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Abstract. Routing in bufferless networks can be performed without
packet loss by deflecting packets when links are not available. The effi-
ciency of this kind of protocol (deflection routing) is highly determined
by the decision rule used to choose which packets have to be deflected
when a conflict arises (i.e. when multiple packets contend fo a single out-
going link). As the load offered to the network increases the probability
of collision becomes higher and it is to be expected that at a certain
maximum offered load the network gets saturated. We present an ana-
lytical method to compute this maximum load that nodes can offer to
the network under different deflection criteria.

1 Introduction

Deflection routing [1] is a routing scheme for bufferless networks based on the
idea that if a packet cannot be sent through a certain link due to congestion, it
is deflected through any other available one (instead of being buffered in a node
queue) and rerouted to destination from the node at which the packet arrives.
In this way, congestion causes packets admitted to the network to be misrouted
temporarily, in contrast with traditional schemes where such packets might be
buffered or dropped. This kind of protocol has been proposed, for instance, to
route packets in all-optical networks because optical storage is not possible with
nowadays technology [2,4,7] (Messages can only be shortly delayed by a fiber
loop in order to wait for a quick processing of their headers, but cannot be
buffered in queues without optical to electrical conversion.)

Many approximations have been proposed in the literature for implementing
deflection routing [8]. The efficiency of the protocol is highly determined by
the decision criteria used to deflect packets when collisions arise (i.e. when two
packets should use the same outgoing link and one of them must be deflected).
The strategies used to solve these conflicts can be divided into two categories. On
one hand, those that give priority to the most disadvantaged packets in order to
avoid deadlock or timeouts (and thus trying to guarantee that all packets arrive
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to destination): MAXDIST (packets that are further away to destination have
a higher priority), MAXTIME (older packets are given a higher priority), and
MAXDEFL (the larger the number of times a packet has been deflected, the
higher the priority). On the other hand, strategies that give preference to those
packets that might arrive to destination as soon as possible. The decision criteria
within this group are analogous to the preceding case: MINDIST, MINTIME and
MINDEFL.

As the load offered to the network increases, deflection routing becomes less
efficient (the probability of collision increases) and at a certain maximum offered
load R the network becomes saturated. Figure 1 shows the results of simulations
under different decision criteria for a certain network topology. As the reader
can check, the maximum allowed traffic highly depends on the decision rule
used to deflect packets. This paper shows an analytical method to compute
this maximum load R. Some specific theoretical results for the hypercube and
shufflenet networks can be found in [11,10].

Fig. 1. Delivered vs. offered traffic

2 The Model

Network topology is another important aspect that determines the efficiency of
deflection routing. We suppose here that the network is modeled by a directed
graph (digraph) in which all nodes offer the same constant traffic load to the
network by means of an input queue. We also assume that the communication
model have the following properties: packets have fixed length and are trans-
mitted synchronously, processing time at the intermediate nodes is zero, only
one packet can travel through a given link at a time, and a packet in an input
queue enters in the network as soon as a link is available and competes with
other packets in the network for the same links (transmit no hold acceptance
(txnh). (Other queue management policies can be found in [5].) With respect to
the topology and routing table the following restrictions are also supposed: all
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nodes have the same number of outgoing and incoming links (i.e. the digraph
is δ-regular), packets will always try to follow the shortest path to destination,
and there is only one shortest path between any pair of nodes, which means
that a packet remains at the same distance or further away to its destination
after being deflected. Besides the previous assumptions we consider two more
suppositions in order to simplify our problem. Firstly, a packet entering to a
node exits through any outgoing arc with probability 1/δ (uniform traffic distri-
bution). This approximation is reasonable if the routing table is such that the
edge-forwarding index [12] is close to the minimum. Secondly, since the purpose
of our study is to deal under heavy traffic conditions, it will be assumed that
each node has a packet ready to be transmitted as soon as a link is free. This
supposition holds only for deterministic distribution of packet arrivals but it is
not true for other traffic distributions such as Poisson or sporadic. Nevertheless
the supposition is acceptable if the arrival ratio is high enough and if there are
large input buffers which are overflown.

With these assumptions, in steady-state the number of incoming packets to
a node equals the number of incoming links to that node, and equals also the
number of outgoing packets and outgoing links. In other words, the probability
of a link being free during a time unit is zero. Hence the number of packets
in the network equals de number of arcs in the digraph, and then, by Little’s
Law we have nRt = m where R stands for the maximum admissible throughput
per node (i.e. the maximum load rate nodes can offer to the network) and t is
the average time for a packet to arrive to destination. In the case of δ–regular
directed graphs, we have R = δ/t. The following two sections will be devoted to
give methods to compute R under different decision criteria.

3 Random Policy

To compute the average time t that (in steady-state) a packet is in the net-
work hopping through its nodes, let us define an absorbing Markov chain with
states corresponding to the possible distances that the packet could be to its
destination: 0, 1, . . . , D, where D is the diameter of the digraph and state zero
stands for a packet that has arrived at destination (see Figure 2). The transition

Fig. 2. Markov chain used to compute the average time to arrive to destination
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probability matrix M = (mij) of this chain is given by mij = Pa(i) = 1 − Pd(i)
if j = i − 1 and i > 0, mij = Pd(i)Pt(i, j) if j ≥ i and i > 0, and 0 otherwise,
where Pd(i) is the probability that a packet being at distance i is deflected and
Pt(i, j) is the conditional probability that a deflected packet which is at distance
i to its destination z goes to a node which is at distance j to z.

The deflection probability Pd(i) depends on the number of packets that
should use the same link at a time. Given a packet that wants to use cer-
tain link, the probability that N other packets want to use the same outgoing
link (N collisions) is given by Pc(N) =

(
δ−1
N

)
(1 − 1/δ)δ−1−N (1/δ)N . There-

fore, the probability of being deflected conditioned to being at distance i to
destination is Pd(i) =

∑δ−1
N=1(1 − Pa(i | N)) Pc(N), where Pa(i | N) stands

for the probability Pa(i) conditioned to N collisions. In the case of random
policy, this probability does not depend on i, and according to assumption of
uniform traffic, is given by Pa(i | N) = 1/(N + 1). Consequently, in the case
of random policy, the probability of deflection is, for any distance i, given by
Pd =

∑δ−1
N=1 (1 − 1/(N + 1))

(
δ−1
N

)
(1 − 1/δ)δ−1−N (1/δ)N = (1 − 1/δ)δ

.
On the other hand, the probabilities Pt(i, j) depend only on the network

topology as well as the initial probability Pin(i) of each state (i.e. the probability
that a new packet entering the network is assigned a destination node at distance
i from the source). A detailed analysis of these probabilities can be found in [9]
for the case of Kautz networks [3].

Once defined the transition and initial probabilities, the Markov chain makes
it possible to compute the average time that a packet is in the network by
computing the mean time t to absorption to the zero state. This time will give
us the maximum admissible throughput R = δ/t.

4 Distance Priority Criteria

In case of distance criteria, the probability that a packet advances towards des-
tination depends on its distance to that destination, but also on the probability
that competitors are closer to or further to its own destinations. In other words,
to compute the probability of advancing Pa(i) = 1 − Pd(i) we need to know the
probability of being at each state in the Markov chain. Hence, a more complex
analysis must be performed.

Since packets fighting for a certain outgoing link have not arrived yet to
destination (i.e. they are not in the zero state) we can consider the probabilities
of being at each state conditioned to not being in state 0. Let us call these new
conditioned state probabilities P ′(i). In order to compute P ′(i) and the new
transition probabilities it is convenient to state the problem in a different way:
there is a fixed number of packets (equal to the number of links) hopping through
the nodes in such a way that they will never exit the network, but once a packet
reaches its destination, a new random destination is immediately assigned to it.
The new ergodic Markov chain associated to this problem is shown in Figure 3.
Because of the assumption that each node has a packet ready to be transmitted
as soon as a link is free, the traffic in the network will be exactly the same as in
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Fig. 3. Conditioned Markov chain

the original problem and, moreover, the transition probabilities will also be the
same for i ≥ 2. More precisely, the entries m′

ij of the new transition probability
matrix M ′ = (m′

ij) are 1 − Pd(i) if j = i − 1 and i �= 1, Pd(i)Pt(i, j) if j ≥ i and
i �= 1, Pd(i)Pt(i, j) + (1 − Pd(i))Pin(j) if i = 1, and 0 otherwise, where Pin(j)
stands for the probability that the new assigned destination is at distance j from
source, as in the preceding section.

Each deflection probability Pd(i) is now a function of the state probabili-
ties P ′(1), . . . , P ′(D). For instance, if MINDIST criteria is used, Pd(i) can be
computed as in the previous section, but now with the advancing probabil-
ity Pa(i|N) =

∑N
k=0

(
N
k

)
(P ′(d > i)N−kP ′(i)k)/(k + 1) if i < D and Pa(i|N) =

P ′(D)N/(N + 1) if i = D, where P ′(d > i) stands for the probability that a
competitor packet is at distance greater than i to its destination.

Table 1. Results from theory and simulation

MINDIST MAXDIST Random policy
d D Theor. Simul. Theor. Simul. Theor. Simul.
2 3 0,52 0,54 0,37 0,39 0,46 0,46
2 4 0,37 0,38 0,23 0,22 0,30 0,30
3 3 0,62 0,69 0,39 0,41 0,54 0,55
3 4 0,43 0,47 0,21 0,20 0,33 0,33
4 3 0,75 > 0, 80 0,45 0,45 0,64 0,65
4 4 0,53 0,58 0,22 0,20 0,39 0,38

Even if the transition probabilities are unknown, M ′ is the probability
matrix of an ergodic Markov chain (finite, irreducible and aperiodic). Let
V′ = (V ′(1), . . . , V ′(D)) be the stationary distribution of M ′ (i.e. a probabil-
ity left eigenvector associated to the eigenvalue 1), each V ′(i) being a function
of P′ = (P ′(1), . . . , P ′(D)). The probabilities Pd(i) can be computed then by
solving the equation V′ = P′. Finally, we consider again the absorbing Markov
chain M and compute the expected time to absorption in state 0, as in Section
3.
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5 Validation through Simulation

Table 1 gives, for the case of the d-regular Kautz network K(d, D) with diameter
D, a comparison of theoretical results obtained by applying our analytical model
with results from simulation.

In the computation of the theoretical results, the values of Pin(i) and Pt(i, j)
are those obtained in [9]. The comparison is a validation of the hypothesis and
assumptions used in paper. Further details and description of the simulation can
be found in [14].
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8. Clérot., F.: Réseaux fonctionnant par déflexion: deux ans déjà. . . Internal Research
Rapport. CNET (1996)
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