
H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 297–302, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Finding Free Schedules for Non-uniform Loops

Volodymyr Beletskyy and Krzysztof Siedlecki

Faculty of Computer Science, Technical University of Szczecin, Zolnierska 49 st.,
71-210 Szczecin, Poland, fax. (+4891) 487-64-39
{vbeletskyy, ksiedlecki}@wi.ps.pl

Abstract. An algorithm, permitting us to build free schedules for arbitrary
nested non–uniform loops, is presented. The operations of each time schedule
can be executed as soon as their operands are available. The algorithm requires
exact dependence analysis. To describe and implement the algorithm and to
carry out experiences, the dependence analysis by Pugh and Wonnacott was
chosen where dependences are found in the form of tuple relations. The
algorithm can be applied for both non-parameterized and parameterized loops.
The algorithm proposed has been implemented and verified by means of the
Omega project software.

1 Introduction

The larger number of transformations has been developed to expose parallelism in
loops, minimize synchronization, and improve memory locality in the past, for
example, [3]-[8], [11]. Most of those transformations permit us to extract parallelism
from both uniform and non-uniform loops. But the question is how much loop
parallelism these approaches extract.

The general problem of the loop parallelism detection is as follows. Dependences
in loops can be represented in different ways, with approximations in general, or with
an exact representation when possible. For each dependence representation based on
approximations (level of dependences, uniform dependences, polyhedral
representation of dependences), optimal algorithms exist, but for exact affine
dependences, it is not known what are the loop transformations that extract maximal
parallelism [5].

Following Vivien [14], we imply that an algorithm extracting parallelism is
optimal if it finds all parallelism: 1) that can be extracted in its framework; 2) that is
contained in the representation of the dependences it handles; 3) that is contained in
the program to be parallelized (not taking into account neither the dependence
representation used nor the transformations allowed).

This paper presents an algorithm permitting us to find free schedules for arbitrary
nested non-uniform loops. This algorithm is optimal and find all parallelism in a loop
represented by the instances of statements.

Our approach is based on non-linear schedules that can be implemented with
procedures using a set of routines for manipulating linear constraints over integer
variables, Presburger formulas, integer tuple relations and sets, and the code

298 V. Beletskyy and K. Siedlecki

generation routines for generating code to scan the points in the union of a number of
convex polihedra.

2 Background and Definitions

In this section, we in brief attach well-known knowledge to better explain our
algorithm for finding free schedules for non-uniform loops.

In this paper, we deal with affine loop nests where lower and upper bounds as well
as array subscripts and conditionals are affine functions of surrounding loop indices
and possibly of structure parameters, and the loop steps are known constants.

Following work [14], we refer to a particular execution of a statement for a certain
iteration of the loops, that surround this statement, as an operation.

Two operations J and I are dependent if both access the same memory location and
if at least one access is a write. We refer to I and J as the source and destination of the
dependence, respectively, provided that I accesses the same memory location earlier
than J (I � J).

Definition 1. An affine loop nest is non-uniform if it originates non-uniform
dependence relations represented by an affine function f that expresses the
dependence sources I in terms of the dependence destinations J (I=f(J)) or the
converse.

Definition 2[13]. A dependence anlisys is exact if for any affine dependence it
detects a dependence if and only if one exists.

To describe the algorithm and carry out experiences, we chose the dependence
analysis proposed by Pugh and Wonnacott [13] where dependences are presented with
dependence relations.

Definition 3[13]. A dependence relation is a mapping from one iteration space to
another, and is represented by a set of linear constraints on variables that stand for the
values of the loop indices at the source and destination of the dependence and the
values of the symbolic constants.

Definition 4[5]. A free schedule assigns operations as soon as their operands are
available, that is, mapping σ:I→Z such that





∈+
∈

=
.)’,’),’(max(

’..’
)(

ppIpp1

pptsIpnoisthereif0
p

�

�

σ
σ

(1)

The free schedule is the "fastest" schedule possible. Its total execution time is

)),(max(1 IppqT freefree ∈+= . (2)

The algorithm proposed in this paper is applicable for loops that meet the
requirements of the dependence analysis by Pugh and Wonnacott [13].

To follow the material of this paper, the reader should be familiar with the
operations on tuple relations such as: union, difference, range, domain, application as
well as existentially quantified variables. This knowledge is comprised in [9].

Finding Free Schedules for Non-uniform Loops 299

3 Free Schedules for Arbitrary Nested Loops

We will refer to the source of a dependence as the fair dependence source if it is not a
destination of any other dependence.

We define the length of a chain of synchronization between a pair of dependent
operations as N-1, where N is the maximal number of the operations which this chain
connects, that is, it is the maximal number of the direct value based dependences [13]
originated by this pair of the dependent operations.

The idea of the algorithm presented in this section is as follows. We divide all
operations for each statement into two sets containing the independent and dependent
operations (sources and destinations of dependences), respectively. For the second set,
we firstly find those operations for which all operands are available. They form the
operations of layer Lay[0] to be executed firstly. Next, we eliminate from the second
set the operations of Lay[0] and find again those operations for which all operands are
available. We repeat this process until there are no operations in the second set. The
operations of the first set can be combined with the operations of arbitrary levels.

In imperfectly nested loops, statements may have different domains, and, in
general, to find free schedules, we should deal with each statement independently. To
generate resulting code, we should find free schedules for all statements
independently, and next combine the same layers (including operations belonging to
the same schedule time), originated by different statements, into one resulting layer.

Algorithm 1. Find the free schedule for an arbitrary nested loop
1. Find all cross-iteration dependences as well as the dependences originated by

statements within the loop body. Build two sets of the dependences for each
statement j, j=1,2,...,n. The first one, S1j includes the dependence relations whose
destinations are the instances of statement j. Let the relations of S1j be R1kj,
kj=1,2,...,nj, nj is the number of the dependence relations in S1j. The second set, S2j

includes the dependence relations whose sources are originated with statement j.
For each statement j do:
2. Find the sources of the dependences as the domains of the relations, belonging to

set S2j, and unite them into one set Ij.
3. Find the destinations of the dependences as the ranges of the relations, belonging to

set S1j, and unite them into one set Jj.
4. Find the independent statement instances INDj, that is, those that do not belong to

any pair of the dependences as follows INDj:=ISj-Ij-Jj, where ISj is the set
representing the iteration space of statement j.

5. Find all fair dependence sources FSj as the difference between Ij and Jj. Sets FSj

form the layer of the operations (Lay[0]j) which should be executed firstly.
6. Find the dependence destinations that are linked with the fair dependence sources

by a chain of synchronization of length one or more as follows
L1kj:=R1kj(FS(R1kj)), kj=1,2,...,nj, where R1kj are found in step 1, FS(R1kj) are the
sets of the fair dependence sources that are the sources of the dependences
represented with relations R1kj. Unite sets L1kj into one set L1j.

7. Find the dependence destinations that are linked with the fair dependence sources
by a chain of synchronization of length two or more as follows D1kj:=R1kj(J(R1kj)),
kj=1,2,...,nj, where J(R1kj) are the sets of the dependence destinations that are the

300 V. Beletskyy and K. Siedlecki

dependence sources represented with relations R1kj. Unite sets D1kj into one set
D1j.

8. Find the operations belonging to the first layer as Lay[1]j:=L1j-D1j.
End for each
9. Find the second and remaining layers of the dependence destinations as follows:

i=2;
Loop:
For each j

Jj:=Jj-Lay[i-1]j; – elimination of the dependence
destinations belonging to layer i-1
and originated by the instances of
statement j;

Likj:=R1kj(Lay[i]j(R1kj)),
kj=1,2,...,nj;

– finding the dependence destinations
that are linked with the fair
dependence sources by a chain of
synchronization of length i or more,
Lay[i]j(R1kj) are the sets representing
the operations of layer i and are the
sources of the dependences
represented with relations R1kj;

unite sets Likj into one set Lij;
Dikj:=R1kj (J(R1kj)),
kj=1,2,...,nj;

– finding the dependence destinations
that are linked with the fair
dependence sources by a chain of
synchronization of length i+1 or
more;

unite sets Dikj into one set Dij;
Lay[i]j:=Lij-Dij; – finding the dependence destinations

that are linked with the fair
dependence sources by a chain of
synchronization of length i;

End for each
if each Lay[i]j ==False then the end; else i=i+1; goto Loop;

The independent operations INDj can be combined with arbitrary layers. In our
implementation, we unite them with the fair dependence sources to build Lay[0]j.

4 Parameterized Loops

The algorithm presented permits us to find free schedules not only for the loops with
the known loop bounds before compilation but also for parameterized loops.

Following the algorithm presented, we can try to find the given number m of
parameterized layers for a loop. If there are no operations in a certain layer i ≤ m, this
means that the loop is characterized by the constant number of layers and each of
them can be presented in a parameterized form. The procedure described permits us to
reveal whether the number of layers is irrelevant to the size of a loop. If such a loop is

Finding Free Schedules for Non-uniform Loops 301

detected, code may be generated with a complexity that does not depend on the loop
size.

But the main problem that requires further research is how to find the number of
layers for parameterized loops in the general case.

If the number of layers does not depend on the size of a loop, we can present the
free schedule in a symbolic way and generate corresponding code with a complexity
that depends on the loop but not on the volume of the computation it describes.

When there exist only two layers under a free schedule, this means that there are no
operations that simultaneously are the sources and destinations of dependences. Such
a case can be very easily reviled. We should form the set of the dependence sources
and the set of the dependence destinations originated with all loop statements and next
find the intersection of these sets. If the result is FALSE, this means that there exist
only two layers of operations under the free schedule.

It is worth to note that in the case when a loop exposes the constant number of
layers, its free schedule may be much faster than the best affine schedule. Consider
the following example [7]:

Table 1. Example of parallelizing the parametrized loop

Sequential code Parallel code, our algorithm

 for (i=0; i≤2*n; i++)
 a[i]=a[2*n-i];

par for (i=0; i≤n-1; i++){
 a[i]=a[2*n-i];

 a[2*n-i]=a[i]; }

if (n ≥ 1) a[n] = a[2*n-n];

The best affine schedule for this loop is i/2 [7], that is, the number of the layers
yielded with this schedule equals to n. The algorithm presented finds only two layers
for this loop. The first and second statements in the parallel code presented in Table 1
originate the fair dependence sources (Lay[0]) and the first layer (Lay[1]),
respectively; the condition statement represents the independent operations.

5 Related Work and Conclusion

The approaches presented in [1], [12] build an explicit graph of a subset of the
iteration space, with each node representing the instance of a statement. Free
schedules can be found by searching the graph, but the problem regarding boundary
cases exists. We use tuple relations as an abstraction for data dependences. This
permits us to reach all the same merits that discussed in [10]: handle non-uniform
dependences and multidimensional loops without having to make special checks in
boundary conditions. But, in contrast to work [10], our technique does not require the
calculation of the transitive closure of relations.

Concerning parallelism detection, the following facts are known. If the level of
dependences is the only available representation, then Allen and Kennedy’s algorithm
is known to be optimal [2]. For the case of a single statement with uniform
dependences, linear scheduling (optimized Lamport’s hyperplane method) is
asymptotically optimal [4]. For the case of several statements with uniform

302 V. Beletskyy and K. Siedlecki

dependences, the previous result has been extended in work [8] to show that a linear
schedule plus shifts leads to finding optimal parallelism. For the case of the
polyhedral approximations of dependences, the method described in [3] is optimal.
For affine dependences, the most powerful algorithm is Feautrier’s one [6]. But as
mentioned by Feautrier, it is not optimal for all codes with affine dependences.
However, among all possible affine schedules, it is optimal [14]. For affine
dependences, the index splitting approach is known [7]. But it is a heuristic
procedure, and it is not known how much index splitting is necessary, hence it is not
known how many different code structures must be generated to reach optimality.

The technique presented in this paper is a first step to understand the problem of
free schedules for loops with affine dependences. It permits us to find free schedules
for both non-parameterized and parameterized loops but it does not answer what in
general is the number of layers under the free schedule for a parameterized loop.

References

[1] Chen, D.-K.: Compiler optimizations for parallel loops with fine- grained
synchronization. Technical report TR-1863, Department of Computer Science,
University of Illinois at Urbana-Champaign, (1994)

[2] Darte and Vivien, F.: On the optimality of Allen and Kennedy’s algorithm for parallelism
extraction in nested loops. Journal of Parallel Algorithms and Applications, Special issue
on Optimizing Compilers for Parallel Languages, (1997) 12:83–112

[3] Darte and Vivien, F.: Optimal Fine and Medium Grain Parallelism Detection in
Polyhedral Reduced Dependence Graphs. International Journal of Parallel Programming,
25(6), (1997) 447–496

[4] Darte and Khachiyan, L. and Robert, Y.: Linear Scheduling is Nearly Optimal. Parallel
Processing Letters, 1(2), (1991) 73–81

[5] Darte, A., Robert, Y., Vivien, F.: Scheduling and Automatic Parallelization. Birkhäuser
Boston, (2000)

[6] Feautrier, P.: Some efficient solutions to the affne scheduling problem, part II,
multidimensional time. Int. J. of Parallel Programming, 21(6), (December 1992)

[7] Feautrier, P., Griebl, M. and Lengauer, C.: Index Set Splitting. International Journal of
Parallel Programming, 28(6), (2000) 607–631

[8] Patrick Le Gouëslier d'Argence: Affine Scheduling on Bounded Convex Polyhedric
Domains is Asymptotically Optimal. TCS 196(1–2), (1998) 395–415

[9] Kelly, W., Maslov V., Pugh, W., Rosser, E., Shpeisman, T. and Wonnacott, D.: The
Omega Library Interface Guide. Technical Report CS-TR-3445, Dept. of Computer
Science, University of Maryland, College Park, (March 1995)

[10] Kelly, W., Pugh, W., Rosser, E. and Shpeisman, T.: Transitive Closure of Infinite Graphs
and its Applications, International Journal of Parallel Programming, v. 24, n. 6,
(December 1996) 579–598

[11] Lim, W., Lam, M. S.: Maximizing parallelism and minimizing synchronization with
affine transforms. In Conference Record of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, (January 1997)

[12] Midkiff, S.P. and Padua, D.A.: A comparison of four synchronization optimization
techniques. In Proc. 1991 IEEE International Conf. on Parallel Processing, (August 1991)
II-9–II-16

[13] Pugh, W., Wonnacott D.: An Exact Method for Analysis of Value-based Array Data
Dependences. Workshop on Languages and Compilers for Parallel Computing, (1993)

[14] Vivien F.: On the optimality of Feautrier's scheduling algorithm. In Proceedings of the
EUROPAR'2002, (2002)

	1 Introduction
	2 Background and Definitions
	3 Free Schedules for Arbitrary Nested Loops
	4 Parameterized Loops
	5 Related Work and Conclusion
	References

