
Dynamic Streams for Efficient Communications
between Migrating Processes in a Cluster

Pascal Gallard and Christine Morin

IRISA/INRIA – PARIS project-team
Pascal.Gallard@irisa.fr
http://www.kerrighed.org

Abstract. This paper presents a communication system designed to
allow efficient process migration in a cluster. The proposed system is
generic enough to allow the migration of any kind of stream: socket,
pipe, char devices. Communicating processes using IP or Unix sockets
are transparently migrated with our mechanisms and they can still effi-
ciently communicate after migration. The designed communication sys-
tem is implemented as part of Kerrighed, a single system image operating
system for a cluster based on Linux. Preliminary performance results are
presented.

1 Introduction

Clusters are now more and more widely used as an alternative to parallel com-
puters as their low price and the performance of micro-processors make them
really attractive for the execution of scientific applications or as data servers.

A parallel application is executed on a cluster as a set of processes which are
spread among the cluster nodes. In such applications, processes may communi-
cate and exchange data with each other. In a traditional Unix operating system,
communication tools can be streams like pipe or socket for example. For load-
balancing purpose, a process may be migrated from one node to another node.
If this process communicates, special tools must be used in order to allow high
performance communication after the migration.

This paper presents a new communication layer for efficient migration of
communicating processes. The design of this communication layer assumes that
processes migrate inside the cluster and do not communicate with processes
running outside the cluster. In the Kerrighed operating system [5], depending
on the load-balancing policy, processes may migrate at any time.

The remainder of this paper is organized as follows. Sect. 3 describes the
dynamic stream service providing the dynamic stream abstraction and Kerrighed
sockets. Sect. 4 shows how the dynamic stream service can be used to implement
distributed Unix sockets. Sect. 5 presents performance results obtained with
Kerrighed prototype. Conclusions and future works are presented in Sect. 6.

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 930–937, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Dynamic Streams for Efficient Communications between Migrating Processes 931

2 Background

The problem of migrating a communicating process is difficult and this explains
why several systems, such as Condor [4], provide process migration only for non
communicating processes.

The MOSIX[1] system uses deputy mechanisms in order to allow the migra-
tion of a communicating process. When a process migrates (from a home-node
to a host-node), a link is created between this process and the deputy. Every
communication from/to this process is transmitted to the deputy that acts as
the process. In this way, migrated processes are not able to communicate directly
with other processes and thus communication performance decreases after a mi-
gration. The Sprite Network operating system[3] uses similar mechanisms in
order to forward kernel calls whose results are machine-dependent.

Several works like MPVM[2] or Cocheck[9] allow the migration of processes
communicating by message passing. However, these middle-wares are not trans-
parent for applications. Mobile-TCP[7] provides a migration mechanism in the
TCP protocol layer using a virtual port linked to the real TCP socket. Mobility
is one of the main features of IPv6[6] but communications can migrate only if
the IP address migrates. In this case, one process must be attached to one IP
address and each host must have several IP addresses (one for each running com-
municating process). Even in this case, only one kind of communication tools
(inet sockets) can migrate. Another case of communication migration is detailed
in M-TCP [11] where a running client, outside of the cluster, can communicate
with a server through an access point. If processes on servers migrate, access
points can hide the communication changes.

None of these proposals offer a generic and efficient mechanism for migrating
streams in a cluster allowing a migrating process to use all standard communi-
cation tools of a Unix system.

We want to avoid message forwarding between cluster nodes when processes
migrate. We propose a generic approach in order to provide standard local com-
munication tools like pipe, socket and char -devices compliant with process
migration (decided for load-balancing reasons or due to configuration changes in
the cluster – addition/eviction of nodes). This approach has been implemented as
part of Kerrighed project at the operating system level and in this way provides
full migration transparency to communicating applications.

3 Dynamic Streams

Our work aims at providing standard communication interfaces such as Unix
sockets or pipes to migrating processes in a cluster. Migrating a process should
not alter the performance of its communications with other processes.

A communication comprises two distinct aspects: the binary stream between
two nodes, and the set of meta-data describing the state of the stream and how
to handle it. Our architecture is based on this idea.

We propose the concept of dynamic stream on which standard communi-
cation interfaces are built. We call the endpoints of these streams as ”KerNet



932 P. Gallard and C. Morin

Sockets” and these can be migrated inside the cluster. Dynamic streams and
KerNet sockets are implemented on top of a portable high performance com-
munication system providing a send/receive interface to transfer data between
different nodes in a cluster.

FIFO LIFODirect

Socket Pipe CharFIFO

Low−level Point−to−Point
communication system

KerNet
Dynamic stream

TCP/IPMyrinetNetdevice

Fig. 1. Kerrighed network stack

The proposed architecture is depicted in Figure 1. Low-level Point-to-Point
(PtP) communication service can be based on device drivers (such as myrinet),
the generic network device in Linux kernel (netdevice) or a high-level communi-
cation protocol (such as TCP/IP). It is reliable and provides messages orders. On
top of the low level point-to-point layer, we provide 3 kinds of dynamic streams:
direct, FIFO and LIFO streams.

We use these dynamic streams, implemented by the KerNet layer to offer
dynamic version of standard Unix stream interfaces (sockets, pipe. . . ). It is a
distributed service which provides global stream management cluster wide. In
the remainder of this paper, we focus on the design and implementation of the
KerNet layer and the Unix socket interface.

3.1 Dynamic Stream Service

We define a KerNet dynamic stream as an abstract stream with two or more
defined KerNet sockets and with no node specified. When needed, a KerNet
socket is temporarily attached to a node. For example, if two KerNet sockets are
attached, send/receive operations can occur.

A KerNet dynamic stream is mainly defined by several parameters:

– Type of stream: it specifies how data is transfered using the dynamic
stream. A stream can be:

• DIRECT for one to one communication,
• FIFO or LIFO for stream with several readers and writers.

– Number of sockets: number of existing sockets in the stream
– Number of connected sockets: it specifies the current number of attached

sockets.
– Data filter: it allows modification of all data transmitted with the stream

(in order to have cryptography, backup. . . ).

Streams are managed by a set of stream managers, one executing on each
cluster node. Kernel data structures related to dynamic streams are kept in a
global directory which is distributed on cluster nodes.



Dynamic Streams for Efficient Communications between Migrating Processes 933

3.2 KerNet Sockets

The KerNet service provides a simple interface to allow upper software layers
implementing standard communication interface to manage KerNet sockets:

– create/destroy a stream,
– attach: to get an available KerNet socket (if possible),
– suspend: to unattach temporarily a socket (and to give an handle in order

to be able to reclaim the KerNet socket later),
– wakeup: to attach a previously unattach KerNet socket,
– unattach: to release an attached KerNet socket,
– wait: to wait for the stream to be ready to be used (all required attachments

completed).

KerNet provides two other functions (send, recv) for I/O operations.
The dynamic stream service is in charge of allocating KerNet sockets when

it is needed, and of keeping track of these KerNet sockets. When the state of
one KerNet socket changes, the stream’s manager takes part in this change and
updates the other KerNet sockets related to the stream. With this mechanism,
each KerNet socket has got the address of each corresponding socket’s node. In
this way, two sockets can always communicate in the most efficient way.

At the end of a connection, a process is unattached from the stream. De-
pending on the stream type, the stream may be closed.

3.3 Example of Utilization of the KerNet API in the OS

Let us consider two kernel processes (P1 and P2 ) communicating with each
other using a dynamic stream. They execute the following program:

Process P1 Process P2
(1) stream = create(DIRECT, 2);
(2) socket1 = attach(stream); socket2 = attach(stream);
(3) wait(stream); wait(stream);
(4) ch = recv(socket1); send(socket2, ch);
(5) sec2 = suspend(socket2);

Process P3
(6) socket3 = wakeup(stream, sec2);
(7) send(socket1, ch); ch = recv(socket3);

Initialization of a KerNet stream: P1 creates the stream and requests a
KerNet socket. Next P1 wait for its stream to be ready, that is to say the two
sockets to be attached. Assuming P2 is running after the stream creation and
has the stream identifier, it can get a KerNet socket, and then, wait for the
correct state of the stream. The stream’s manager sends the acknowledgement
to all waiting KerNet sockets and provides the physical address of the other
socket. With such information, KerNet sockets can communicate directly and
send/receive communication can occur efficiently.

Migrating process using KerNet streams: If a process wants to migrate (or
transfers its KerNet sockets to another process), it just uses the suspend func-
tion. When a process migration is needed, the KerNet socket is suspended on



934 P. Gallard and C. Morin

the departure node and re-attached on the arrival node. In our example, P2 sus-
pends the socket, which is latter re-attached when P3 executes. The dynamic
stream service is in charge of ensuring that no message (or message piece) is
corrupted or lost between the suspend and re-attached time. The stream man-
ager updates the other KerNet socket so that it stops its communication until it
receives new information from the stream manager. When the suspended socket
is activated again, its new location is sent to the other KerNet socket and direct
communication between the two KerNet sockets is restarted.

4 Implementation of Standard Communication Interface
Using Dynamic Streams

Obviously, standard distributed applications do not use KerNet sockets. In order
to create a standard environment based on dynamic streams and KerNet sockets,
an interface layer is implemented at kernel level (see Figure 2). Each module of
the interface layer implements a standard communication interface relying the
interface of the KerNet service. The main goal of each interface module is to
manage the standard communication interface protocol (if needed).

Socket Open IOctlReceiveSend

U
se

r
m

od
e

sys_Open sys_IOctlsys_Socket

KerNet system

Point−to−Point

KerNet Interface

SysCall

communication system

K
er

ne
l m

od
e

Create Attach

sy
s_

Se
nd

sy
s_

R
ec

ei
ve

Network

User process

Fig. 2. Standard environment based on KerNet sockets

KerNet interfaces are the links between the standard Linux operating system
and the Kerrighed dynamic communication service.

The Kerrighed operating system is based on top of a lightly-modified Linux
kernel. All the different services, including the communication layer, are imple-
mented as Linux kernel modules.

In Kerrighed operating system, the communication layer is made of two parts.
A static high-performance communication system that provide a node to node
service. On top of this system, the dynamic stream service manages the migra-
tion of streams’s interfaces. Finally, the interface service replaces the standard
functions for a given communication tool.



Dynamic Streams for Efficient Communications between Migrating Processes 935

In the remainder of this section, we describe the Unix socket[10] interface on
the KerNet sockets. We aim at providing a distributed Unix socket, transparent
to the application.

In the standard Linux kernel, Unix sockets are as simple as unqueuing some
packets from the sending socket and queuing them in the receiving socket. In this
case the (physical) shared memory allows the operating system to access to the
system structures of the two sockets. In the same way, the protocol management
can be done easily. Obviously, in our architecture, the operating system of one
node may not have access to the data structure of the other socket. Based on the
KerNet services, the KerNet Unix sockets interface must manage the standard
Unix sockets communication protocol.

When a new interface is defined, a corresponding class of stream is registered
in the dynamic stream service. A class of stream is a set of streams that share
the same properties. This registering step defines general properties of streams
associated to this interface (stream type, number of sockets. . . ) and returns it a
stream class descriptor.

When a process makes an accept on a Unix socket, the Unix socket interface
creates a new stream, attaches the first KerNet socket and waits for the stream
allocate the other KerNet socket (as in P1). When another process (may be
on another node) executes a connect on the Unix socket, an attach attempt is
made (process P2). On success, the stream is completed and the two KerNet
sockets (and by this way the two Unix sockets) can communicate directly.

The accept/connect example is a good representation of how we implement
Unix sockets. With the same approach we have designed and implemented other
standard socket functions like poll (in order to be able to use select syscall),
listen, and so on. Send and receive functions are directly mapped on the send
and receive KerNet socket functions.

Based on this interface, we may provide other standard interfaces such as
pipe, inet socket and even some access to char device.

When a migration occurs (decided by the global scheduler or by the program
itself), the migration service calls the suspend function and attaches the socket
on the new node (such as P3).

5 Performance Evaluation

In the current implementation, KerNet provides standard Inet and Unix sockets
interfaces. In order to have some performance evaluation of our communication
system, we used the NetPipe[8] application. This benchmark is a ping-pong
application with several packet’s size. We use the vanilla-TCP version and a
KerNet one in order to use Unix socket. Several physical networks are used
inside the cluster: the loopback interface (Fig. 3(a)), FastEthernet (Fig. 3(b)),
and Gigabits Ethernet (Fig. 3(c)).

In the FastEthernet and Gigabits Ethernet networks each node is a Pentium
III (500MHz, 512KB cache) with 512MB of memory. The Kerrighed system used
is an enhanced 2.2.13 Linux kernel.



936 P. Gallard and C. Morin

In addition, we provide in all cases, the performance of our point to point
communication layer (without any dynamic functionality). We must notice that,
these measures represent PtP communications from KerNet to kernel with
buffers physically allocated in memory. In this case, buffers are in contiguous
memory area and their size are lower than 128KB. Thus, the PtP low-level per-
formance is a maxima for our KerNet stream.

0

100

200

300

400

500

600

700

800

900

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

B
an

dw
itd

h 
(M

bi
ts

/s
)

Packet size (bytes)

TCP-like with kernet
TCP Vanilla kernel
Unix Vanilla kernel

Distributed unix socket

(a) Loopback

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
itd

h 
(M

bi
ts

/s
)

Packet size (bytes)

TCP-like with kernet
TCP Without kernet
TCP Vamilla kernel

Point to Point communication
Distributed unix socket

(b) FastEthernet

0

50

100

150

200

250

300

350

400

450

1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
itd

h 
(M

bi
ts

/s
)

Packet size (bytes)

TCP-like with kernet
TCP Vanilla kernel

Point to Point communication

(c) GigaBit Ethernet

0

50

100

150

200

250

300

350

1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
itd

h 
(M

bi
ts

/s
)

Packet size (bytes)

TCP-like, before migration
TCP-like, after migration

(d) GigaBit Ethernet w. mi-
gration

Fig. 3. Throughput of several communication systems

First, we notice that the interfaces have a low impact on the dynamic stream:
Unix socket and TCP sockets have nearly the same results. With a FastEthernet
network, the KerNet dynamic stream bandwidths are nearly the same than PtP
low-level one. On GigaBit ethernet network, transfers between user-space and
kernel-space are more perceptible.

When two communicating processes are on the same node, dynamic streams
outperform the standard TCP sockets. This is mainly due to the small network
stack in KerNet: IP stack provides some network services which are useless in a
cluster or already performed by our low-level communication layer. However we
do not reach (on a single node) the performance of a Unix socket. This is mainly
due to the design of the low-level communication layer which as been designed for
inter-node communications without any optimization for local communications.

When two communicating processes are not on the same node, KerNet out-
performed TCP socket again. The reason are the same as above.



Dynamic Streams for Efficient Communications between Migrating Processes 937

Other experiments have been performed to evaluate the impact of a migration
on the dynamic stream performance. The NetPIPE application for TCP (NPtcp)
has been modified to trigger a KerNet socket migration. Figure 3(d) shows that
there is no overhead after a migration of a communicating process.

6 Conclusion

In this paper we have described the design and implementation of a distributed
service allowing efficient execution of communicating processes after migration.
We have introduced the concept of dynamic stream and mobile sockets. We have
shown on the example of Unix sockets how standard communication interfaces
can take advantage of these concepts.

The proposed scheme has been implemented in the Kerrighed operating sys-
tem. We currently study communications in the context of the migration of
standard MPI processes without any modification of the application and of the
MPI library.

In future works on dynamic streams we plan to provide other stream standard
communication interfaces like pipes and access to char devices. We also plan to
study fault-tolerance issues in the framework of the design and implementation
of checkpoint/restart mechanisms for parallel applications in Kerrighed cluster
operating system.

References

1. A. Barak, S. Guday, and R. G. Wheeler. The MOSIX Distributed Operating Sys-
tem, volume 672 of Lecture Notes in Computer Science. Springer, 1993.

2. J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and J. Walpole. MPVM: A
migration transparent version of PVM. Technical Report CSE-95-002, 1, 1995.

3. F. Douglis and J. Ousterhout. Transparent process migration: Design alternatives
and the Sprite implementation. Software–Practice & Experience, 21(8), August
1991.

4. M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and migration
of UNIX processes in the Condor distributed processing system. Technical Report
1346, University of Wisconsin-Madison Computer Sciences, April 1997.

5. C. Morin, P. Gallard, R. Lottiaux, and G. Vallée. Towards an efficient single single
system image cluster operating system. In ICA3PP, 2002.

6. C. E. Perkins and D. B. Johnson. Mobility support in IPv6. In Mobile Computing
and Networking, pages 27–37, 1996.

7. Xun Qu, J. Xu Yu, and R. P. Brent. A mobile TCP socket. Technical Report
TR-CS-97-08, Canberra 0200 ACT, Australia, 1997.

8. Q. Snell, A. Mikler, and J. Gustafson. Netpipe: A network protocol independent
performace evaluator, 1996.

9. G. Stellner. Cocheck: Checkpointing and process migration for mpi. In Interna-
tional Parallel Processing Symposium, 1996.

10. R. Stevens. Unix Network Programming, volume 1-2. Prentice Hall, 1990.
11. F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory TCP: Highly available

internet services using connection migration. In Proceedings of The 22nd Interna-
tional Conference on Distributed Computing Systems (ICDCS), July 2002.


	Introduction
	Background
	Dynamic Streams
	Dynamic Stream Service
	KerNet Sockets
	Example of Utilization of the KerNet API in the OS

	Implementation of Standard Communication Interface Using Dynamic Streams
	Performance Evaluation
	Conclusion



