Trading Cycles for Information: Using Replication to
Schedule Bag-of-Tasks Applications on Computational
Grids

Daniel Paranhos da Silva, Walfredo Cirne, and Francisco Vilar Brasileiro

Universidade Federal de Campina Grande, Departamento de Sistemas
e Computacdo, Av. Aprigio Veloso s/n, Bodocongd, 58.109-970.

Campina Grande, PB, Brazil.
{danielps,walfredo, fubica}@dsc.ufcg.edu.br

Abstract. Scheduling independent tasks on heterogeneous environments, like
grids, is not trivial. To make a good scheduling plan on this kind of environ-
ments, the scheduler usually needs some information such as host speed, host
load, and task size. This kind of information is not always available and is often
difficult to obtain. In this paper we propose a scheduling approach that does not
use any kind of information but still delivers good performance. Our approach
uses task replication to cope with the dynamic and heterogeneous nature of grids
without depending on any information about machines or tasks. Our results
show that task replication can deliver good and stable performance at the ex-
pense of additional resource consumption. By limiting replication, however, ad-
ditional resource consumption can be controlled with little effect on perform-
ance.

1 Introduction

Recent years have seen increased availability of powerful computers and high-speed
networks. This fact has made it possible to aggregate geographically dispersed re-
sources for the execution of large-scale resource-intensive applications. This aggrega-
tion of resources has been called a Computational Grid. Grids may be composed by a
wide variety of computers, visualization devices, storage systems and databases, sci-
entific instruments, all connected through combinations of local and wide area net-
works. Furthermore, multiple users can simultaneously use these resources to execute
a variety of large parallel applications. This characterizes grids as being heterogeneous
and very dynamic.

Due to the wide distribution, heterogeneity and dynamicity of grids, loosely cou-
pled parallel applications are better suited for execution on grids than tightly coupled
applications. In particular, one can argue that Bag-of-Tasks (BoT) applications (i.e.
applications whose tasks are completely independent) are the most suitable kind of
application for current grid environments. Moreover, there are many important BoT
applications, including data mining, massive searches (such as key breaking), pa-
rameter sweeps, Monte Carlo simulations, fractals calculations (such as Mandelbrot),

H. Kosch, L. Boszorményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 169-180, 2003.
© Springer-Verlag Berlin Heidelberg 2003

170 D. Paranhos da Silva, W. Cirne, and F.V. Brasileiro

and image manipulation applications (such as tomographic reconstruction). In short,
BoT applications are a class of relevant applications that are well suited for execution
on grids.

However, scheduling BoT applications on grids is still an open problem. Good
scheduling requires good information about the grid resources, which is often difficult
to obtain. Known knowledge-free scheduling algorithms usually have worse perform-
ance than algorithms that have full knowledge about the environment.

We developed the Workqueue with Replication (WQR) algorithm to solve this
problem. WQR delivers good performance without using any kind of information
about the resources or tasks. It basically adds task replication to the classic Workqueue
algorithm to cope with the dynamic and heterogeneous nature of Computational Grids.
When a task is replicated, the first replica that finishes is considered as the valid exe-
cution of the task and the other replicas are cancelled. With this approach we mini-
mize the effects of the dynamic machine load, machine heterogeneity and task hetero-
geneity, and do so without relying on information on machines or tasks. A way to
think about WQR is that it allows us to trade some additional CPU cycles for the need
of information about the resources on the grid.

The performance of WQR is similar or even better than solutions that have full
knowledge about the environment (which is not feasible to obtain in practice), at the
expense of consuming more cycles. In some scenarios, the additional cycles consumed
by WQR are negligible. In the scenarios this is not the case, the extra cycles from
replication can be controlled by limiting replication, a solution that shows little impact
on the performance attained by WQR. Moreover, BoT applications often use cycles
that would otherwise go idle cycles . Thus, trading CPU cycles for the need of
information can be advantageous in practice.

2 Scheduling Bag-of-Tasks (BoT) Applications on Grids

Scheduling applications on such a heterogeneous and dynamic environment like a
Computational Grid is not a trivial task. Some characteristics that are intrinsic to grids
should be considered during the scheduling, such as resource heterogeneity, the dy-
namic nature of the machine and network loads, the bandwidth, latency and topology
of the network.

Of course, how difficult scheduling is, depends on the characteristics of the target
application. Even scheduling BoT applications, which one could think is easy due to
its simplicity, is not a trivial task. Scheduling BoT applications on grids is difficult due
to the dynamic behavior and the intrinsic resource heterogeneity exhibited by most
grids. Grid environments are typically composed by shared resources and thus the
contention created by other applications running simultaneously on these resources
causes delays and degrades the quality of service. Also, resources on grids are hetero-
geneous and may not perform the same way for all applications. Achieving good per-
formance in this situation usually requires the use of good information to make the
scheduling plan.

Unfortunately, due to grid’s very wide distribution, it is usually difficult to obtain
good information about the entire grid. There were some efforts to instrument the grid

Trading Cycles for Information 171

to obtain dynamic information such as host load and network latency and bandwidth
Some initial results are encouragingbut making such monitoring
scale to full grid size involves a number of obstacles Moreover, sometimes it is
not possible to install monitoring systems at the user’s will. Sites often place adminis-
trative restrictions on what can be ran and network traffic is filtered by firewalls. Fi-
nally, monitoring per se is not enough. In order to assure good scheduling, perform-
ance prediction based on monitored values is often desirable, what further complicates
the issue.

Moreover, it is also difficult to obtain information about the tasks (execution time)
to elaborate the scheduling plan. Sometimes the only way to obtain it is to run the task
on a given processor. Of course this strategy only works in cases that all tasks have the
same complexity or are very similar. A task can be executed in all processors and use
its execution time on them to predict the execution time of the remaining tasks.

Despite the difficulties in obtaining good information about both grid resources and
tasks, most efforts in scheduling applications composed by independent tasks assume
good information is available (e.g. .

We developed a dynamic algorithm (WQR) for scheduling BoT applications on
grid environments. This solution does not need any kind of information. WQR will be
detailed in Section . To compare the performance of our solution we considered
only dynamic algorithms because of their better suitability on grids. The algorithms
that we chose to be compared are: Dynamic Fastest Processor to Largest Task First
(Dynamic FPLTF), Sufferage and Workqueue. These algorithms were chosen because
they are well known and studied algorithms. FPLTF is a static scheduler that presents
good performance on dedicated environments Dynamic FPLTF is the result of a
modification we made on static FPLTF to make it adaptive and hence usable on grid
environments. Sufferage has been shown to attain good performance on grids
Workqueue was obviously chosen because our solution extends it.

2.1 Dynamic FPLTF

A good representative of static schedulers for Bag-of-Tasks applications is Fastest
Processor to Largest Task First (FPLTF) However, the dynamicity and hetero-
geneity of resources present on grids make static schedulers not a good solution to be
used on grids. To cope with this problem we changed FPLTF, making it dynamic.
Dynamic FPLTF has a good ability to adapt to the dynamicity and heterogeneity of the
environment. Dynamic FPLTF needs three types of information to schedule the tasks
properly: Task Size, Host Load and Host Speed. Host Speed represents the
speed of the host and its value is relative. A machine that has Host Speed = 2 exe-
cutes a task twice faster than a machine with Host Speed = 1. Host Load repre-
sents the fraction of the machine that is not available to the application. Finally, Task
Size 1is the time necessary for a machine with Host Speed = 1 to complete a task
when Host Load = 0. In the beginning of the algorithm, the Time to Become
Available (TBA) of each host is initialized with 0 and the tasks are sorted by size in a
descending way. Therefore, the largest task is allocated first. A task is allocated to the

172 D. Paranhos da Silva, W. Cirne, and F.V. Brasileiro

host that provides the better completion time CT (CT = TBA + Task Cost, where
Task Cost = (Task Size / Host Speed) / (1 - Host Load)) .

When a task is allocated to a host, the TBA value corresponding to this host is in-
cremented by Task Cost. Tasks are allocated until all machines of the grid are used.
After that, the execution of the application begins. When a task finishes, all tasks that
are not running are unscheduled and rescheduled again until all machines become
used. This scheme continues until all tasks are completed. This strategy tries to mini-
mize the effects of the dynamicity of the grid. A problem would arise if a lightly
loaded machine becomes heavily loaded. This load variation would compromise the
whole application since the tasks scheduled to this machine would execute much
slower. The task rescheduling process corrects this problem by allocating larger tasks
prioritizing the currently faster machines. This scheme leads to a good performance,
as we shall see in Section but requires too much information about the environ-
ment (Task Size, Host Load and Host Speed), making it hard to deploy in
practice.

2.2 Sufferage

The idea behind Sufferage |[1] is that a machine is assigned to a task that would “suf-
fer” the most if that machine would not be assigned to it. The sufferage value of a task
is defined by the difference between its second best and its best completion time (CT).
The sufferage value of each task in the “bag of tasks” is calculated and a task is possi-
bly assigned to the machine that gives its best completion time. If another task was
previously assigned to the machine, the sufferage values of the task previously as-
signed and of the new task are compared. The task that stays in the host is the one that
has the greater sufferage value, the other one returns to the “bag of tasks” to be as-
signed later.

Of course, the sufferage values of each task vary during the application execution
due to the load dynamicity intrinsic in grid environments. To cope with that, we in-
voke Sufferage many times during the execution of an application. Every time a task
finishes, all tasks that have not started yet are unscheduled and the algorithm is in-
voked again, using the current sufferage values. The algorithm runs again to schedule
the remaining tasks, but this time with the updated load of the machines. This scheme
is repeated until all tasks are completed. The problem of this algorithm is the same as
Dynamic FPLTF; it needs too much information to calculate the completion times of
the tasks.

2.3 Workqueue

Workqueue is a knowledge-free scheduler in the sense that it does not need any kind of
information for task scheduling. Tasks are chosen in an arbitrary order in the “bag of
tasks” and sent to the processors, as soon as they become available. After the comple-
tion of a task, the processor sends back the results and the scheduler assigns a new task
to the processor. That is, the scheduler starts by sending a task to every available host.
Once a host finishes its task, the scheduler assigns another task to the host.

Trading Cycles for Information 173

The idea behind this approach is that more tasks will be assigned to the fast/idle
machines while the slow/busy machines will process a small load. The great advan-
tage here is that Workqueue does not depend on performance information. Unfortu-
nately, Workqueue does not attain performance comparable to schedulers based on full
knowledge about the environment, as we shall see in Section . The problem with
Workqueue arises when a large task is allocated to a slow machine towards the end of
the schedule. When this occurs, the completion of the application will be delayed until
the complete execution of this task.

2.4 Workqueue with Replication (WQR)

Due to the difficulty on consistently obtaining good performance information about
grid machines and application tasks, we have decided to implement a scheduling algo-
rithm that is not based on performance information. We call our solution Workqueue
with Replication (WQR), since it basically adds task replication to the Workqueue
algorithm. Its performance is equivalent to solutions that have full knowledge about
the environment (which are not feasible in practice), at the expense of consuming
more cycles.

The WQR algorithm uses task replication to cope with the heterogeneity of hosts
and tasks, and also with the dynamic variation of resource availability due to conten-
tion created by others users. The beginning of the algorithm execution is the same as
Workqueue and continues the same until “the bag of tasks becomes empty”. At this
time, in Workqueue, hosts that finish their tasks would become idle during the rest of
the application execution. Using the replication approach, these hosts are assigned to
execute replicas of tasks that are still running. Tasks are replicated until a predefined
maximum number of replicas is achieved. When a task finishes, its replicas are can-
celled. With this approach, we increase the performance on situations that tasks are
delaying the complete execution because they were assigned to slow/busy hosts. When
a task is replicated, there is a greater chance that a replica is assigned to a fast/idle
host.

Note that the replication assumes that the tasks do not cause collateral effects (e.g.
Database accesses by independent tasks can generate inconsistency). This assumption
is reasonable when talking about grid environments because it is not common to have
this kind of application on environments like that due to their widely distribution.

The good point of our solution is that it does not use information about hosts
(speed, load) or task sizes. The negative point is that to achieve good performance it
wastes CPU cycles with task replicas that are cancelled. That is, the CPU used was not
useful for application processing. As we shall see, however, when the application
granularity is not high, WQR wastes few cycles compared to the cycles need to exe-
cute the application (up to 40% more). Alas, with high application granularity the
extra resource consumption of WQR can be significant (up to 105%, in our experi-
ments). In these cases, replication can be limited, keeping cycle’s wasting below 50%
and still attaining good performance.

In summary, our approach tries to minimize the problem of scheduling independent
tasks in grid environments, while avoiding dependence on any kind of information like

174 D. Paranhos da Silva, W. Cirne, and F.V. Brasileiro

task size and processor performance. This kind of information is helpful to make a
good scheduling plan but it can be difficult to obtain due to the distributed nature of
grids. Further, when it is possible to obtain this information, the predictions for com-
puting and networking resources are not always accurate and reliable.

3 Performance Evaluation

The main objective of our experiments is to evaluate the performance of different
scheduling algorithms. The experiments help to evaluate the influence of the grid
machines heterogeneity (different speeds), the application tasks heterogeneity (size
variation) and the granularity of application tasks (number of tasks per machine).

We performed approximately 8,000 experiments to compare the performance of
different scheduling heuristics for BoT applications. Three other algorithms were
evaluated together with the Workqueue with Replication approach: Workqueue, Dy-
namic Fastest Processor to Largest Task First (Dynamic FPLTF) and Sufferage. Each
experiment consists of six simulations. All algorithms (Workqueue, Dynamic FPLTF,
Sufferage, WQR 2x, WQR 3x and WQR 4x) are simulated with the same set of ma-
chines and tasks. 2x, 3x and 4x denote the maximum amount of replication WQR is
allowed to do.

3.1 Simulation Environment

To run our experiments, we used the Simgrid toolkit [13]. This toolkit provides basic
functions for the simulation of distributed applications in grid environments. In our
work, we make the assumption that the network transfer times are negligible because
we are dealing with applications that have small input/output data. This means either
that the tasks are CPU bound or that large amounts of data have been previously
staged in the grid, as it is common practice for data grid applications . Another
point that has to be emphasized about our experiments is that the information-based
algorithms (Dynamic FPLTF and Sufferage) are fed with perfect data about machines
and tasks, something that is almost impossible in the real world.

All experiments have a fixed value for grid power (sum of processor capacities of
all machines) and application size. The fixed value for the grid power is 1000. That,
for example, could be 1000 machines with power 1. Machine power represents how
fast the hosts can execute tasks. A host with power 2 can execute a "10 seconds task"
in 5 seconds. The fixed value for the application size is 3600000 seconds. In a perfect
world (where all machines are 100% free and all tasks finish simultaneously), this
application could be completed in exactly 1 hour (3600 seconds) within a grid whose
power is 1000. Note that, by fixing grid power and application size, differences in
application completion time can be credited solely to the scheduler.

In order to simulate the heterogeneity of the machines in approximately five years
accordingly to the Moore’s Law, the speed of the machines is taken from the uni-
form distribution U(10-(hm/2), 10+(hm/2)). The possible values for hm are 1, 2, 4, 8
and 16. The major purpose of this distribution is to keep the average speed of all ma-
chines in approximately 10. Thus, the scheduler is made the responsible for the appli-

Trading Cycles for Information 175

cation performance because all grids used in the experiments have roughly the same
number of machines. In particular, sm = I means that the grid is homogeneous (all
machines have speed 10). When hm is equal to 2, the speed of machines varies ac-
cordingly to the uniform distribution U(9, 11) (difference of 2 units, keeping the aver-
age speed in 10) and so on. Machines are added to the grid accordingly to each distri-
bution until the sum of their speeds reaches the grid power which is always 1000
(roughly 100 machines).

The load on each host is simulated by traces obtained from NWS measure-
ments on actual systems. These traces contain the percentage of free CPU as a func-
tion of time. The simulator uses these traces to make machines, in the experiment,
behave similarly to real machines.

The experiments were defined in such a way that it could create 20 different types
of application to be evaluated. The types of applications are divided in four major
groups, where the application granularity varies. The mean task size of these groups
are 1000, 5000, 25000 and 125000 seconds, following an exponential scale.

To simulate the heterogeneity of tasks in each on of the four major groups, the size
of tasks varies, but the mean task size remains the same within the group. The varia-
tion on task sizes can be of 0%, 25%, 50%, 75% and 100% relative to the mean tasks
size of the group. The group of applications whose mean task size is 5000 seconds, for
example, is subdivided in five groups. In one group, all tasks have the same size (5000
seconds, variation 0%), homogeneous tasks. In the group where the variation is 25%,
the time of execution of each task varies accordingly to the uniform distribution
U(4375, 5625) (from 12,5% less than 5000 to 12,5% more than 5000 seconds). For the
group which the variation is 50%, the task sizes follow the uniform distribution
U(3750, 6250) (from 25% less than 5000 to 25% more than 5000 seconds) and so on.
Tasks are added to the application accordingly to each distribution until the sum of
their sizes reaches the application size which is always 3,600,000 seconds.

With the experiments defined this way, we could evaluate not only the influence of
grid resources heterogeneity and tasks heterogeneity, but also the granularity of the
application tasks. Varying the mean sizes of tasks (1000, 5000, 25000 and 125000
seconds), the number of tasks of the applications is also changing as can be seen in

Table 1. Granularity of Application Tasks.

Mean Sizes of Tasks (seconds) # of Tasks Tasks per Machine

1000 3.600 36
5000 720 1.2
25000 144 1,44
125000 29 0,29

The main objective of this variation on the tasks per machine relation is to evaluate
the performance impact on each scheduler when there are much more tasks than ma-

176 D. Paranhos da Silva, W. Cirne, and F.V. Brasileiro

chines (3600 tasks/100 machines) and gradually reduce this relation to a situation
where there is more machines than tasks (29 tasks/100 machines).

3.2 Result Analysis

Figure 1A shows the mean execution time for each scheduling algorithm working on
the four major application groups. Note that each data point summarizes the five levels
of machines heterogeneity and tasks heterogeneity.

The tendency that can be noted in this figure is that, in situations of smaller grain,
the schedulers tend to have closer performances. This is because, when there are many
tasks per machine, dynamic schedulers can keep all processors busy most of the time.
Only during the very end of application execution (when some machines go idle), this
situation changes due to the load unbalance and harms performance. As these grains
grow, however, the differences between the schedulers’ behaviors come up. Accord-
ingly to Figure 1A, WQR achieves better performance than the other schedulers on
applications that have up to 25000 of mean task size. By growing the mean task size,
the trend is that all scheduling algorithms performance become worse because higher
application granularity raises difficulties on the scheduling process. The larger the task
size, the greater chances are that the performance of the machine executing it de-
grades. This machine can be shared among other users making it so slow that the exe-
cution of the whole application becomes impaired. This fact indicates that, schedule a
big task to the faster machine in the moment is not always the best choice.

This phenomenon affects Sufferage and Dynamic FPLTF, algorithms that use in-
formation about the environment and the applications to make their scheduling deci-
sions. As can be seen in Figure 1A, as the mean task size grows these algorithms have
a nearly linear fall in their performances.

Workqueue achieves the same level of Sufferage and Dynamic FPLTF perform-
ances in situations where the grains (mean task size) are small, up to 5000 seconds.
With larger tasks (25000 and 125000 seconds), Workqueue gets worse. This happens
because this algorithm does not have any mechanism to avoid the scheduling of a large
task to a slow machine at the end of the scheduling plan. Workqueue is better when the
number of tasks is considerable higher than the number of machines, more tasks per
machine.

The three WQR versions achieve better performance than the others schedulers in
situations where there are more tasks than machines on the grid, up to 25000 seconds
of mean task size. This better performance can be credited to the replication strategy.
With this strategy, even if a task is initially scheduled to a slow machine, this task can
be replicated on a faster machine and finishes before the “original one”. Furthermore,
even if it does not happen, the impairment to the final execution time can be not so big
because the tasks are not very large. For the applications where the tasks are larger and
the relation tasks per machine is less than 1 (mean task size = 125000 seconds), WQR
does not achieve a good performance. Moreover, Sufferage and Dynamic FPLTF
achieve better performance than WQR. The fall of the performance can be credited to
the high application granularity. In cases like that, a large task and also its replica(s)
can be scheduled to slow machines, impairing the whole application execution.

Trading Cycles for Information 177

Figure 1B exhibits the impact of the grid machines heterogeneity on the schedulers’
performances. Similar as before, each data point summarizes the five levels of tasks
heterogeneity and the four major types of applications.

Workqueue does not achieve a good performance compared to the others schedul-
ers, but shows some constancy on its performance while the machines heterogeneity
level is less or equal to 8. On level 16, its performance is considerably worse. This
happens because, as higher is the heterogeneity, higher can be the difference of a fast
machine and a slow one. Choosing a slow machine to execute a large task causes a
great impact on application execution time.

< 10t =it
35 - ! - 4 T
—— Dymamiz FPLTF T —— Doynamic FPLTF
Sunerage — Sufferage
3| | —— Warkqueus e 1 . o
- WaQR 2 - Eald
WAaR 3x
. - WAk dx =
T2
£ A |E L
g s g
g o /|
] f Eor
15 ; o g
i i L = —~f
& # e w —_— -
5 e / 5 —+—
I Py S
£ - ’_/ p, p
= PR L S
0sF g 1 e — -
-]
A e R T T =
0 5 . . .
1000 000 25000 1325000 1 2 [] 3 16
Appkcalion G mrulanty Machnes Heteroaeneity
‘
10
25% : - : 120 .
et N 100
—— Dymamic FRLTF
= Sutierage 3
2 I Workeue =
i —* WQR 2x A
H WER 3 z
: G WOR b E s
5 z® e
= = -
£ = e
éu é @ e
s | g
i —-=..=—._———u-'——’—"_;"_ 3 -
g -
=
1 ! . . A =
0 i3 5 i3 100 1000 000 5000 125000
Task s Heteragensty Aaplication Granudanty

Fig. 1. (A) Schedulers Performance by Application Granularity. (B) Shedulers Performance by
Machines Heterogeneity. (C) Schedulers Performance by Tasks Heterogeneity. (D) Percentage
of Wasted CPU Cycles by Application Granularity

Although with better numbers, WQR displays a trend similar to Workqueue. Up to
the level 8 of machines heterogeneity, WQR performance maintains practically unal-
tered. At the level 16 of machines heterogeneity, WQR suffers a fall of performance,
but it is very slightly compared to the Workqueue’s fall. Nevertheless, WQR perform-
ance can be increased using more replicas, reducing the fall. This fall occurs due to the
same reason of Workqueue but its effects are minimized due to the replication strategy
used by WQR. Large tasks assigned to slow machines can be replicated to faster ma-
chines and finish before the “original ones”.

178 D. Paranhos da Silva, W. Cirne, and F.V. Brasileiro

The Sufferage and Dynamic FPLTF have an almost inverse behavior related to the
machines heterogeneity variation. Growing the level of grid machines heterogeneity,
the performance of these algorithms gets better. On level 16, both performances over-
come WQR. This performance improvement achieved by these algorithms can be
credited to the ability of choosing powerful machines to execute the larger tasks.
Small tasks assigned to slow machines do not have a relevant impact on application
execution time.

Figure 1C shows the impact of application tasks heterogeneity on the performance
of the scheduling algorithms. On this chart, Workqueue confirms again its poorer per-
formance quality compared to the remainder algorithms.

Sufferage and Dynamic FPLTF achieve closer results, but the second one suffers
the least the impact of different sizes of tasks. The Dynamic FPLTF better results can
be credited to its ability to order the application tasks by their sizes (the larger tasks
are firstly assigned). Prioritizing “the task that suffers the most” to make the schedul-
ing plan, the Sufferage algorithm not always prioritize larger tasks. The 2x version of
WQR achieves a performance very similar to Dynamic FPLTF, proofing that it is a
good alternative when it is not possible to obtain information about the environment
and application. Increasing the replication level (3x and 4x), WQR still achieves better
results. These two versions overcome the performance of the algorithms that use in-
formation about the environment and application to make the scheduling plan.

To achieve the great results presented above, WQR wastes CPU cycles with the
replication, as shown in Figure 1D. The percentage of wasted CPU cycles is obtained
from the division of the total cycles wasted with replicas by the total of cycles con-
sumed (wasted and useful).

The cycles waste is considerably smaller for applications with 1000 and 5000 sec-
onds of mean tasks sizes, achieving less than 5% of wasting. This percentage increases
when the mean tasks sizes grows to 25000 seconds, but still the percentage of wasted
cycles does not exceeds 40%. In the 125000 seconds category of applications, the
percentage of wasted CPU cycles can exceed 100%. The increase of cycles wasting
when the application granularity grows occurs due to the quick start of replication.
When the application has small grains, the replication only starts after executing many
tasks of the application and the fraction of time that the remaining tasks represent is
small. When the application has large grains (e.g. 125000, more machines available
than application tasks), the replication starts immediately wasting more cycles. Nev-
ertheless, the replication can be limited to 2x and the percentage of wasting cycles can
be maintained fewer than 50% as shown in the figure.

3.3 Implementation

We are finishing the process of implementing Workqueue with Replication (WQR) as
part of MyGrid, a user-level tool for running BoT applications on grids So far,
we have been able to observe that MyGrid’s overhead for task starting and cancella-
tion is small. For tasks created “nearby” (the scheduler and the remote machine within
the same local network), task overhead has not exceeded 7 seconds in 300 trials. For
tasks created “far away” (the scheduler in Campina Grande, Brazil and the remote

Trading Cycles for Information 179

machine in San Diego, USA), task overhead has not exceeded 17 seconds within 300
trials. Since the overhead has been small (compared to task size) and stable (has not
changed much with the trials), we think it will not affect our results. In fact, since the
overhead is stable, we could just include it in the task execution time, little changing
our experiments.

4 Conclusions

In this paper we have proposed the Workqueue with Replication (WQR) task schedul-
ing algorithm for computational grids. WQR targets Bag-of-Tasks applications, which
are composed by independent tasks with no inter-task communication. WQR is similar
to the classic Workqueue algorithm, but when hosts would otherwise go idle, they are
used to compute replicas of the tasks that are still running. The idea here is that among
a set of task replicas, the first one to finish is considered as being the normal execution
of the task in question and the other copies are killed to make the hosts available.

WQR is not based on any kind of performance information, yet unlike other knowl-
edge-free approaches, achieves good and consistent performance. This good perform-
ance is attained with additional increase in resource consumption to compensate the
fact that WQR does not base its scheduling plan on information about machines and
tasks. It is important to note that this additional resource consumption can be con-
trolled by limiting replication, a solution that has little impact on performance. We
feel that WQR is an important and practical contribution to a real problem. We are
currently deploying WQR as part of MyGrid. Our hope is that this effort will
enable more people to effectively compute on the grid.

Future work will be based on improvements to our grid model, including modeling
file transfers present in I/O intensive applications that have not staged their data. A
failure model will be included to encompass problems that make machines unavail-
able. We will also study the emergent behavior caused by multiple instances of our
scheduler in the same grid. Of course, additional resource consumption imposes
greater total load on the grid. On the other hand, individual applications finish earlier
with WQR leaving a less loaded grid for applications that arrive in the future. Finally,
we will try a simulation-based perfect algorithm to make a performance comparison
with the replication approach. The idea is to determine a lower bound for our sched-
uling problem.

References

[1] H. Casanova, A. Legrand and D. Zagorodnov et al. Heuristics for Scheduling Parameter
Sweep Applications in Grid Environments. HCW. 2000.

[2] W. Cirne, D. Paranhos and L.Costa et al. Running Bag-of-Tasks Applications on Compu-
tational Grids: The MyGrid Approach. Submitted for publication. April 2003.

[3] R.Dragan. The Meaning of Moore’s Law.
http://www.pcmag.com/article2/0,4149,4092,00.asp. Online on February 14 2003.

[4] W. Elwasif, J. Plank and R. Wolski. Data Staging Effects in Wide Area Task Farming
Applications. IEEE ISCC and the Grid, Brisbane, Australia, May 2001.

180

(5]
(6]
(7]
(8]
(9]
[10]

[11]
[12]

[13]
[14]

D. Paranhos da Silva, W. Cirne, and F.V. Brasileiro

P. Francis, S. Jamin and V. Paxson et al. An Architecture for a Global Internet Host
Distance Estimation Service. Proceedings of IEEE INFOCOM, 1999.

H. James, K. Hawick and P. Coddington. Scheduling Independent Tasks on Metacom-
puting Systems. The University of Adelaide. DHPC-066, 1999.

M. Litzkow, M. Livny, and M. Mutka. Condor: A Hunter of Idle Workstations. Proc. 8th
International Conference of Distributed Computing Systems, pp. 104—111, 1988.

B. Lowekamp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste, and J. Subhlok. A Re-
source Query Interface for Network-Aware Applications. 7" TEEE HPDC, July 1998.

M. Maheswaran, S. Ali and H. Siegel et al. Dynamic Matching and Scheduling of a Class
of Independent Tasks onto Heterogeneous Computing Systems. HCW, 1999.

D. Menascé, D. Saha and S. Porto et al. Static and Dynamic Processor Scheduling Disci-
plines in Heterogeneous Parallel Architectures. JPDC, pp. 1-18. 1995.

MyGrid Web Page. http://dsc.ufcg.edu.br/mygrid/. Online on February 14" 2003.

J. Plank, M. Beck and W. Elwasif et al. The Internet Backplane Protocol: Storage in the
network. In NetStore '99: Network Storage Symposium. Internet2, October 1999.

Simgrid. http://grail.sdsc.edu/projects/simgrid/. Online on February 14" 2002.

R. Wolski. Dynamically Forecasting Network Performance Using the Network Weather
Service. Cluster Computing, 1(1): 119-132, 1998.

	Introduction
	Scheduling Bag-of-Tasks (BoT) Applications on Grids
	Dynamic FPLTF
	Sufferage
	Workqueue
	Workqueue with Replication (WQR)

	Performance Evaluation
	Simulation Environment
	Result Analysis
	Implementation

	Conclusions
	References

