
ASSIST Demo: A High Level, High Performance,
Portable, Structured Parallel Programming

Environment at Work�

M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, M. Danelutto, P. Pesciullesi,
R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo

Dept. of Computer Science – University of Pisa – Viale Buonarroti 2, 56127 Pisa

Abstract. This work summarizes the possibilities offered by parallel
programming environment ASSIST by outlining some of the features
that will be demonstrated at the conference demo session. We’ll
substantially show how this environment can be deployed on a Linux
workstation network/cluster, how applications can be compiled and run
using ASSIST and eventually, we’ll discuss some ASSIST scalability and
performance features. We’ll also outline how the ASSIST environment
can be used to target GRID architectures.

Keywords. Structured parallel programming, skeletons, coordination
languages.

1 Demo Background

ASSIST (A Software development System based on Integrated Skeleton Technol-
ogy) is a parallel programming environment based on skeleton and coordination
language technology [8,9,3,2]. ASSIST provides the user/programmers with a
structured parallel programming language (ASSISTcl), an integrated set of com-
piling tools (astCC) and a portable run time (the actual runtime CLAM, and
the loader/runner assistrun). ASSIST is based on both skeleton and coordina-
tion languages technology, and comes after some other different experiences of
our group related to skeleton based parallel programming [5,4]. It builds on the
experience gained in these projects.

The main goals in the design of ASSIST have been: high level programmabil-
ity, rapid prototyping and suitability for complex multidisciplinary applications;
functional and performance portability across a range of different target archi-
tectures; software reuse and interoperability. These goals have been achieved by
taking a number of design choices and using several different implementation
techniques.
� This work has been partially supported by the National Research Council Coor-
dinated Project CNRC0014B3 “Development environment for multiplatform and
multilanguage high-performance applications, based upon the objects model and
structured parallel programming (Agenzia2000)” and ASI-PQE2000 “Earth obser-
vation application development with High Performance Computing Tools” projects

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 1295–1300, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

1296 M. Aldinucci et al.

Programmability: the coordination language allows programmers to ex-
press both standard skeleton/coordination patterns as well as more complex
parallelism exploitation patterns. This because a new1, general purpose, highly
configurable parallelism exploitation pattern has been included in the language
(the parmod one) and because completely general graphs of parmods can be used
to describe the parallel structure of applications. Furthermore, ASSISTcl allows
a controlled usage of external objects (e.g. existing, possibly parallel, libraries)
after programmer requests

Performance: ASSIST environment design is highly layered. The source
code is first translated into an intermediate “task code”. The task code, in turn,
is compiled to an abstract machine built on top of ACE (Adaptive Coordina-
tion Environment [1]) and AssistLib. ACE provides communication and process
framework. AssistLib is a C++ library implementing specific mechanisms needed
to implement task code on top of ACE. The whole compiler design is based on OO
design pattern technology, thus allowing easily replacement of compiler parts as
well as introduction of new features without affecting the ASSIST support over-
all design. In addition, the whole compile process and both the task code and
the AssistLib level have been carefully optimized in order to avoid any kind of
bottlenecks as well as of overhead sources.

Interoperability and software reuse: all the sequential portions of code
needed to instantiate parmod parallelism exploitation patterns within an AS-
SISTcl program can be written in any of the C, C++ or F77 languages, and
the details a programmer has usually to deal with when using such a program-
ming language mix are handled by the ASSISTcl compiling tools (and further
languages, such as Java, are being taken into account). Furthermore, sequential
portions of code can invoke external CORBA object services, and a whole AS-
SISTcl application could be automatically wrapped into a CORBA object (IDL
code generation is automatic), in such a way that its “parallel services” could
be invoked from outside the ASSIST world. Existing, highly optimized, parallel
scientific libraries can be integrated into ASSISTcl applications in such a way
that they look like “normal” ASSISTcl parmods [7]

Our group is currently working to ASSIST enhancement and evolution within
several National research projects. Within a couple of National Research Coun-
cil Strategy projects the ASSIST environment is currently being migrated on
GRIDs [6]. Further ASSIST environment enhancements are planned within an-
other, three year, large, National Research Council Project (GRID.it). The in-
terested reader can refer to different papers describing ASSIST: [8,9,2,7,6,3].

2 ASSIST Framework Setup

ASSIST currently runs on cluster or networks of workstations. In order to install
ASSIST the user needs to install some separate, public domain software packages.
In particular, ACE, the Adaptive Communication Environment is needed, as well

1 with respect to previously developed skeleton based programming environments

ASSIST Demo 1297

as DVSA, the Distributed Virtual Shared Areas library. The former providing the
basic functions of ASSIST abstract machine, the latter providing the support
for data sharing across network connected processing elements. Both libraries
assume a POSIX TCP/IP framework. ACE runs on both Linux and Windows
or Mac (OS/X) boxes. DVSA originally runs on top of Linux, and is currently
begin tested on the other environments by our research group.

Once these libraries have been configured, the installation of ASSIST is a
matter of a couple of make commands. The correct installation of the ASSIST
package provides user with the astCC and assistrun commands, i.e. the com-
piler and run commands, respectively.

Compiling ASSIST programs. Once an ASSIST program has been produced, us-
ing any available editor, it can be compiled using the astCC command. The
compiler basically produces a set of C++ “object code” files, a kind of con-
figuration file storing an XML representation of the resources needed to run
the program, the makefiles needed to compile actual object code out of these
sources, and eventually executes a sort of make all completing the generation
of actual object code. Several parameters of the astCC command allow, for in-
stance, the source files to be kept after the production of object code, in such
a way the programmer may intervene directly at the “task code” or AssistLib
level, i.e. at the level of the intermediate abstract machine, if needed.

Running ASSIST programs. In order to run an ASSIST executable, the user must
basically perform two steps: first, a CLAM (Coordination Language Abstract
Machine, the one built out of ACE and AssistLib, basically) instance must be
run on the processing elements of the target architecture. This can be done
running by hand the CLAM process onto every node of the target architecture.
ASSIST provides scripts that make this process automatic, once the (IP) names
of the nodes are known. This step can be performed once and forall, as CLAM
is an execution server and it can be invoked multiple times, with different object
codes. Every time, CLAM loads object code, configuration info and provides
to actually run the ASSIST object code. Second, we must issue an assistrun
command. The command accepts as a parameter the XML configuration file
produced by the compiler2 and consequently properly configures CLAM and
actually starts computation.

3 Programmability

The time needed to develop running, scalable ASSISTcl programs is significantly
smaller than the time needed to develop equivalent (both in the functional and
in the performance sense) applications with different, more classical parallel pro-
gramming tools, such as MPI, for instance. The programmer has handy ways
to express simple as well as complex parallelism exploitation patterns. All the
2 and possibly manipulated by the programmer/user

1298 M. Aldinucci et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
tim

e
(s

ec
s)

#PE

support 1.5%
support 1.5% (ideal)

support 1%
support 1.0% (ideal)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

E
ffi

ci
en

cy

#PE

support 1.5%
support 1.0%

Fig. 1. Scalability and efficiency of Apriori data mining application

details needed to implement parallelism exploitation are handled by the compil-
ing tools. Therefore, on the one hand the programmers may write the parallel
structure of the application very quickly, while on the other hand performance
exploitation is in charge of the tools, and again this consistently shortens the
application development time.

4 Performance Results

We experimented different synthetic benchmarks as well as complete applications
written in ASSISTcl. Typical performance numbers got out of Intel/Linux cluster
are depicted in Figure 1 (left). Provided that computational grain is medium
to coarse grain, ASSIST demonstrates good speedup and efficiency. The Figure
plots values achieved running a data mining application exploiting an “a priori”
algorithm.3 In the Apriori code execution, efficiency is constantly more than
80%, as shown in the Figure 1 (right).

5 Interoperability

ASSIST programs can invoke external services/code using several mechanism in-
cluding typical CORBA ones. In particular, any portion of code included in an
ASSIST program may call external CORBA objects methods and a whole AS-
SISTcl program can be wrapped into a CORBA object whose services/methods4

can be called from elsewhere. To demonstrate this feature, we prepared a Nbody
program whose computational intensive part is performed in an ASSISTcl pro-
gram but visualizing results accessing an X display via CORBA. The graphical
output of the program is in Figure 2. The Nbody program is actually a code im-
plementing the naive, n2 algorithm, as the goal there was only to demonstrate
3 The parameters of these runs can be summarized as follows: #DBtransactions =
1236000, average transaction len = 30, #items = 1000. Large item-sets: #patterns
= 2000, average pattern len = 10, correlation between consecutive patterns = 0.5,
average confidence in a rule = 0.75, variation in the confidence = 0.1

4 computation of the parallel program onto a given input data set, actually

ASSIST Demo 1299

Fig. 2. N-body ASSISTcl program interacting with graphic display via CORBA (left)
and assistConf configuration tools (right)

interoperability via CORBA, even in case of small granularity ops (i.e. graphic
display operations).

6 Heterogeneous Target Architecture & GRID

We are currently adapting the ASSISTcl compiling tools to produce object code
for heterogeneous architectures (networks). Due to the structured layered imple-
mentation of the compiling tools of the ASSIST framework, in order to address
heterogeneous architectures we simply have to perform two steps: first, we need
to activate the possibility of delivering external data representation messages
between hosts. ACE has a full support for such “processor neutral” data repre-
sentation but at the moment the marshaling and unmarshaling routines do not
use such feature. Second, we must arrange the makefile production in such a
way that different DLLs (object code) are produced for the different machines
in the target architectures. When all the needed different object codes are avail-
able, the assistrun command may exploit them accordingly to the contents of
the XML configuration file.

Both these tasks do not present any technical difficulty. They have been
postponed only due to lack of human resources (programmers) in the project and
we plan to have a working version of ASSISTcl compiler targeting heterogeneous
architecture by the end of year 2003.5

In the meanwhile, we are moving the whole ASSIST framework to the GRID.
As a first step, a tool has been built [6] that allows to manipulate (within a nice
graphical interface) the XML configuration file according to information taken
from GRID information services, in such a way that ASSISTcl programs can be
eventually run on GRIDs. Figure 2 shows a snapshot of the tool. Actually, most
of the work needed to run ASSISTcl programs on GRID is to be performed by
hand by the programmer. In particular, most of the dynamic features of GRID6

5 development, experiments and debugging is performed on a mixed Linux/Pentium
and MacOS/X/PowerPC machines

6 e.g. resource lookup and reservation

1300 M. Aldinucci et al.

are completely in charge of the programmer interacting with the configuration
tool.

7 Conclusion

We discussed some features of the ASSIST structured, parallel programming
environment, that will be demonstrated during this conference in the new, for
Europar, “demo session”. More precise information concerning ASSIST can be
found in the other papers of our group.

Acknowledgements. We wish to thank people that contributed in different,
essential ways, to the development of ASSIST: R. Baraglia, D. Laforenza, M.
Lettere, D. Guerri, S. Magini, S. Orlando, A. Paternesi, R. Perego, A. Petroccelli,
E. Pistoletti, L. Potiti, N. Tonellotto, L. Vaglini, P. Vitale.

References

1. The Adaptive Communication Environment home page.
http:// www.cs.wustl.edu/ ∼schmidt/ACE-papers.html, 2003.

2. M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, M. Danelutto, P. Pesciullesi,
R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo. A framework for exper-
imenting with structured parallel programming environment design. In Proceedings
of PARCO’03, 2003. to appear.

3. M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. magini, P. Pesciullesi, L.Potiti,
R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo. The implementation of
ASSIST, an Environment for Parallel and Distributed Programmind. In Proceedings
of Europar’03, 2003. to appear.

4. B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: A Struc-
tured High level programming language and its structured support. Concurrency
Practice and Experience, 7(3):225–255, May 1995.

5. B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. SkIE: a heterogeneous
environment for HPC applications. Parallel Computing, 25:1827–1852, Dec. 1999.

6. R. Baraglia, M. Danelutto, D. Laforenza, S. Orlando, P. Palmerini, R. Perego,
P. Pesciullesi, and M. Vanneschi. AssistConf: A Grid Configuration Tool for the
ASSIST Parallel Programming Environment. In Proceedings of the Eleventh Eu-
romicro Conference on Parallel, Distributed and Network-Based Processing, pages
193–200. IEEE, February 2003. ISBN 0-7695-1875-3.

7. P. D’Ambra, M. Danelutto, D. di Serafino, and M. Lapegna. Integrating MPI-Based
Numerical Software into an Advanced Parallel Computing Environment. In Proceed-
ings of the Eleventh Euromicro Conference on Parallel, Distributed and Network-
Based Processing, pages 283–291. IEEE, February 2003. ISBN 0-7695-1875-3.

8. M. Vanneschi. ASSIST: an environment for parallel and distributed portable appli-
cations. Technical Report TR 02/07, Dept. Comp. Sc., Univ. of Pisa, May 2002.

9. M. Vanneschi. The programming model of ASSIST, an environment for parallel and
distributed portable applications. Parallel Computing, 28(12):1709–1732, Dec. 2002.

	Demo Background
	{sf ASSIST} Framework Setup
	Programmability
	Performance Results
	Interoperability
	Heterogeneous Target Architecture & GRID
	Conclusion

