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Abstract. In this work, we introduce CoJVM, a new distributed Java run-time
system that enables concurrent Java programs to efficiently execute on clusters
of personal computers or workstations. CoJVM implements Java’s shared
memo-ry model by enabling multiple standard JVMs to work cooperatively and
transpa-rently to support a single distributed shared-memory across the cluster’s
nodes. CoJVM requires no change to applications written in standard Java. Our
experi-mental results using several Java benchmarks show that CoJVM
performance is considerable with speed-ups ranging from 6.1 to 7.8 for an 8-
node cluster.

1 Introduction

One of the most interesting features of Java [1] is its embedded support for concurrent
programming. Java provides a native parallel programming model that includes sup-
port for multithreading and defines a common memory area, called the heap, which is
shared among all threads that the program creates. To treat race conditions during
con-current accesses to the shared memory, Java offers to the programmer a set of
synchronization primitives, which are based on an adaptation of the classic monitor
model. The development of parallel applications using Java’s concurrency model is
restricted to shared-memory computers, which are often expensive and do not scale
easily. A com-promise solution is the use of clusters of personal computers or
workstations. In this case, the programmer has to ignore Java’s support for concurrent
programming and instead use a message-passing protocol to establish communication
between threads. However, changing to message-passing programming is often less
convenient and even more complex to code development and maintenance. To
address this problem, new distributed Java environments have been proposed. In
common, the basic idea is to extend the Java heap among the nodes of the cluster,
using a distributed shared-memory approach. So far, only few proposals have been
implemented, and even less are compliant with the Java Virtual Language
Specification [2]. Yet, very few reported good performance results [9] and presented
detailed performance analysis [17].

In this paper, we introduce the design and present performance results of a new
Java environment for high-performance computing, which we called the CoJVM
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(Cooperative Java Virtual Machine) [3]. CoJVM’s main objective is to speed up Java
applications executing on homogeneous computer clusters. CoJVM relies on two key
features to improve application performance: 1) the HLRC software Distributed
Shared Memory (DSM) protocol [4] and 2) a new instrumentation mechanism [3] to
the Java Virtual Machine (JVM) that enables new latency-tolerance techniques to
exploit the application run-time behavior. Most importantly, the syntax and the
semantics of the Java language are preserved, allowing programmers to write
applications in the same way they write concurrent programs for the single standard
JVM. In this work, we evaluate CoJVM performance for five parallel applications:
Matrix Multiplication (MM), SOR, LU, FFT, and Radix. The connected figures show
that all benchmarks we tested achieved good speedups, which demonstrate CoJVM
effectiveness. Our main contributions are: a) to show that CoJVM is an effective
alternative to improve performance of parallel Java applications for cluster
computing, b) to demonstrate that scalable performance of Java applications for
clusters can be achieved without any syntax or semantic change in the language; and
c) to present detailed performance analysis of CoJVM for five parallel benchmarks.

The remainder of this paper is organized as follows. Section 2 presents the HLRC
software DSM system. Section 3 describes Java support for multithreading and
synchronization, and the Java memory model. In section 4, we review some key
design concepts of CoJVM. In section 5, we analyze performance results of five Java
parallel applications executed under CoJVM. In section 6, we describe some related
works. Finally, in section 7, we draw our conclusions and outline ongoing works.

2 Software DSM

Software DSM systems provide the shared memory abstraction on a cluster of physi-
cally distributed computers. This illusion is often achieved through the use of the
virtu-al memory protection mechanism [5]. However, using the virtual memory
mechanism has two main shortcomings: (a) occurrence of false sharing and
fragmentation due to the use of the large virtual page as the unit of coherence, which
leads to unnecessary communication traffic; and (b) high OS costs of treating page
faults and crossing pro-tection boundaries. Several relaxed memory models, such as
LRC [6], have been pro-posed to alleviate false sharing. In LRC, shared pages are
write-protected so that when a processor attempts to write to a shared page an
interrupt will occur and a clean copy of the page, called the twin, is built and the page
is released to write. In this way, modi-fications to the page, called diffs, can be
obtained at any time by comparing current co-py with its twin. LRC imposes to the
programmer the use of two explicit synchroniza-tion primitives: acquire and release.
In LRC, coherence messages are delayed until an acquire is performed by a processor.
When an acquire operation is executed the acqui-rer receives from the last acquirer all
the write-notices, which correspond to modifica-tions made to the pages that the
acquirer has not seen according to the happen-before-1 partial order [6]. HLRC
introduced the concept of home node, in which each node is responsible for
maintaining an up-to-date copy of its owned pages; then, the acquirer can request
copies of modified pages from their home nodes. At release points, diffs are computed
and sent to the page’s home node, which reduces memory requirements in home-
based DSM protocols and contributes to the scalability of the HLRC protocol.
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3 Java

In Java, threads programming is simplified since it provides a parallel programming
model that includes support for multithreading. The package java.lang offers the
Thread class that supports methods to initiate, to execute, to stop, and to verify the
state of a running thread. In addition, Java also includes a set of synchronization
primitives and the standard semantics of Java allow the methods of a class to execute
concurrently. The synchronized reserved word, when associated with methods,
specifies that they can only execute in a mutual-exclusion mode. The JVM specifies
the interaction model between threads and the main memory, by defining an abstract
memory system, a set of memory operations, and a set of rules for these operations
[2]. The main memory stores all program variables and is shared by the JVM threads.
Each thread operates strictly on its local memory, so that variables have to be copied
first from main memory to the thread’s local memory before any computation can be
carried out. Similarly, local results become accessible to other threads only after they
are copied back to main memory. Variables are referred to as master or working copy
depending on whether they are located in main or local memory, respectively. The
copying between main and local memory, and vice-versa, adds a specific overhead to
thread operation. The replication of variables in local memories introduces a potential
memory coherence hazard since different threads can observe different values for the
same variable. The JVM offers two synchronization primitives, called monitorenter
and monitorexit, to enforce memory consistency. In brief, the model requires that upon
a monitorexit operation, the running thread updates the master copies with
corresponding working copy values that the thread has modified. After executing a
monitorenter operation, a thread should either initialize its work copies or assign the
master values to them. The only exceptions are variables declared as volatile, to which
JVM imposes the sequential consistency model. The memory management model is
transparent to the programmer and is implemented by the compiler, which
automatically generates the code that transfers data values between main memory and
thread local memory.

4 The Cooperative Java Virtual Machine

CoJVM [3] is a DSM implementation of the standard JVM and was designed to
efficiently execute parallel Java programs in clusters. In CoJVM, the declaration and
synchronization of objects follow the Java model, in which the main memory is
shared among all threads running in the JVM [2]. Therefore in CoJVM all declared
objects are implicitly and automatically allocated into the Java heap, which is
implemented in the DSM space. Our DSM implementation uses the HLRC protocol
for two main reasons. First, it tends to consume less memory and its scalable
performance is competitive with that of homeless LRC implementations [4]. Second,
the HLRC implementation [7] al-ready supports the VIA [8], a high-performance
user-level communication protocol. Surdeanu and Moldovan [9] have shown that the
LRC model is compliant with the Java Memory Model for data-race-free programs.
Although HLRC adopts the page as the unit of granularity, we are not bound to that
specific unit.
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CoJVM benefits from the fact that Java already provides synchronization
primitives: synchronized, wait, notify and notifyAll. The programmer with the use of
these primitives can easily define a barrier or other synchronization constructs, or
invoke a native routine. CoJVM supports only Java standard features, and adds no
extra synchronization primitive. Since the declaration and synchronization of objects
in the DSM follow the Java model and no extra synchronization primitive is added in
our environment, a standard concurrent application can run without any code change.
Threads created by the application are automatically moved to a remote host, and data
sharing among them are treated following the language specification in a transparent
way. Currently, CoJVM allows one single thread per node due to HLRC’s restriction
but we plan to solve this problem soon.

5 Performance Evaluation

Our hardware platform consists of a cluster of eight 650 MHZ Pentium III PCs
running Linux 2.2.14-5.0. Each processor has a 256 KB L2 cache and each node has
512 MB of main memory. Each node has a Giganet cLAN NIC connected to a
Giganet cLAN 5300 switch. This switch uses a thin tree topology and has an
aggregate throughput of 1.25 Gbps. The point-to-point bandwidth to send 32 KB is
101 MB/s and the latency to send 1 byte is 7.9�s.

Table 1. Sequential times of applications, in seconds

Program Program Size Seq. Time - JVM Seq. Time - CoJVM Overhead
MM 1000x1000 485.77 490.48 0.97 %
LU 2048x2048 2,345.88 2,308.62 0 %

Radix 8388608 Keys 24.27 24.26 0 %
FFT 4194304 Complex

Doubles
227.21 228.21 0.44 %

SOR 2500x2500 304.75 306.46 0.56 %

Table 2. Performance of sequential applications: JVM (first figure) X CoJVM (second figure)

Counter SOR LU Radix FFT
% Load/Store Inst 75.3 / 73.8 86.8 / 90.1 87.4 / 86.0 91.2 / 91.2

% Miss Rate 1.9 / 2.3 1.2 / 6.1 1.2 / 1.2 1.7 / 1.7
CPI 1.83 / 1.83 2.78 / 2.73 1.76 / 1.76 1.85 / 1.85

To quantify the overhead that CoJVM imposes due to modifications of the standard
JVM, we ported four benchmarks from the SPLASH-2 benchmark suite [10]: SOR,
LU, FFT and Radix, and developed one, MM. The sequential execution times for each
application are shown in Table 1. Each application executed 5 times, and the average
execution time is presented. The standard deviation for all applications is less than
0,01%. For all applications, the overheads are less than 1%. We also instrumented
both machines with the performance counter library PCL [11], which collects at
processor level, run-time events of applications executing on commercial
microprocessors. Table 2 presents the CPI (cycles per instruction) of sequential
executions of SOR, LU, Radix, and FFT on the Sun JDK 1.2.2 and on CoJVM (which
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is based on Sun JDK 1.2.2 implementation). The table also presents the percentage of
load/store instructions and data cache level 1 miss rates. Table 2 shows that the
percentage of load/store instructions does not change for FFT, but increases for LU
and decreases slightly for SOR and Radix. However, the increase in the number of
memory accesses in LU does not have a negative impact on miss rate. Indeed, the
miss rate for CoJVM is half of the miss for the standard JVM. CoJVM modifications
to the standard JVM resulted in lower CPI rate for LU while for the other
applications, both CPI were equal.

Table 3 shows application speedups. We can observe that MM achieved an almost
linear speedup while the other applications attained good speedups. Next, we analyze
application performance in detail. In particular, we will compare CoJVM scalable
performance against that of HLRC running the C version of the same benchmarks.

Table 3. Speedups

Program 2 Nodes 4 Nodes  8 Nodes
MM 2.0 4.0 7.8
LU 2.0 3.8 7.0

Radix 1.8 3.5 6.3
FFT 1.8 3.5 6.1
SOR 1.8 3.3 6.8

MM is a coarse grain application that performs a multiplication operation of two
square matrixes of size D. Since there is practically no synchronization between
threads, MM achieved speedup of 7.8 on 8 nodes. MM spent 99.2% of its execution
time doing useful computation and 0.7% waiting for remote pages on page misses.

LU is a single-writer application with coarse-grain access that performs blocked
LU factorization of a dense matrix. LU sent a total of 83,826 data messages and
164,923 control messages. Data message is related to the information needed during
the execution of the application, such as pages that are transmitted during the
execution are counted as data messages. Control is related to the information needed
for the correct work of the software DSM protocol, such as page invalidations.
Compared with the C version, Java sent 28 times more control messages and 20 times
more data messages. LU required almost 1 MB/s of bandwidth per CPU and achieved
speedup of 7 on 8 nodes. Two components contribute to LU’ slowdown: page and
barrier. Page access time increased approximately 23 times, when we compare the
execution on 8 nodes with the execution on 2 nodes. Page misses contributed to 3.6%
of the total execution time. In the C version of LU, page misses contributed to 2.7%
of the execution time. This happened because the number of page misses in Java is 19
times that of C version. Although barrier time increased less than page miss time
(11%), it corresponded to 9.6% of the total execution time, against that of 6.4% in C.

Radix is a multiple-writer application with coarse-grain access that implements an
integer sort algorithm. It sent a total of 1,883 data messages and 2,941 control
messages. Compared with the C version, Java sent 1.9 times less control messages
and 2.9 times less data message. Radix required 1.9 MB/s of bandwidth per CPU and
achieved a good speedup of 6.3 on 8 nodes. Three components contributed to slow
down this benchmark: page, barrier and handler. Page misses contributed to 9% of the
total execution time, barrier to 6.5% and handler to 4.2%. In the C version of the
algorithm, page misses contributed to 8% of the execution, handler to 12.3% and
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barrier to 45%. We observed that in C implementation there were 4.7 times more diffs
created and applied than that of the Java version. The smaller number of diffs also had
impact on the total volume of bytes transferred and on the miss rate of cache level 1.
The C version transferred almost 2 times more bytes than that of Java, and its cache
level 1 miss rate was almost 10 times higher than that of Java.

FFT implements the Fast Fourier Transform algorithm. Communication occurs in
transpose steps, which require all-to-all thread communication. FFT is a single-writer
application with fine-grained access. It sent a total of 68 MB of data, which is 4.7
times more than that of the C version. FFT required 1.8 MB/s of bandwidth per CPU
and achieved speedup of 6.1 on 8 nodes. Page misses and barrier contributed to slow
down this application. Page misses contributed to 15.8% of the total execution time,
while barrier contributed with almost 10.7%. In the C version of the algorithm, page
misses contributed to 18% of the execution and barrier to 3.8%. The miss rate on the
level 1 cache is almost 7 times higher in C than in Java.

Table 4. HLRC statistics on 8 nodes: CoJVM (first figure) versus C (second figure)

Statistic SOR LU Radix FFT
Page faults 21,652 / 1,056 172,101 / 4,348 3,818 / 5,169 20,110 / 9,481
Page misses 690 / 532 81,976 / 4,135 1,842 / 958 15,263 / 3,591
Lock acquired 4 / 0 39 / 0 34 / 24 40 / 0
Lock misses 4 / 0 6 / 0 1 / 24 11 / 0
Diff created 20,654 / 0 79,338 / 0 946 / 4,529 1840 / 0
Diff applied 20,654 / 0 79,337 / 0 946 / 4,529 1840 / 0
Barrier 150 / 150 257 / 257 11 / 11 6 / 6

SOR uses the red-black successive over-relaxation method for solving partial
differential equations. Communication occurs across the boundary rows between
bands and is synchronized with barriers. This explains why the barrier time was
responsible for 13% of execution. In the C version of SOR, barrier time was
responsible for just 2.5% of the execution time. The difference between Java and C
versions is due to an imbalance in computation caused by the high amount of diffs that
Java creates. Because of its optimizations, the C version did not create diffs. Java
created more than 20,000 diffs, which caused an imbalance due the deliver of write
notices at the barrier. Diff is also responsible for 94% of the total data traffic. Data
traffic in Java is 21 times more than in the C version. SOR required 1 MB/s of
bandwidth per CPU and achieved speedup of 6.8 on 8 nodes. We can observe in Table
3 that the speedup obtained from 2 and 4 nodes are worse than those obtained with 4
and 8 nodes, respectively. Further investigation revealed that the larger caches were
responsible for improving speedups.

The above results show that two components are the main responsible for slowing
down the benchmarks: page miss and barrier time. The barrier synchronization time is
mostly caused by an imbalance in execution times between processors. This
imbalance seems to stem mainly from inadequate distribution of pages among nodes,
although false sharing could also affect performance. This imbalanced distribution of
pages among home nodes occurs because usually one thread is responsible for the
initializa-tion of internal objects and fields used during computation. Indeed, the JVM
Specifica-tion establishes that all fields of an object must be initialized with their
initial or default values during the object’s instantiation. In our implementation,
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however, whenever a thread writes to a page for the first time the thread’s node
becomes the page’s home for the entire execution, according to the “first touch” rule
of the HLRC protocol. This ex-plains the imbalance we observed. One immediate
solution is to perform a distributed initialization, which may not be so simple.
Actually, we are studying techniques to fix this problem in a transparent fashion. The
imbalance in the distribution of home nodes impacts also page faults, page misses,
and the creation of diffs - and consequently, the total amount of control and data
messages that CoJVM transfers. This is evident when we compare Java against the C
implementation of the same algorithm (see Table 4). SOR, LU and FFT did not create
diffs in C, while Java created diffs in large amount. Radix is the only exception:
CoJVM created 4.7 times less diffs than C. Finally, we verify the small impact of the
internal CoJVM synchronization on application performance. In SOR, this overhead
was equal to 2.4 ms, i.e., the cost of 4 lock misses. Lock misses occur when the thread
needs a lock (due to a monitor enter operation), but the lock must be acquired
remotely. FFT presented the highest overhead, with 11 locks misses. Surprisingly,
although in Radix CoJVM requested more locks than that of C version, in CoJVM
just 1 lock resulted in overhead, against 24 locks in C. However, in Radix lock
requests did not have any impact on performance.

6 Related Work

In this section we describe some distributed Java systems with implementations based
on software DSM. A detailed survey on Java for high performance computing,
including systems that adopt message-passing approaches, can be found in [12].

Java/DSM [13] was the first proposal of shared-memory abstraction on top of a
heterogeneous network of workstations. In Java/DSM, the heap is allocated in the
shared memory area, which is created with the use of TreadMarks [14], a homeless
LRC protocol, and classes read by the JVM are allocated automatically into the shared
memory. In this regard, CoJVM adopts a similar to approach, but using a home-based
protocol. Java/DSM seems to be discontinued, and did not report any experimental
result. cJVM [15] supports the idea of single system image (SSI) using the proxy
design pattern [16], in contrast to our approach that adopts a software DSM protocol.
In cJVM a new object is always created in the node where the request was executed
first. Every object has one master copy that is located in the node where the object is
created; objects from the other nodes that access this object use a proxy. If an object is
heavily accessed, the node where the master copy is located becomes potentially a
bottleneck. DISK [9] adopts an update-based, object-based, multiple-writer memory
consistency protocol for a distributed JVM. CoJVM differs from DISK in two
aspects: a) CoJVM adopts an invalidate-based approach, and b) we currently adopt a
page-based approach, although our implementation is sufficient flexible to adopt an
object-based or even a word-based approach. DISK detects which objects must be
shared by the protocol and uses this information to reduce consistency overheads.
DISK presents the speedups of two benchmarks, however without analyzing the
results. JESSICA [18] adopts a home-based, object-based, invalidation-based,
multiple-writer memory consistency protocol for a distributed JVM. In JESSICA, the
node that started the application, called console node, performs all the
synchronization operations, which impose a severe performance degradation: for
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SOR, synchronization is responsible for 68% of the execution time, and the
application achieves a speedup of 3.4 on 8 nodes [18]. In CoJVM the lock ownership
is distributed equally among all the nodes participating of the computation, which
contributed to the better performance achieved by our environment. The
modifications made by Jessica in the original JVM impose a great performance
slowdown in sequential application: for SOR, this slowdown is equal to 131%, while
CoJVM almost do not impose any overhead.

7 Conclusion and Ongoing Works

In this work, we introduced and evaluated CoJVM, a cooperative JVM that addresses
in a novel way several performance aspects related to the implementation of DSM in
Java. CoJVM complies with the Java language specification while supporting the
shared memory abstraction as implemented by our customized version of HLRC, a
home-based software DSM protocol. Moreover, CoJVM uses VIA as its
communication protocol aiming to improve Java application performance even
further.

Using several benchmarks we showed that CoJVM achieved speedups, ranging
from 6.1 to 7.8 on 8 nodes. However, we believe that CoJVM can further improve
application speedups. In particular, we noticed that a shared data distribution
imbalance can significantly impact barrier times, page faults, page misses and the
creation of diffs – and consequently, the total amount of control and data messages
that CoJVM transfers unnecessarily. We are studying new solutions to overcome this
imbalance while refining CoJVM to take advantage of the application behavior,
extracted from the JVM during run-time, in order to reduce the overheads of the
coherence protocol. More specifically, a specialized run-time JVM machinery is being
developed to create diffs dynamically, to allow the use of smaller units of coherence,
and to detect automatically reads and writes to the shared memory, without using the
time-expensive virtual-memory protection mechanism.
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