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Abstract. In this paper we present a new model able to combine quality
of service (QoS) and mobility aspects in wireless ATM networks. Namely,
besides the standard parameters of the basic ATM layouts, we introduce
a new one, that estimates the time needed to reconstruct the virtual
channel of a wireless user when it moves through the network. QoS guar-
antee dictates that the rerouting phase must be imperceptible. Therefore,
a natural combinatorial problem arises in which suitable trade-offs must
be determined between the different performance measures. We first show
that deciding the existence of a layout with maximum hop count h, load
l and distance d is NP-complete, even in the very restricted case h = 2,
l = 1 and d = 1. We then provide optimal layout constructions for basic
interconnection networks, such as chains and rings.

1 Introduction

Wireless ATM networks are emerging as one of the most promising technologies
able to support users mobility while maintaining the QoS offered by the classical
ATM protocol for Broadband ISDN [2]. The mobility extension of ATM gives
rise to two main application scenarios, called respectively End-to-End WATM
and WATM Interworking [13]. While the former provides seamless extension of
ATM capabilities to users by allowing ATM connections that extend until the
mobile terminals, the latter represents an intermediate solution used primarily
for high-speed transport over network backbones by exploiting the basic ATM
protocol with additional mobility control capabilities. Wireless independent sub-
nets are connected at the borders of the network backbone by means of specified
ATM interface nodes, and users are allowed to move among the different wireless
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subnets. In both scenarios, the mobility facility requires the efficient solution of
several problems, such as handover (users movement), routing, location manage-
ment, connection control and so forth. A detailed discussion of these and other
related issues can be found in [13,6,5,19,17].

The classical ATM protocol for Broadband ISDN is based on two types of
predetermined routes in the network: virtual paths or VPs, constituted by a
sequence of successive edges or physical links, and virtual channels or VCs, each
given by the concatenation of a proper sequence of VPs [15,14,18]. Routing in
virtual paths can be performed very efficiently by dedicated hardware, while a
message passing from one virtual path to another one requires more complex
and slower elaboration.

A graph theoretical model related to this ATM design problem has been first
proposed in [12,7]. In such a framework, the VP layouts determined by the VPs
constructed on the network are evaluated mainly with respect to two different
cost measures: the hop count, that is the maximum number of VPs belonging to
a VC, which represents the number of VP changes of messages along their route
to the destination, and the load, given by the maximum number of virtual paths
sharing an edge, that determines the size of the VP routing tables (see, e.g., [8]).
For further details and technical justifications of the model for ATM networks
see for instance [1,12].

While the problem of determining VP layouts with bounded hop count and
load is NP-hard under different assumptions [12,9], many optimal and near op-
timal constructions have been given for various interconnection networks such
as chain, trees, grids and so forth [7,16,10,11,20,4] (see [21] for a survey).

In this paper we mainly focus on handover management issues in wireless
ATM. In fact, they are of fundamental importance, as the virtual channels must
be continually modified due to the terminals movements during the lifetime of
a connection. In particular, we extend the model of [12,7] in order to combine
QoS and mobility aspects in wireless ATM networks.

Typical handover managements issues are the path extension scheme, in
which a VC is always extended by a virtual path during a handover [5], or
the anchor-based rerouting and the nearest common node rerouting [13,3], that
involve the deletion of all the VPs of the old VC and the addition of all the VPs
of the new one after a common prefix of the two VCs. Other handover strategies
can be found in [13,6,5].

Starting from the above observations, besides the standard hop count and
load performance measures, we introduce the new notion of virtual channel dis-
tance, that estimates the time needed to reconstruct a virtual channel during
a handover phase. In order to make the rerouting phase imperceptible to users
and thus to obtain a sufficient QoS, the maximum distance between two virtual
channels must be maintained as low as possible. Therefore, a natural combina-
torial problem arises in which suitable trade-offs must be determined between
the different performance measures.

The paper is organized as follows. In the next section we introduce the model,
the notation and the necessary definitions. In Section 3 we provide hardness
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results for the layout construction problem. In Section 4 and 5 we provide optimal
layouts for chains and rings, respectively. Finally, in Section 6, we give some
conclusive remarks and discuss some open questions.

2 The WATM Model

We model the network as an undirected graph G = (V,E), where nodes in V
represent switches and edges in E are point-to-point communication links. In G
there exists a subset of nodes U ⊆ V constituted by cells with corresponding ra-
dio stations, i.e., switches adapted to support mobility and having the additional
capability of establishing connections with the mobile terminals. A distinguished
source node s ∈ V provides high speed services to the users moving along the
network. We observe that, according to the wireless nature of the system, during
the handover phase mobile terminals do not necessarily have to move along the
network G, but they can switch directly from one cell to another, provided that
they are adjacent in the physical space. It is thus possible to define a (connected)
adjacency graph A = (U,F ), whose edges in F represent adjacencies between
cells.

A layout Ψ for G = (V,E) with source s ∈ V is a collection of paths in G,
termed virtual paths (VPs for short), and a mapping that defines, for each cell
u ∈ U , a virtual channel V CΨ (u) connecting s to u, i.e., a collection of VPs
whose concatenation forms a shortest path in G from s to u.

Definition 1. [12] The hop count hΨ (u) of a node u ∈ U in a layout Ψ is the
number of VPs contained in V CΨ (u), that is |V CΨ (u)|. The maximal hop count
of Ψ is Hmax(Ψ) ≡ maxu∈U{hΨ (u)}.

Definition 2. [12] The load lΨ (e) of an edge e ∈ E in a layout Ψ is the number
of VPs ψ ∈ Ψ that include e. The maximal load Lmax(Ψ) of Ψ is maxe∈E{lΨ (e)}.

As already observed, when passing from a cell u ∈ U to an adjacent one
v ∈ U , the virtual channel V CΨ (v) must be reconstructed from V CΨ (u) chang-
ing only a limited number of VPs. Once fixed V CΨ (u) and V CΨ (v), denoted as
V CΨ (u, v) the set of VPs in the subchannel given by the longest common prefix of
V CΨ (u) and V CΨ (v), this requires the deletion of all the VPs of V CΨ (u) that oc-
cur after V CΨ (u, v), plus the addition of all the VPs of V CΨ (v) after V CΨ (u, v).
The number of removed and added VPs, denoted as D(V CΨ (u), V CΨ (v)), is
called the distance of V CΨ (u) and V CΨ (v) and naturally defines a channel dis-
tance measure dΨ between pairs of adjacent nodes in A.

Definition 3. The channel distance of two nodes u and v such that {u, v} ∈ F
(i.e., adjacent in A) is dΨ (u, v) = D(V CΨ (u), V CΨ (v)) = hΨ (u) + hΨ (v) −
2|V CΨ (u, v)|. The maximal distance of Ψ is Dmax(Ψ) ≡ max{u,v}∈F {dΨ (u, v)}.

It is now possible to give the following definition on WATM layouts.

Definition 4. A layout Ψ with Hmax(Ψ) ≤ h, Lmax(Ψ) ≤ l and Dmax(Ψ) ≤ d is
a 〈h, l, d〉-layout for G, s and A.
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In the following, when the layout Ψ is clear from the context, for simplicity
we will drop the index Ψ from the notation. Moreover, we will always assume
that all the VPs of Ψ are contained in at least one VC. In fact, if such property
does not hold, the unused VPs can be simply removed without increasing the
performance measures h, l and d.

3 Hardness of Construction

In this section we show that constructing optimal dynamic layouts is in general
an NP-hard problem, even for the very simple case h = 2 and l = d = 1.

Notice that when d = 1, for any two cells u, v ∈ U adjacent in A = (U,F ),
during an handover from u to v by definition only one VP can be modified. This
means that in every 〈h, l, 1〉-layout Ψ , either V C(v) is a prefix of V C(u) and
thus V C(v) is obtained from V C(u) by adding a new VP from u to v, or vice
versa. In any case, a VP between u and v must be contained in Ψ . As a direct
consequence, the virtual topology defined by the VPs of Ψ coincides with the
adjacency graph A.

Theorem 1. Given a network G = (V,E), a source s ∈ V and an adjacency
graph A = (U,F ), deciding the existence of a 〈2, 1, 1〉-layout for G, s and A is
an NP-complete problem.

For h = 1, any l and any d, the layout construction problem can be solved in
polynomial time by exploiting suitable flow constrictions like the ones presented
in [9].

4 Optimal Layouts for Chain Networks

In this section we provide optimal layouts for chain networks. More precisely, we
consider the case in which the physical graph is a chain Cn of n nodes, that is
V = {1, 2, . . . , n} and E = {{v, v + 1}|1 ≤ v ≤ n− 1}, and the adjacency graph
A coincides with Cn. Moreover, without loss of generality, we take the leftmost
node of the chain as the source, i.e. s = 1, as otherwise we can split the layout
construction problem into two equivalent independent subproblems for the left
and the right hand sides of the source, respectively. Finally, we always assume
d > 1, as by the same considerations of the previous section the virtual topology
induced by the VPs of any 〈h, l, 1〉-layout Ψ coincides with the adjacency graph
A and thus with Cn. Therefore, the largest chain admitting a 〈h, l, 1〉-layout is
such that n = h+ 1.

In the following we denote by 〈u, v〉 the unique VP corresponding to the
shortest path from u to v in Cn and by 〈〈s, v1〉〈v1, v2〉 . . . 〈vk, v〉〉 or simply
〈s, v1, v2, . . . , vk, v〉 the virtual channel V C(v) of v given by the concatenation
of the VPs 〈s, v1〉, 〈v1, v2〉, ..., 〈vk, v〉. Clearly, s < v1 < v2 < . . . < vk < v.

Definition 5. Two VPs 〈u1, v1〉 and 〈u2, v2〉 are crossing if u1 < u2 < v1 < v2.
A layout Ψ is crossing-free if it does not contain any pair of crossing VPs.



1060 M. Flammini et al.

Definition 6. A layout Ψ is canonic if it is crossing-free and the virtual topology
induced by its VPs is a tree.

According to the following definition, a 〈h, l, d〉-layout for chains is optimal
if it reaches the maximum number of nodes.

Definition 7. Given fixed h,l,d and a 〈h, l, d〉-layout Ψ for a chain Cn, Ψ is
optimal if no 〈h, l, d〉-layout exists for any chain Cm with m > n.

We now prove that for every h,l,d, the determination of an optimal 〈h, l, d〉-
layout can be restricted to the class of the canonic layouts.

Theorem 2. For every h, l, d, any optimal 〈h, l, d〉-layout for a chain is canonic.

Motivated by Theorem 2, in the remaining part of this section we focus on
canonic 〈h, l, d〉-layouts for chains, as they can be the only optimal ones.

Let us say that a tree is ordered if it is rooted and for every internal node a
total order is defined on its children. As shown in [12], an ordered tree induces
in a natural way a canonic layout and vice versa.

Therefore, there exists a bijection between canonic layouts and ordered trees.
We now introduce a new class of ordered trees T (h, l, d) that allows to com-

pletely define the structure of an optimal 〈h, l, d〉-layout. Informally, denoted as
T (h, l) the ordered tree corresponding to optimal layouts with maximum hop
count h and load l without considering the distance measure [11], T (h, l, d) is
a maximal subtree of T (h, l) with the additional property that the distance be-
tween two adjacent nodes in the preorder labelling of the ordered tree, and thus
between two adjacent nodes in the induced layout, is always at most d. More-
over, the containment of T (h, l, d) in T (h, l) guarantees that the hop count h
and the load l are not exceeded in the induced layout.

The definition of T (h, l, d) is recursive and the solution of the associated
recurrence gives the exact number of the nodes reached by an optimal 〈h, l, d〉-
layout. Before introducing T (h, l, d), let us define another ordered tree that is
exploited in its definition.

Definition 8. Given any h, l, d, T (h, l, d) is an ordered tree defined recursively
as follows. T (h, l, d) is obtained by joining the roots of min{h, d − 1} subtrees
T (i, l − 1, d) with h −min{h, d − 1} + 1 < i ≤ h in such a way that the root of
T (i− 1, l− 1, d) is the rightmost child of the root of T (i, l− 1, d). A last node is
finally added as the rightmost child of T (h −min{h, d − 1} + 1, l − 1, d). Trees
T (0, l, d) and T (h, 0, d) consist of a unique node.

Definition 9. The ordered tree T (h, l, d) is defined recursively as the join of the
roots of the tree T (h − 1, l, d) and the tree T (h, l − 1, d) in such a way that the
root of T (h − 1, l, d) is the rightmost child of the root of T (h, l − 1, d). Trees
T (0, l, d) and T (h, 0, d) consist of a unique node.

The following lemma establishes that T (h, l, d) is the ordered tree induced
by an optimal 〈h, l, d〉-layout.
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Lemma 1. The layout Ψ induced by T (h, l, d) is a 〈h, l, d〉-layout. Moreover,
every canonic 〈h, l, d〉-layout Ψ induces an ordered subtree of T (h, l, d).

Let Tn(h, l, d) and Tn(h, l, d) denote the number of nodes in T (h, l, d) and
in T (h, l, d), respectively. Directly from Definition 8 and 9, it follows that
Tn(h, l, d) = Tn(h, l − 1, d) + Tn(h − 1, l, d) =

∑h
k=0 Tn(k, l − 1, d), where the

value of every Tn(k, l− 1, d) for 0 ≤ k ≤ h is obtained by the following recursive
equation:

Tn(h, l, d) =
{

1 if l = 0 or h = 0,
1 +

∑min{h,d−1}−1
j=0 Tn(h− j, l − 1, d) otherwise.

Before solving the above recurrence, we recall that given n+1 positive integers
m, k1, . . . , kn such that m = k1 + · · · + kn, the multinomial coefficient

(
m

k1,...,kn

)

is defined as m!
k1!·k2!·····kn! .

Lemma 2. For every h, l, d, Tn(h, l, d) =

l∑

i=0

h−1∑

j=0

∑

0 ≤ kd−2 ≤ kd−3 ≤ . . . ≤ k2 ≤ k1 ≤ i
k1 + k2 + . . .+kd−2 = j

(
i

i−k1, k1−k2, . . . , kd−3−kd−2, kd−2

)

.

The following theorem is a direct consequence of Lemma 1, Lemma 2 and
Definition 9.

Theorem 3. For every h, l, d, the maximum number of nodes reachable on a
chain network by a 〈h, l, d〉-layout is Tn(h, l, d) = 1 +

∑h
k=1 Tn(k, l − 1, d).

More details will be shown in the full version of the paper.

5 Optimal Layouts for Ring Networks

In this section we provide optimal layouts for ring networks Rn with V =
{0, 1, . . . , n − 1} and E = {{i, (i + 1)modn}|0 ≤ i ≤ n − 1}. Again we assume
that the adjacency graph A coincides with Rn and without loss of generality
we take s = 0 as the source node. Moreover, we let d > 1, since as remarked in
Section 3, no layout with maximum distance 1 exists for cyclic adjacency graphs.

Notice that in any 〈h, l, d〉-layout Ψ for Rn, by the shortest path property, if
n is odd the nodes in the subring [1, �n

2 �] are reached in one direction from the
source, say clockwise, while all the remaining ones anti-clockwise. This means
that Ψ can be divided into two separated sublayouts Ψc and Ψa respectively for
the subchains of the nodes reached clockwise in Ψ , that is [0, �n

2 �], and anticlock-
wise, that is from 	n

2 
 to 0 in clockwise direction, extremes included. However,
the results of the previous section for chains do not extend in a trivial way, as a
further constraint exists for the final nodes �n

2 � and 	n
2 
, that are adjacent in A

and thus must be at distance at most d in Ψ . A similar observation holds when
n is even.
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As for chains, let us say that a 〈h, l, d〉-layout Ψ for rings is optimal if it
reaches the maximum number of nodes. Moreover, let us call Ψ canonic if the
clockwise and anticlockwise sublayouts Ψc and Ψa are both crossing-free and the
virtual topologies induced by their VPs are trees. The following lemma is the
equivalent of Theorem 2 for rings.

Lemma 3. For every h, l, d, there exists an optimal 〈h, l, d〉-layout for rings that
is canonic.

Starting from Lemma 3, we generalize the ordered tree T (h, l, d) to
T (h, l, d, t) by adding a further parameter t ≤ h, which fixes the hop count of the
rightmost leaf to t. Roughly speaking, T (h, l, d, h) = T (h, l, d) and T (h, l, d, d−
1) = T (h, l, d). More precisely, T (h, l, d, t) is defined recursively as the join of the
roots of min{h, t} subtrees T (i, l− 1, d) for h−min{h, t} < i ≤ h in such a way
that for i < h the root of a T (i, l − 1, d) is the rightmost child of the root of a
T (i+1, l−1, d), plus a final node as rightmost child of T (h−min{h, t}+1, l−1, d).
Thus, Tn(h, l, d, t) = 1 +

∑h
k=h−min{h,t}+1 Tn(k, l − 1, d)

Lemma 1 extends directly to T (h, l, d, t), that in turn corresponds to an
optimal 〈h, l, d〉-layout for a chain with the further property that the rightmost
node (opposite of the source) has hop count t. Therefore, it is possible to prove
the following theorem.

Theorem 4. The maximum number of nodes reachable on a ring network by
a 〈h, l, d〉-layout is 2Tn(h, l, d, �d

2�) − ((d + 1) mod 2), with Tn(h, l, d, �d
2�) =

1 +
∑h

k=h−min{h,� d
2 �}+1 Tn(k, l − 1, d).

6 Conclusion

We have extended the basic ATM model presented in [12,7] to cope with QoS
and mobility aspect in wireless ATM networks. This is obtained by adding a
further measure, the VCs distance, that represents the time needed to recon-
struct connecting VCs when handovers occur and must be maintained as low
as possible in order to avoid the rerouting mechanism to be appreciated by the
mobile users. We have shown that finding suitable trade-offs between the var-
ious performance measures is in general an intractable problem, while optimal
constructions have been given for chain and ring topologies.

Among the various questions left open, we have the extension of our results
to more general topologies. Moreover, another worth investigating issue is the
determination of layouts in which the routed paths are not necessarily the short-
est ones, but have a fixed stretch factor or even unbounded length. Finally, all
the results should be extended to other communication patterns like all-to-all.
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