
Efficient Dynamic Load Balancing Strategies for
Parallel Active Set Optimization Methods�

I. Pardines1 and Francisco F. Rivera2

1 Dept. Arquitectura de Computadores y Automática, Univ. Complutense,
28040 Madrid, Spain
inmapl@dacya.ucm.es

2 Dept. Electrónica y Computación, Univ. Santiago de Compostela,
15782 Santiago de Compostela, Spain

fran@dec.usc.es

Abstract. In this paper three strategies are described to restore dynam-
ically the load balancing in parallel active set optimization algorithms.
The efficiency of our proposals is shown by comparison with other heuris-
tics described in related works, such as the classical Bestfit and Worstfit
methods. The computational cost due to the load unbalancing in the
parallel code and the communication overheads associated with the most
efficient load balancing strategy are analyzed and compared in order to
establish whether the distribution is convenient or not. Experimental re-
sults on a distributed memory system, the Fujitsu AP3000, highlight the
accuracy of our estimations.

1 Introduction

Active set methods are based on a prediction (called working set) of the active
constraints at the solution. The working set may change at each iteration, adding
or deleting one constraint, which means adding or deleting a column of the Hes-
sian matrix [3]. The addition is performed according to a cyclic distribution of
columns among the processors. Therefore in this operation the load balance is
maintained. However, deleting columns are a source of imbalance when the prob-
lem variables and its computations are distributed in a parallel implementation.

Our parallel algorithm works with a triangular matrix R (being RT R the
Hessian approximation of the system) that is divided into triangular and rectan-
gular blocks [6]. The computations of a rectangular block are executed in parallel
whereas the computations of the triangular blocks are sequential. After the ex-
ecution of each rectangular block a synchronization between all the processors
of the system is needed. Initially, the system is completely balanced, but after a
number of iterations it is possible that columns, belonging to the same rectan-
gular block, are deleted. When the load unbalancing decreases the efficiency of
the parallel code, an effective strategy to redistribute the columns between the
processors is essential.
� This work was supported by CICYT under grants TIC 2002/750 and TIC 2001-
3694-C02.

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 206–211, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Efficient Dynamic Load Balancing Strategies 207

2 Dynamic Load Balancing Strategies

The load redistribution problem described in this paper is a NP-hard problem
similar to the Multiple Knapsack problems [5]. A set of processors, called donors
(D), have extra loads in terms of the number of columns. The value of the
unbalancing load wi of each donor i is stored in an array called weight array
(W ). In the system there are other processors, called receivers (R), with under
the average load, so they have the capacity to receive load. The value of this
lack of load cj per receiver j is saved in an array called capacity array (C). W
and C are organized in a decreasing order.

Similar redistribution problems appeared in the literature. These problems
try to minimize the total number of messages [4]. However, the objective of our
methods is to balance the system minimizing the maximum number of receptions
and the maximum number of sent messages per processor. So, we have to deal
with a combinatorial optimization problem that can be formalized as follows:

minimize max{max
∑

i∈D xij ∀j ∈ R, max
∑

j∈R xij ∀i ∈ D}
subject to

∑
i∈D wi(j)xij = cj , j ∈ R;∑
j∈R wi(j) = wi, ∀i ∈ D;

xij ∈ {0, 1}, i ∈ D, j ∈ R,

(1)

where
∑

i∈D xij is the number of messages received by processor j,
∑

j∈R xij is
the number of messages sent by processor i, and wi(j) is the load that processor
i sends to processor j. Finally, xij is 1 if there is a message between donor i and
receiver j, and 0 otherwise.

Three strategies are proposed to solve this optimization problem: the Load
Donor Strategy (LDS), the Load Receiver Strategy (LRS) and the Load Hybrid
Strategy (LHS), which are introduced in the next sections.

2.1 Load Donor Strategy

Two different stages are distinguished in this greedy method. Firstly, equal
weights and capacities are searched in W and C, respectively. The perfect sit-
uation is based on finding a weight wi identical to a capacity cj . So, just one
message between the corresponding donor and receiver processors is necessary.

In the second stage, the weight and capacity arrays are swept making matches
between processors trying to balance the remaining computational load. In the
process a suitable capacity is searched for each element of the weight array. There
are two situations:

1. The value of the first element of W is greater than all the elements of
C (w1 > cj ,∀j ∈ R). In this case, the processor with load w1 sends
cj = maxk∈R{ck} columns to the processor with the greatest capacity. The
remaining load, w1 − cj columns, has to be stored again in the proper posi-
tion of W . The objective is to minimize the maximum number of sends per
processor. If a donor redistributes as many columns as possible in a single
message, the number of messages needed to achieve the load balancing tends
to be minimum.



208 I. Pardines and F.F. Rivera

2. Element w1 is smaller than c1. In this case, a capacity cj that equals w1 is
searched. If this capacity exists, a message is established. On the other hand,
if there is not such capacity, the selection will be made among the processors
with capacity cj that verify,

cj − w1 > mink∈D{wk} . (2)

In this way, very small capacities that imply short messages are avoided.
So, the possibilities that a donor has to divide its load into a large number
of messages is reduced, thereby minimizing the maximum number of sends.
The receiver, verifying equation 2, will be that which has already received
the minimum number of messages. The aim is to avoid an increase in the
maximum number of receptions per processor. In case equation 2 is not
satisfied, the receiver processor will be the one with the greatest capacity.
This process is repeated until there are no entries to match in W and C.

2.2 Load Receiver Strategy

This method is basically the same as the LDS strategy, but the priority is to
minimize the maximum number of receptions per processor. Therefore, the tech-
nique is the same as the one described in section 2.1, swapping the roles of the
weight and capacity arrays.

2.3 Load Hybrid Strategy

The idea behind this proposal is to combine the previous strategies. The objective
is to minimize the maximum number of both sends and receptions per processor.
So, it will be the selected heuristic for our parallel algorithm. The first stage is
the same in the three methods, searching for equal weights and capacities in W
and C. In the second stage, two cases are distinguished:

1. Element w1 of W is smaller than the greatest capacity (c1). In this case,
the LDS strategy is applied. Therefore, a capacity cj such as cj − w1 >
mink∈D{wk} is searched. The processor with such a capacity that has re-
ceived the minimum number of messages is selected.

2. Element w1 is greater than capacity c1. Then, the LRS strategy is used to
minimize the maximum number of receptions. A processor with the min-
imum number of sent messages and a weight wi verifying the condition
wi − c1 > mink∈R{ck} is searched. This processor will send its extra load to
the processor that needs c1 columns to achieve the load balancing.

3 Estimated Cost of the Load Hybrid Strategy

In order to make the parallel algorithm efficient, the computational cost due to a
load unbalancing and the cost due to the application of the LHS strategy have to



Efficient Dynamic Load Balancing Strategies 209

be estimated. Then, the parallel algorithm can decide whether the unbalancing
effect is strong enough to apply the load balancing method or not.

If the system is unbalanced, the execution time of the parallel algorithm
is determined by the processor with the greatest computational load. As the
parallel code needs synchronizations after the computation of each rectangular
block, the study of the imbalance can be reduced to these blocks. So, the cost
due to imbalance per block can be defined as the time that the most overloaded
processor needs to compute the excess of columns over the balancing situation
(Cmax). Considering that each column inside a block is composed by αP elements
[6], being P the number of processors of the system, and α ∈ IN a parameter.
The computational cost per block due to imbalance is,

unbalancing(block) = Cmax · (au + bu · αP ) . (3)

The cost of the LHS strategy can be established as

cost(LHS) = T1 + T2, (4)

where T1 is the execution time of the LHS heuristic, and T2 is the communication
time, defined as the time spent by the processor with the maximum number of
sends or receptions obtained by the LHS heuristic.

T1 depends on the number of times that W and C are swept. As the number
of messages can not be known until the strategy is applied, we have decided to
assume the worst case to model it, i.e. when the number of messages is equal to
P-1. Therefore, as each iteration means a message, the estimated cost will be,

T1 = cost(iter) · (P − 1) . (5)

To compute T2, it is necessary to know the maximum number of sends or
receptions and the cost of a message. The number of messages per processor
is not known a priori. However, a study over a wide set of examples has been
made, with the result that for the LHS strategy the more probable value for the
maximum number of sent messages or receptions is 3. So, we assume that the
number of messages per processor is 3. Therefore, the communication time will
be modeled as,

T2 = 3 · cost(message) . (6)

The cost of a message depends on its size. Different linear fits amen +bmen ·n,
being n the message size, have been obtained for the AP3000 [1]. Then, the cost
of a message can be estimated when its size is known. Assuming that the excess
load is Cmax, and being 3 the maximum number of messages that a processor
sends or receives, each message will have an estimated size of,

n = (elements/column) · (columns) · (bytes/element) = αP · �Cmax

3
� · 8 . (7)

The complexity of the algorithm is O(P log P ).



210 I. Pardines and F.F. Rivera

4 Results

A wide set of 1740 synthetic examples was used to study the efficiency of the
proposed strategies. A comparison with the Bestfit (BF) and Worstfit (WF)
heuristics, and a greedy method called Pairs Inside While Loop (PIWL) [4] can
be seen in Table 1. For each method, a column with the total number of times,
over the 1740 examples, that the best solution of the optimization problem is
obtained is shown. In most of the cases, this solution is achieved for various
heuristics at the time. However, in some occasions, only one method obtains
the best result. The number of times that this happens is shown in parenthesis.
Note that as the number of processors increases, our strategies achieve the best
solution most number of the times, outperforming dramatically WF and BF
methods. The heuristic that most times achieves the minimum value of the
objective function is highlighting in bold.

Table 1. Number of times over the 1740 examples that each heuristic obtain the best
solution of the optimization problem

P LDS LRS LHS PIWL BF WF

4 290 290 290 290 290 281
8 230 226(6) 232 231 193(10) 181(15)
16 239(5) 247(14) 242 238 84(6) 81(9)
32 230(19) 234(31) 227 226 27(2) 26(3)
64 202(27) 214(32) 211(4) 190(1) 28(4) 16
128 179(40) 179(32) 202(10) 173(5) 24(3) 15
TOTAL 1370 1390 1404 1348 646 600

On the other hand, the accuracy of the estimation cost of our load balancing
strategy has been validated in the AP3000 with 8 processors. The quality of the
estimation of the unbalancing cost and the LHS strategy is verified for different
sizes of the rectangular blocks. As an example, results for α = 4 and α = 10 are
shown in Fig. 1.

Analyzing the results, we can conclude that for small values of α, the esti-
mated cost of the LHS strategy differs from the heuristic real cost in case of
great imbalance. However, as α increases, the LHS strategy predicts more ac-
curately the real heuristic behavior. The reason is that in a balanced situation,
each processor has α columns. So, for small α (Fig. 1(a)), great imbalance (high
Cmax values) implies that many processors lose its load completely. Therefore,
the greatest loaded processor has to send probably more than 3 messages to
restore balance. For large values of α (Fig. 1(b)), it is reasonable to estimate the
total number of messages as 3. However, as our estimation is highly accurate
for small imbalances, independently of α, the intersection point of the estimated
imbalance and LHS strategy cost lines is very close to the real intersection point.
The intersection is achieved for small unbalancing values, being even smaller as



Efficient Dynamic Load Balancing Strategies 211

0.0e+00

2.0e−04

4.0e−04

6.0e−04

8.0e−04

1.0e−03

1.2e−03

1.4e−03

0 5 10 15 20 25

T
im

e(
s)

Cmax

Real unbalance
Real LHS strategy

Estimated unbalance
Estimated LHS strategy

0.0e+00

2.0e−04

4.0e−04

6.0e−04

8.0e−04

1.0e−03

1.2e−03

1.4e−03

0 2 4 6 8 10

T
im

e(
s)

Cmax

Real unbalance
Real LHS strategy

Estimated unbalance
Estimated LHS strategy

Fig. 1. Comparison between real and estimated cost of the LHS strategy for different
block sizes. (a) α = 4, (b) α = 10

α or P increases, because in this case the computational load is greater and the
imbalance will be more significant and expensive. Therefore, it is convenient to
execute the load redistribution in almost every case.

5 Conclusions

In this work three load balancing strategies are proposed. Our methods focus on
minimizing the maximum number of sends and receptions in order to reduce the
communication cost. Improvements with respect to WF, BF and PIWL heuristics
have been achieved. An estimation of the cost due to imbalances and of the cost
of our LHS strategy has been established to know when it is better to redistribute
the computational load. The comparison between them and the estimated results
shows the high accuracy of the prediction. Moreover, it is proved that the load
redistribution will be realized in practically all the cases.

References

1. Blanco, V. et al.: Performance of Parallel Iterative Solvers: a Library, a Prediction
Model and a Visualization Tool. Journal of Information Science and Engineering,
Vol. 8 5 (2002) 763–785.

2. Gill, Philip E., Murray, Walter, Wright, Margaret H.: Practical Optimization. Aca-
demic Press, London (1981).

3. Gill, Philip E., Murray, Walter, Wright, Margaret H.: Numerical Linear Algebra and
Optimization. Volume 1. Addison-Wesley Publishing Company, California (1991).

4. Haglin, David J., Ford, Rupert W.: The Message-Minimizing Load Redistribution
Problem. Journal of Universal Computer Science, Vol. 7 4 (2001) 291–306.

5. Martello, Silvano, Toth, Paolo: Knapsack Problems: Algorithms and Computer Im-
plementations. Wiley Interscience Series in Discrete Mathematics and Optimization.
John Wiley & Sons, New York (1990).

6. Pardines, I., Rivera, F.F.: Parallel Quasi-Newton Optimization on Distributed Mem-
ory Multiprocessors. Parallel Computing: Advances and Current Issues. Proceedings
of ParCo2001. Imperial College Press, London (2002) 338–345.


	Introduction
	Dynamic Load Balancing Strategies
	Load Donor Strategy
	Load Receiver Strategy
	Load Hybrid Strategy

	Estimated Cost of the Load Hybrid Strategy
	Results
	Conclusions



