
DeWiz – A Modular Tool Architecture for
Parallel Program Analysis

Dieter Kranzlmüller, Michael Scarpa, and Jens Volkert

GUP, Joh. Kepler University Linz
Altenbergerstr. 69, A-4040 Linz, Austria/Europe

kranzlmueller@gup.jku.at
http://www.gup.uni-linz.ac.at/˜dk

Abstract. Tool support is an important factor for efficient development
of parallel programs. Due to different goals, target systems, and levels
of abstraction, many specialized tools and environments have been de-
veloped. A contrary approach in the area of parallel program analysis is
offered by DeWiz, which focuses on unified analysis functionality based
on the event graph model. The desired analysis tasks are formulated as
a set of graph filtering and transformation operations, which are imple-
mented as independent analysis modules. The concrete analysis strategy
is composed by placing these modules on arbitrary networked machines,
arranging and interconnecting them. The resulting DeWiz system pro-
cesses the data stream to extract useful information for program analysis.

1 Introduction

Program analysis includes all activities related to observing a program’s behavior
during execution, and extracting information and insight for corrective actions.
Corresponding functionality is offered by dedicated software tools, which support
the user during the diverse activities of program analysis. The complexity of
these tasks is affected by a series of factors, which often represent substantial
problems for software tool developers.

A serious challenge is introduced by the characteristics of parallel and dis-
tributed programs, where the program’s behavior is constituted by multiple con-
currently executing and communicating processes. Different means of process
interaction, e.g. shared memory or message passing, and substantially distinct
hardware architectures call for dedicated solutions. Different goals regarding to
the intended improvements, e.g. performance tuning or correctness debugging,
and different levels of abstraction, from source code to machine level, require
dedicated functionality. Additional difficulties are given by the typical scale of
such programs, e.g. execution times of days, months, or even longer, and the
possibly large number of participating processes.

In contrast to many existing and specialized tools, e.g. AIMS [16], Paje [3],
Paradyn [11], Paragraph [4], PROVE [5], and VAMPIR [2], the approach of
DeWiz tries to offer a unified solution for parallel program analysis. The idea of
DeWiz stems from the fact that, despite the many differences, most tools rely

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 74–80, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

DeWiz – A Modular Tool Architecture for Parallel Program Analysis 75

of graph-based analysis methods or utilize space-time diagrams for visualization
of program behavior. Consequently, a unified directed graph may be used to
capture different program properties and to represent the basis for subsequent
analysis activities.

This paper describes the software architecture of DeWiz and discusses its
benefits for parallel program analysis. Section 2 provides an overview of related
work and the basics of the universal event graph model. Section 3 presents the
tool architecture of DeWiz and the concrete activities of constructing a DeWiz
system for a particular analysis task. Some examples of DeWiz are presented
in Section 4, before conclusions and an outlook on future work summarize the
paper.

2 The Universal Event Graph Model

The approach of DeWiz stems from our work on the Monitoring And Debug-
ging environment MAD [6]. MAD is a collection of software tools for debugging
message-passing programs based on the MPI standard [13]. At the core of MAD
are the monitoring tool NOPE and the visualization tool ATEMPT [7].

Similar to MAD, the basic representation utilized during all analysis activities
of DeWiz is the abstract event graph, which can be defined as follows [7]:

Definition 1: Event graph [7]
An event graph is a directed graph G = (E, →), where E is the non-empty
set of events e of G, while → is a relation connecting events, such that x → y
means that there is an edge from event x to event y in G with the ”tail” at
event x and the ”head” at event y.

The events e ∈ E of an event graph are the events ei
p observed during program

execution, with i denoting the sequential order of the events relative to object p
that is responsible for the event. The vertices of such a graph represent a subset
of the state data at a concrete point of time during the program’s execution,
while the edges represent the transition from one state to another.

Table 1. Event graph data corresponding to target system and event type

Target system Event Event Data
parallel/distributed
message-passing program

send/receive source, destination, message
type, parameters, . . .

multi-threaded
shared memory

read/write memory memory address, size, con-
tents, . . .

database/transaction db sum table, location, access time,
. . .

file I/O, disk access write filename, device, buffer size,
. . .

web server get client-IP, URL, . . .

76 D. Kranzlmüller, M. Scarpa, and J. Volkert

Using the event graph for program analysis activities requires to map events
onto actual operations of the target program. The universal properties of the
event graph allow its application for different kinds of programs and different
levels of granularity and abstraction. Some examples are given in Table 1 (com-
pare with [9]).

The relation connecting the events of an event graph is the happened-before
relation, which is the transitive, irreflexive closure of the union of the relations
S→ and C→ as follows:
Definition 2: Happened-before relation [10]

The happened-before relation → is defined as →= (S→ ∪ C→)+, where S→ is
the sequential order of events relative to a particular responsible object, while
C→ is the concurrent order relation connecting events on arbitrary responsible
objects.

The sequential order ei
p

S→ ei+1
p defines, that the ith event ei

p on any (se-
quential) object p occurred before the i + 1th event ei+1

p on the same object.

The concurrent order ei
p

C→ ej
q defines, that the ith event ei

p on any object p oc-
curred directly before the jth event ej

q on any object q, if ei
p and ej

q are somehow
connected by their operation.

With the event graph, ei
p → ej

q means, that ei
p preceded ej

q (and ej
q occurred

after ei
p). For program analysis, a very important view is that ei

p → ej
q describes

the possibility for event ei
p to causally affect event ej

q, or in other words, event ej
q

may be causally affected by event ei
p, if the state of object q at event ej

q depends
on the operation carried out at event ei

p. Consequently, a program’s behavior
can be described by its set of program state transitions in the event graph, and
this representation can be used for program analysis activities.

3 DeWiz – Tool Architecture

The event graph model as defined above is the basic fundament of DeWiz. The
tool itself consists of three main components, the modules, the protocol, and a
framework.

The DeWiz Modules represent the work units of DeWiz. Each module pro-
cesses the event graph stream in one way or another. Depending on the particu-
lar task of a module, we distinguish between event graph generation, automatic
analysis, and data access modules

Event graph generation modules are used at the head of the analysis pipeline
to generate the event graph stream for a given program execution. The data is
produced either on-line while the monitoring tool is running, or post-mortem by
reading corresponding tracefiles. The automatic analysis modules perform the
actual operations on the event graph to detect the interesting information, while
data access modules are used at the tail of the pipeline to display the results
to the user. In most cases, some kind of visualization tool will be used, which
draws the resulting event graph as a space-time diagram.

DeWiz – A Modular Tool Architecture for Parallel Program Analysis 77

The DeWiz Protocol is utilized between modules in order to transport the
event graph stream. The protocol defines the particular communication interface
(at present, only TCP/IP is supported), and the structure of the transported
data.

The DeWiz Framework offers the required functionality to implement DeWiz
modules for a particular programming language. At present, the complete func-
tionality of DeWiz is supported in Java, while smaller fragments of the analysis
pipeline are already available in C. The framework also hides the DeWiz protocol
in order to ease the development of DeWiz modules.

Each module of the framework must implement the following functionality:
(1) Open event graph stream interface; (2) Filter relevant events for processing;
(3) Process event graph stream as desired; (4) Close event graph stream interface.

The functions to open and close interfaces are used to establish and destroy
interconnections between modules. The interfaces transparently implement the
DeWiz protocol, while filtering and processing of events is performed within
the main loop of each protocol. With the DeWiz framework, new modules can
be implemented by programming the filtering rules and the intended process-
ing functionality. The remaining functionality of the modules is automatically
provided by the framework.

If the modules for a concrete analysis task are available, the user may start
to construct a corresponding DeWiz System. The modules are placed and initial-
ized on arbitrary networked computing nodes. A dedicated module, the DeWiz
Sentinel is used to control a particular DeWiz system and to coordinate inter-
connection between modules. Upon initialization, each module connects to the
Sentinel and offers its services. With a controller interface, the registered mod-
ules may be arbitrarily interconnected by identifying corresponding input and
output interfaces.

An example of the DeWiz controller interface is shown in Figure 1. The
smaller window in front shows the module table, including all registered mod-
ules (by id and name), their available interfaces and status, the implemented
features (send, receive, or none), and the id’s of corresponding consumer or pro-
ducer modules. The larger background window of Figure 1 provides the same
information in form of a module diagram.

4 Example Event Graph Analysis Activities

For using DeWiz within a particular programming environment, dedicated event
graph generation modules have been implemented. A first module represents a
post-mortem trace reader for our monitoring tool NOPE [8]. Additionally, an
on-line interface for the OMIS Compliant Monitor OCM [14] has been imple-
mented recently. This allows to analyze arbitrary event graph streams on the fly
as they are generated by the OCM tool. To test DeWiz for shared-memory pro-
grams, event graph generation functionality has been included in the OpenMP
Pragma and Region Instrumentor OPARI [12]. With this module, DeWiz can
also be applied to analyze set and unset operations in shared memory programs

78 D. Kranzlmüller, M. Scarpa, and J. Volkert

Fig. 1. DeWiz controller showing tool architecture during runtime.

using OpenMP, thus emphasizing the universal applicability of the event graph
approach.

In terms of data access modules, DeWiz provides an interface to the analysis
tool ATEMPT, a Java applet to display the event graph stream in arbitrary web
browsers, and a SMS notifier for critical failures during program execution.

The analysis functionality already implemented in DeWiz is described with
the following two examples: Extraction of communication failures and pattern
matching and loop detection.

Communication failures can be detected by pairwise analyzing of commu-
nication partners. A set of analysis activities for message passing programs is
described in [7]. An example is the detection of different message length at send
and receive operations. Other examples include isolated send or receive opera-
tions, where the communication partner is absent.

A more complex analysis activity compared to the extraction of communi-
cation failures is pattern matching and loop detection. The goal of the corre-
sponding DeWiz modules is to identify repeated process interaction patterns in
the event graph.

5 Conclusions and Future Work

The DeWiz tool architecture described in this paper offers a universal approach
to parallel program analysis. While some analysis tasks are limited to fixed
targets, many of them are useful in a broader context. With DeWiz it is possible
to reuse a large set of analysis modules for different activities.

Another benefit due to the modular architecture, is scalability. Since DeWiz
modules can be placed on arbitrary networked resources, even large amounts of

DeWiz – A Modular Tool Architecture for Parallel Program Analysis 79

analysis data can be processed, assuming that the computing power is somewhere
available. In this context, DeWiz is also a good candidate for grid computing:
On the one hand, large-scale grid applications can be analyzed, on the other
hand, DeWiz may utilize grids to perform the analysis activities.

The future work in this project is focused on how to formulate event-based
analysis techniques within DeWiz modules. At present, the user can rely on a
well-defined set of formal graph-based methods, which must be transformed into
a set of Java classes. For the future we plan to include some kind of formal
language interpreter for this task. Related work in this area, e.g. the Event
Analysis and Recognition Language (EARL) [15], or the Event Based Behavioral
Abstraction technique EBBA [1], have already hinted at the feasibility of this
approach.

Acknowledgments. We are most grateful for the support by our colleagues,
Rene Kobler, Johannes Hoelzl, and Bernhard Aichinger.

References

1. P. Bates. Debugging Heterogeneous Distributed Systems Using Event-Based Models
of Behavior. ACM Transactions on Computer Systems, Vol. 13, No. 1, pp. 1–31
(February 1995).

2. H. Brunst, H.-Ch. Hoppe, W.E. Nagel, and M. Winkler. Performance Optimiza-
tion for Large Scale Computing: The Scalable VAMPIR Approach. Proc. ICCS
2001, Intl.Conf. on Computational Science, Springer-Verlag, LNCS, Vol. 2074, San
Francisco, CA, USA (May 2001).

3. J. Chassin de Kergommeaux, B. Stein. Paje: An Extensible Environment for Visu-
alizing Multi-threaded Program Executions. Proc. Euro-Par 2000, Springer-Verlag,
LNCS, Vol. 1900, Munich, Germany, pp. 133–144 (2000).

4. M.T. Heath, J.A. Etheridge. Visualizing the Performance of Parallel Programs.
IEEE Software, Vol. 13, No. 6, pp. 77–83 (November 1996).

5. P. Kacsuk. Performance Visualization in the GRADE Parallel Programming En-
vironment. Proc. HPC Asia 2000, 4th Intl. Conference/Exhibition on High Perfor-
mance Computing in the Asia-Pacific Region, Peking, China, pp. 446-450 (2000).

6. D. Kranzlmüller, S. Grabner, and J. Volkert. Debugging with the MAD Environ-
ment. Parallel Computing, Vol. 23, Nos. 1–2, pp. 199–217 (1997).

7. D. Kranzlmüller. Event Graph Analysis for Debugging Massively Parallel Pro-
grams. PhD thesis, GUP Linz, Joh. Kepler University Linz (September 2000).
http://www.gup.uni-linz.ac.at/∼dk/thesis.

8. D. Kranzlmüller, J. Volkert. Debugging Point-To-Point Communication in MPI
and PVM. Proc. EuroPVM/MPI 98, Intl. Conference, Liverpool, GB, pp. 265–272
(Sept. 1998).

9. H. Krawczyk and B. Wiszniewski. Analysis and Testing of Distributed Software
Applications. Research Studies Press Ltd., Baldock, Hertfordshire, UK (1998).

10. L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, Vol. 21, No. 7, pp. 558–565, (July 1978).

11. B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin,
K.L. Karavanic, K. Kunchithapadam, T. Newhall. The Paradyn Parallel Perfor-
mance Measurement Tool. IEEE Computer, Vol. 28, No. 11, pp. 37–46 (November
1995).

80 D. Kranzlmüller, M. Scarpa, and J. Volkert

12. B. Mohr, A.D. Malony, S. Shende, and F. Wolf. Design and Prototype of a Per-
formance Tool Interface for OpenMP. Proc. LACSI Symposium 2001, Los Alamos
Computer Science Institute, Santa Fe, New Mexico, USA (October 2001).

13. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard –
Version 1.1. http://www.mcs.anl.gov/mpi/ (June 1995).

14. R. Wismüller, J. Trinitis, and T. Ludwig. OCM – a Monitoring System for Inter-
operable Tools. Proc. SPDT 98, 2nd SIGMETRICS Symposium on Parallel and
Distributed Tools, ACM Press, Welches, Oregon, USA, pp. 1–9 (August 1998).

15. F. Wolf and B. Mohr. EARL – A Programmable and Extensible Toolkit for Analyz-
ing Event Traces of Message Passing Programs. Technical Report FZJ-ZAM-IB-
9803, http://www.kfa-juelich.de/zam/docs/printable/ib/ib-98/ib-9803.ps,
Forschungszentrum Jülich, Zentralinstitut für Angewandte Mathematik, Germany
(1998).

16. J.C. Yan, H.H. Jin, and M.A. Schmidt. Performance Data Gathering and Repre-
sentation from Fixed-Size Statistical Data. Technical Report NAS-98-003,
http://www.nas.nasa.gov/Research/Reports/Techreports/1998/nas-98-003.
pdf. NAS Systems Division, NASA Ames Research Center, Moffet Field, CA,
USA (1998).

	Introduction
	The Universal Event Graph Model
	DeWiz -- Tool Architecture
	Example Event Graph Analysis Activities
	Conclusions and Future Work

