented by a graph, and given the kinds of subgraphs one
wants easy access to (called templates), our goal is to design a memory-mapping
strategy for the items of a data structure that minimizes the number of simulta-
neous requests to the same memory module, over all instances of the considered
templates.
Our Results. This paper presents the first strategy for mapping a binary-tree
data structure onto a parallel memory in such a way that any rooted subtree
can be accessed with a bounded number of conflicts. Our results are achieved
by proving a (more general) result, of independent interest, about the sizes of
graphs that are “almost” perfect universal for binary trees, in the sense of [5].
Related Work. Research in this field originated with strategies for mapping
two-dimensional arrays into parallel memories. Several schemes have been pro-
posed [3,4,8,10] in order to offer conflict-free access to several templates, in-
cluding rows, columns, diagonals and submatrices. While the strategies in these
sources provide conflict-free mappings, such was not their primary goal. The
strategies were actually designed to accommodate as many templates as possi-
ble.

Strategies for mapping tree structures considered conflict-free access for one
elementary template—either complete subtrees or root-to-leaf paths or levels
[6,7] or combinations thereof [2], but the only study that even approaches the
universality of our result—i.e., access to any subtree—is the C-template (“C”
for “composite”) of [1], whose instances are combinations of different numbers
of distinct elementary templates. The mapping strategy presented for the C-
templates’ instances of size K, with M memory modules, achieves O(K/M + c)
conflicts.
Background. For any binary tree T : Size (T) is its number of vertices; Size (T, i)
is its number of level-i vertices; Hgt (T) is its height (= number of levels).
For any positive integer c, a c-contraction of a binary tree T is a graph G that
is obtained from T via the following steps.
1. Rename T as G(0). Set k = 0.
2. Pick a set S of ≤ c vertices of G(k) that were vertices of T . Remove these

vertices from G(k), and replace them by a single vertex that represents the
set S. Replace all of the edges of G(k) that were incident to the removed
vertices by edges that are incident to S. The graph so obtained is G(k+1).

3. Iterate step 2 some number of times.

A graph Gn = (Vn, En) is c-perfect-universal for the family Tn of n-vertex
binary trees if every c-contraction of an n-vertex binary tree is a labeled-subgraph
of Gn. By this we mean the following. Given any c-contraction G(a) = (V, E) of
an n-vertex binary tree T , the fact that G(a) is a subgraph of Gn is observable
via a mapping f : V → Vn for which each v ∈ V is a subset of f(V).

The simplest 1-perfect-universal graph for the family Tn is the height-n com-
plete binary tree, T n, which is defined by the property of having all root-to-leaf
paths of common length Hgt (T n) = n. The perfect-universality of T n is wit-
nessed by the identity map f of the vertices of any n-vertex binary tree to the

c-Perfect Hashing Schemes for Binary Trees 913

vertices of T n. Of course, T n is a rather inefficient perfect-universal graph for
Tn, since it has 2n − 1 vertices, whereas each tree in Tn has only n vertices. It
is natural to ponder how much smaller a 1-perfect-universal graph for Tn can
be. The size—in number of vertices—of the smallest such graph is called the
perfection number of Tn and is denoted Perf(Tn). In [5], Perf(Tn) is determined
exactly, via coincident lower and upper bounds.

Theorem 1 ([5]) Perf(Tn) = (3 − (n mod 2)) 2�(n−1)/2� − 1.

In this paper, we generalize the study of storage mappings for trees in [5]
by allowing boundedly many collisions in storage mappings. We thus relax the
“one to one” demands of perfect hashing to “boundedly many to one.”

2 Close Bounds on Perfc(Tn)

Our study generalizes Theorem 1 to c-perfect-universality, by defining Perfc(Tn),
for any positive integer c, to be the size of the smallest c-perfect-universal graph
for Tn; in particular, Perf1(Tn) = Perf(Tn).

We first derive our upper bound on Perfc(Tn) by explicitly constructing a
graph Gc that is c-perfect-universal for Tn.

Theorem 2 For all integers n and c > 1,

Perfc(Tn) <
(
2 + 2c1−1/c

)
2(n+1)/(c+1) + O(n). (1)

We construct our c-perfect-universal graph Gc via an algorithm Ac that
colors the vertices of T n in such a way that the natural vertex-label-preserving
embedding of any n-vertex tree T into T n (which witnesses T ’s being a subgraph
of T n) never uses more than c vertices of any given color as homes for T ’s vertices.
When we identify each like-colored set of vertices of T n—i.e., contract each set
to a single vertex in the obvious way—we obtain the c-perfect-universal graph
Gc, whose size is clearly an upper bound on Perfc(Tn).

Algorithm Ac proceeds in a left-to-right pass along each level of T n in turn,
assigning a unique set of colors, Ci, to the vertices of each level i, in a round-
robin fashion. Ac thereby distributes the 2i level-i vertices of T n equally among
the |Ci| level-i vertices of Gc. Clearly, thus, Size (Gc) =

∑
i |Ci|.

The remainder of the section is devoted to estimating how big the sets Ci

must be in order for Gc to be c-perfect-universal for Tn.

Auxiliary results. We begin by identifying some special subtrees of T n. Let
m and i be integers such that1 �logm	 ≤ i ≤ n, and let x be a binary string of
length i − �logm	. Consider the subtree T(i,m)(x) of T n constructed as follows.

1. Generate a length-(i − �logm) path from the root of T n to vertex x.
1 All logarithms are to the base 2.

914 G. Cordasco et al.

2. Generate the smallest complete subtree rooted at x that has at least m
leaves; easily, this subtree—call it T (x)—has height �logm	.

3. Finally, prune the tree so constructed, removing all vertices and edges other
than those needed to incorporate the leftmost m leaves.

Easily, every tree T(i,m) has exactly m leaves, all of length i.

Lemma 1. The trees T(i,m) are the smallest rooted subtrees of T n that have m
leaves at level i.

Proof. (Sketch) For any level j of any binary tree T , we have Size (T, j − 1) ≥⌈ 1
2Size (T, j)

⌉
. One verifies easily from our construction that the trees T(i,m)

achieve this bound with equality.

Lemma 2. For all i and m,

2m + i − �logm� − 1 ≤ Size
(
T(i,m)

) ≤ 2m + i − 1. (2)

Proof. (Sketch) We merely sum the sizes of the complete subtree on T (x), plus
the size of the various paths needed to “capture” them. Thus we have

Size
(
T(i,m)

)
= (i − hpm−1 + 1) + 2m − pm (3)

where pm is the number of complete subtree on T (x) and hpm−1 is the height
of the smallest complete subtree on T (x). We obtain the bound of the lemma
from the exact, but nonperspicuous, expression (3), from the facts that there is
at least one 1 in the binary representation of m and that pm ≥ 1.

Let us now number the vertices at each level of T n from left to right and
say that the distance between any two such vertices is the magnitude of the
difference of their numbers.

Lemma 3. For any integers 0 ≤ i ≤ n and 0 ≤ δi < i, the size of the smallest
rooted subtree of T n that has m leaves at level i of T n, each at distance ≥ 2δi

from the others, is no smaller than Size
(
T(i,m)

)
+ (m − 1)δi.

Proof. If two vertices on level i are distance ≥ 2δi apart, then their least common
ancestor in T n must be at some level ≤ i − (δi + 1). It follows that the smallest
rooted subtree T of T n that satisfies the premises of the lemma must consist of
a copy of some T(i−δi,m), with m leaves at level i − δi, plus m vertex-disjoint
paths (like “tentacles”) from that level down through each of the δi levels i −
δi + 1, i − δi + 2, . . . , i of T n. Equation (3) therefore yields:

Size (T) ≥ mδi + Size
(
T(i−δi,m)

)
= (m − 1)δi + Size

(
T(i,m)

)
.

The upper bound proof. We propose, in the next two lemmas, two coloring
schemes for Ac, each inefficient on its own (in the sense that neither yields an
upper bound on Perfc(Tn) that comes close to matching our lower bound), but
which combine to yield an efficient coloring scheme. We leave to the reader the
simple proof of the following Lemma.

c-Perfect Hashing Schemes for Binary Trees 915

Lemma 4. Let T n be colored by algorithm Ac using 2δi colors at each level i.
If each

2δi ≥ κi
def= �2i/c	,

then any rooted n-vertex subtree of T n engenders at most c collisions.

Lemma 5. Let T n be colored by algorithm Ac using 2δi colors at each level i.
If each2

2δi ≥ λi
def=

1
4

exp2
(⌈

n + log(c + 1) − i

c

⌉)
, (4)

then any rooted n-vertex subtree of T n engenders at most c collisions.

Proof. We consider a shallowest tree T that engenders c+1 collisions at level i of
T n. Easily, the offending tree T has c+1 leaves from level i of T n. By the design
of Algorithm Ac, these leaves must be at distance 2δi from one another. We can,
therefore, combine Lemma 3, the lower bound of (2) (both with m = c+1), and
(4) to bound from below the size of the offending tree T .

Size (T) ≥ Size
(
T(i,c+1)

)
+ cδi

≥ 2(c + 1) + i − �log(c + 1)� − 1 + c

⌈
n − 2c + log(c + 1) − i

c

⌉
≥ n + 1.

Since we care only about (≤ n)-vertex subtrees of T n, the lemma follows.

A bit of analysis verifies that the respective strengths and weaknesses of
the coloring schemes of Lemmas 4 and 5 are mutually complementary. This
complementarity suggests the ploy of using the κi-scheme to color the “top”
of T n and the λi-scheme to color the “bottom.” A natural place to divide the
“top” of T n from the “bottom” would be at a level i where κi ≈ λi. Using this

intuition, we choose level i�
def=

⌈
n − c + 1

c + 1
+ log c

⌉
to be the first level of

the “bottom” of T n. (Since c ≤ n, trivial calculations show that n > i�.) Using
our hybrid coloring scheme, then, we end up with a c-perfect-universal graph

Gc such that Size (Gc) =
i�−1∑
j=0

κj +
n−1∑
k=i�

λk. Evaluating the two summations

in turn, we find the following, under the assumption that c > 1 (since the case
c = 1 is dealt with definitively in [5]; see Theorem 1).

i�−1∑
j=0

κj =
i�−1∑
j=0

�2j/c	 ≤
i�−1∑
j=0

(2j/c + 1) =
1
c

2i�

+ i� − 1
c

≤ 1
c

exp2
(⌈

n − c + 1
c + 1

+ log c

⌉)
+ O(n) < 2 · 2(n+1)/(c+1) + O(n)(5)

2 To enhance the legibility of powers of 2 with complicated exponents, we often write
exp2(X) for 2X .

916 G. Cordasco et al.

n−1∑
k=i�

λk =
n−1∑
k=i�

exp2
(⌈

n + log(c + 1) − k

c

⌉
− 2

)
<

(c + 1)1/c

2
·

n−1∑
k=i�

2(n−k)/c

< 2
i�+c−1∑

k=i�

2(n−k)/c ≤ 2c · exp2
(

n

c
−

(
n − c + 1
c(c + 1)

+
log c

c

))

< 2 c1−1/c · 2(n+1)/(c+1). (6)

The bounds (5, 6) yield the claimed upper bound (1) on Perfc(Tn).

Because of space limitations, we defer the proof of the following lower bound
to the complete version of this paper.

Theorem 3 For all c > 1 and all n,

Perfc(Tn) > exp2
(⌊

n + 1
c + 1

− 11
3

⌋)
.

Acknowledgment. The research of A.L. Rosenberg was supported in part by
US NSF Grant CCR-00-73401.

References

1. V. Auletta, S. Das, A. De Vivo, M.C. Pinotti, V. Scarano, “Optimal tree ac-
cess by elementary and composite templates in parallel memory systems”. IEEE
Trans. Parallel and Distr. Systs., 13, 2002.

2. V. Auletta, A. De Vivo, V. Scarano, “Multiple Template Access of Trees in Parallel
Memory Systems”. J. Parallel and Distributed Computing 49, 1998, 22–39.

3. P.Budnik, D.J. Kuck. “The organization and use of parallel memories”. IEEE Trans
Comput., C-20, 1971, 1566–1569.

4. C.J.Colbourn, K.Heinrich. “Conflict-free access to parallel memories”. J. Parallel
and Distributed Computing, 14, 1992, 193–200.

5. F.R.K. Chung, A.L. Rosenberg, L. Snyder. “Perfect storage representations for
families of data structures.” SIAM J. Algebr. Discr. Meth., 4, 1983, 548–565.

6. R. Creutzburg, L. Andrews, “Recent results on the parallel access to tree-like data
structures – the isotropic approach”, Proc. Intl. Conf. on Parallel Processing, 1,
1991, pp. 369–372.

7. S.K. Das, F. Sarkar, “Conflict-free data access of arrays and trees in parallel mem-
ory systems”, Proc. 6th IEEE Symp. on Parallel and Distributed Processing, 1994,
pp. 377–383.

8. D.H.Lawrie. “Access and alignment of data in an array processor”. IEEE Trans. on
Computers, C-24, 1975, 1145–1155.

9. R.J. Lipton, A.L. Rosenberg, A.C. Yao, “External hashing schemes for collections
of data structures.” J. ACM, 27, 1980, 81–95.

10. K.Kim, V.K.Prasanna. “Latin Squares for parallel array access”. IEEE Trans. Par-
allel and Distributed Systems, 4, 1993, 361–370.

11. A.L. Rosenberg and L.J. Stockmeyer, “Hashing schemes for extendible arrays.”
J. ACM, 24, 1977, 199–221.

12. A.L. Rosenberg, “On storing ragged arrays by hashing.” Math. Syst. Th., 10,
1976/77, 193–210.

	Introduction
	Close Bounds on $unhbox voidb @x hbox {rm Perf}_c(unhbox voidb @x hbox {bf T}_n)$

