
A Parallel Algorithm for Incremental Compact
Clustering�

Reynaldo Gil-Garćıa1, José M. Bad́ıa-Contelles2, and Aurora Pons-Porrata1

1 Universidad de Oriente, Santiago de Cuba, Cuba
{gil,aurora}@app.uo.edu.cu

2 Universitat Jaume I, Castellón, Spain
badia@icc.uji.es

Abstract. In this paper we propose a new parallel clustering algorithm
based on the incremental construction of the compact sets of a collection
of objects. This parallel algorithm is portable to different parallel archi-
tectures and it uses the MPI library for message-passing. We also include
experimental results on a cluster of personal computers, using synthetic
data generated randomly and collections of documents. Our algorithm
balances the load among the processors and tries to minimize the com-
munications. The experimental results show that the parallel algorithm
clearly improves its sequential version with large sets of data.

1 Introduction

Clustering algorithms are widely used for document classification, clustering of
genes and proteins with similar functions, event detection and tracking on a
stream of news, image segmentation and so on. Given a collection of n objects
characterized by m features, clustering algorithms try to construct partitions or
covers of this collection. The similarity among the objects in the same cluster
should be maximum, whereas the similarity among objects in different clus-
ters should be minimum. The clustering algorithms have three main elements,
namely: the representation space, the similarity measure and the clustering cri-
terion.

In many applications, the collection of objects is dynamic, with new items
being added on a regular basis. An example of these applications is the event
detection and tracking of streams of news. Classic algorithms need to know all
the objects in order to perform the clustering and so, each time we modify the
set of objects, it is necessary to cluster the whole collection again. Thus, we need
algorithms able to update the clusters each time a new object is added to the
data without rebuilding the whole set of clusters. This kind of algorithms are
called incremental.

Many recent applications involve huge data sets that cannot be clustered in
a reasonable time using one processor. Moreover, in many cases the data cannot
� This work was partially supported by the Spanish CICYT projects TIC 2002-04400-

C03-01 and TIC 2000-1683-C03-03.

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 310–317, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



A Parallel Algorithm for Incremental Compact Clustering 311

be stored in the main memory of the processor and it is necessary to access the
much slower secondary memory. A solution to this problem is to use parallel
computers that can deal with large data sets and reduce the time of algorithms
that can be very expensive. Parallel versions of some clustering algorithms have
been developed, such as Kmeans [1], MAFIA [2], or GLC [3].

In this paper we propose a parallel incremental algorithm that finds the
clusters as the compact sets in a collection of objects. This algorithm distributes
the same number of objects in each processor and then balances the workload to
perform in each one. The parallel algorithm was tested in a cluster of personal
computers connected through a Myrinet network. Experimental results show a
good behaviour of the parallel algorithm that clearly reduces the sequential time.
Moreover, we have achieved near linear speedups when the collection of objects
and the number of features are large.

The remainder of the paper is organized as follows. Section 2 describes the
main features of the incremental compact algorithm. Section 3 includes the para-
llel algorithm. Section 4 shows the experimental results. Finally, conclusions are
presented in Section 5.

2 Incremental Compact Algorithm

Incremental clustering algorithms update the clusters every time a new object
arrives. They could be less efficient than the non-incremental algorithms if the
whole collection is initially known. However, incremental algorithms are useful if
they are more efficient when new objects are added in a regular basis. Some incre-
mental algorithms have been developed, including, Single-Pass [4], incremental
K-Means [5] and Stars algorithm [6]. The main drawback of these algorithms
is that the obtained clusters depend on the arrival order of the objects. This is
an undesirable characteristic because the clusters do not depend on the arrival
order of the objects, but they only depend on the internal features of the data.

The incremental compact clustering algorithm [7] incrementally constructs
the existing compact sets in a collection of objects. This algorithm is based on
graphs and it produces disjoint clusters. Two objects are β0-similars if their
similarity is greater or equal to β0, where β0 is an user-defined parameter. We
call maximum β0-similarity graph (max−S) to the oriented graph whose vertices
are the objects to cluster and there is an edge from vertex oi to vertex oj , if oj is
the most β0-similar object to oi. The compact sets are the connected components
of the max − S graph disregarding the orientation of the edges.

The compact algorithm stores the maximum β0-similarity of each object
and the set of objects connected to it in the max − S graph. Every time a
new object (o) arrives, its similarity with each object of the existing clusters is
calculated and the graph is updated. The arrival of o can change the current
compact sets, because some new clusters may appear and others that already
exist may disappear. Therefore, after updating the max−S graph, the compact
sets are rebuilt starting from o and the objects in the compact sets that become



312 R. Gil-Garćıa, J.M. Bad́ıa-Contelles, and A. Pons-Porrata

unconnected. The compact sets that do not include objects connected with o
remain unchanged.

During the graph updating task the algorithm constructs the following sets:

– ClustersToProcess: A cluster is included in this set if it has any object o′ that
satisfies the following conditions: 1) o is the most β0-similar to o′ and the
objects that were its most β0-similars are not anymore. 2) o′ had at least two
most β0-similars objects or o′is the most β0-similar to at least another object
in this cluster. This set includes the clusters that could lose its compactness
when the objects with the previous characteristics are removed from the
cluster. Thus, these clusters must be reconstructed.

– ObjectsToJoin: An object o′ is included in this set if it satisfies: 1) o is the
most β0-similar to o′ and the only object that was the most β0-similar to o′

is not anymore. 2) o′ is not the most β0-similar to any object of its cluster.
The objects in this set will be included in the same compact set as o.

– ClustersToJoin: A cluster is included in this set if it is not in ClustersTo-
Process and it has at least one object o′ that satisfies one of the following
conditions: 1) o′ is the most β0-similar object to o. 2) o is one of the most
β0-similar objects to o′, that is, o is connected to o′ and no edge of o′ is bro-
ken in the max−S graph. All the objects in ClustersToJoin will be included
in the same compact set than o.

The main steps of the algorithm are the following:

1. Arrival of the new object o.
2. Updating of the max − S graph.

For each object oi in the existing clusters, its similarity with o is calculated
and the set of objects connected with oi and its maximum β0-similarity are
updated. Calculate the maximum β0-similarity of o and the set of objects
connected with it. The sets ClustersToProcess, ObjectsToJoin and Cluster-
sToJoin are constructed. Every time an object is added to ObjectsToJoin it
is removed from the cluster in which it was located before.

3. Reconstruction of the compact sets.
Let C be a set including o and all the objects included in the clusters in
ClustersToProcess. Construct the existing compact sets in C and add them
to the existing cluster list.
Add all the objects in ObjectsToJoin and all the objects included in the
clusters in ClustersToJoin to the compact set including o. The clusters in
ClustersToProcess and in ClustersToJoin are removed from the existing clus-
ter list.

This algorithm is O(n2). Its main advantage over other incremental algorithms is
that the generated set of clusters is unique, independently of the order of incom-
ing objects. Besides, this algorithm makes no irrevocable cluster assignments.
Thus, the mistakes made at the beginning, when little information is available,
could be corrected. Another advantage of this algorithm is that it can deal with
mixed incomplete object descriptions. On the other hand, the algorithm is not
restricted to the use of metrics to compare the objects. It has been succesfully
applied to the online event detection in a collection of digital news [8].



A Parallel Algorithm for Incremental Compact Clustering 313

3 Incremental Compact Parallel Algorithm

Our parallel algorithm uses a message-passing architecture and a master-slaves
model, where one of the processors acts as the master during some phases of
the algorithm. The data is distributed among the processors, so that processor
i stores the description of object j if i = j mod p. This data partition tries to
balance the load among the processors in order to improve the efficiency of the
parallel algorithm. Each processor also stores the maximum β0-similarity of each
of its objects and the indexes of the objects connected to it in the max−S graph.
Besides, each processor maintains a list of clusters (compact sets) and a list of
its objects in each cluster. With this distribution of the data, a processor only
stores information about the clusters containing any of its objects.

When a new object o arrives, each processor computes the similarity of all its
objects with o and updates its part of the graph. This updating process requires
the exchange of some information with other processors. The clusters that can
lose their compactness are determined during this process. While updating the
graph, each processor constructs the sets ClustersToProcess, ObjectsToJoin and
ClustersToJoin in the same way as they are constructed in sequential algorithm.
Besides, each processor constructs the set LostEdges, that contains the pairs of
objects (o′, o′′), where o′ is an object of the processor, o′′ is an object of another
processor and the edge between them in the max − S graph is broken.

Then the compact sets are reconstructed starting from the new object and
the objects included in the clusters of ClustersToProcess. Each processor, using
its objects in the clusters of ClustersToProcess, constructs the compact subsets
that can be formed. For each one of these subsets, a new set called Arrival is
constructed. This set contains all the objects that do not belong to the compact
subset but are connected to an object in this subset. Observe that, the set Arrival
will only contain objects of other processors. Afterwards, processor 0 constructs
the new compact sets using the compact subsets in all the processors and their
associated Arrival sets. If a compact subset contains at least one object included
in the Arrival set of another compact subset, then both subsets are merged into
the same compact set and its associated Arrival set is formed. The main steps
of the parallel algorithm are the following:

1. Processor 0 broadcasts the description of the new object o.
2. Updating of the maximum β0-similarity graph.

– On each processor do:
For each object in the processor, its similarity with o is calculated and
its maximum β0-similarity and the set of objects connected to it in the
max − S graph are updated. The sets ClustersToProcess, ObjetsTo-
Join and LostEdges are constructed. Every time an object is added to
ObjectsToJoin, it is removed from the cluster in which it was located
before. Construct the set ClustersToJoin by including the clusters with
objects in the processor for which o is added to its set of maximum β0-
similarity objects. Construct the set To which contains the objects in the
processor for which o is its most β0-similar, and construct the set From



314 R. Gil-Garćıa, J.M. Bad́ıa-Contelles, and A. Pons-Porrata

which contains the objects in the processor that are the most β0-similar
to o. Also compute MaxSem, the maximum β0-similarity to o of any of
the objects in the processor.

– Join the sets ClustersToProcess and LostEdges of each processor in
order to form GlobalClustersToProcess and GlobalLostEdges.

– The processor in which o is stored gathers the sets From and To and the
values MaxSemi, calculates MaxSemo = max {MaxSemi}, i = 1, ..., p,
stores the edges of o and broadcasts MaxSemo.

– Each processor updates ClustersToJoin and its edges with o using From,
MaxSemo, GlobalClustersToProcess and GlobalLostEdges.

3. Reconstruction of the compact sets.
– On each processor do:

C = set of objects in the clusters included in GlobalClustersToProcess.
If the processor owns o, add o to the set C. Form the existing compact
subsets in C and their associated Arrival sets.

– Join the sets ClustersToJoin of each processor in order to form Global-
ClustersToJoin.

– Processor 0 gathers all the compact subsets and their associated Arrival
sets. It constructs the compact sets and broadcasts them.

– Each processor updates its clusters and adds the objects in GlobalClus-
tersToJoin or in ObjectsToJoin to the cluster including o. The clusters
in GlobalClustersToJoin or in GlobalClustersToProcess are removed.

Some of the main features of our parallel algorithm are the following:

1. The load is balanced because each processor works with approximately n
p

objects and it computes approximately the same quantity of similarities.
Also the max − S graph is distributed and it is updated in parallel.

2. The compact sets that change due to the arrival of the new object are con-
structed in parallel. The construction of the sets GlobalClustersToProcess
and GlobalLostEdges are carried out in parallel. The construction of the set
GlobalClustersToJoin and the compact sets are carried out in parallel too.

4 Performance Evaluation

The target platform for our experimental study is a cluster of personal computer
connected through a Myrinet network. The cluster consists of 32 Intel Pentium
II-300MHz processors, with 128 Mbytes of SDRAM each one. The communica-
tion switch has a latency of 16.1 milliseconds and the bandwidth is 1 Gb/sec.
The algorithms have been implemented on a Linux operating system, and we
have used an used a specific implementation of the message-passing library MPI
that offers small latencies and high bandwidths on the Myrinet network. We
have executed the parallel algorithm varying the number of processors from 2 to
20.

First, we have performed an experimental analysis of the parallel algorithm
using synthetic data generated randomly in R

m. The number of objects varies



A Parallel Algorithm for Incremental Compact Clustering 315

in 10000, 50000 and 200000. The number of features of the objects varies in 2,
8, 16, 64 and 128 and β0 = 0.5. The values of the features have been generated
so that the average density of the synthetic sets is the same for all data sets.
The similarity measure used was Sim(oi, oj) = 1

1+D(oi,oj)
, where D(oi, oj) is the

euclidean distance between oi and oj .
Another experimental analysis was carried out using two document collec-

tions of articles published in the Spanish newspaper “El Páıs” during June 1999.
The first collection consist of 554 international articles. The second contains 2463
articles belonging to the sections Opinion, Health, National, International, Cul-
ture and Sports. The documents are represented using the traditional vectorial
model. The terms of documents represent the lemmas of the words appearing in
the texts. Stop words, such as articles, prepositions and adverbs are disregarded
from the document vectors. Terms are statistically weighted using the normal-
ized term frequency (TF). These data sets are of very high dimensionality. In
our experiments the β0 threshold used was 0.25 and to compare the documents
we use the cosine measure.

Fig. 1. Speedups of the synthetic and document data sets.

Figure 1 shows the speedup behavior of the document data sets and the
synthetic data when its size is varied in a 8 dimensional data space. From the
plot it can be seen that we have achieved near linear speedups for up to a certain
number of processors depending on the data size. This is due to the algorithm
being heavily data parallel and the computation time decreasing linearly with
the increase in the number of processors. Parallelism reduces computation time
for up to a certain number of processors depending on the data size, after which



316 R. Gil-Garćıa, J.M. Bad́ıa-Contelles, and A. Pons-Porrata

communication overhead overshadows computational gain. The higher the data
size, the greater the speedup for the same number of processors. Although the
document data size is small compared to the our synthetic data sets, the obtained
speedups are larger. We think that this behaviour is due to the computation
time of the similarity measure between documents being much greater than the
computation time of the similarity measure between objects.

Fig. 2. Speedups of the synthetic data with a fixed data size.

Further, we set the data size and vary the dimensionality of the data. As it
can be noticed in Figure 2, the speedup increases with the growth of the data
dimensionality for the same number of processors. The data size taken in this
experiment was small. If a similar experiment with larger data size is carried
out, greater speedups are obtained and the maximum speedup for a fixed data
is reached in a bigger number of processors.

5 Conclusions

In this paper we presented an efficient parallel algorithm that implements an
incremental method to determine the compact sets in a collection of objects.
The generated set of clusters is unique, independently of the objects arrival
order of the objects. Another advantage of this algorithm is that it can deal
with mixed incomplete object descriptions. On the other hand, the algorithm
is not restricted to the use of metrics to compare the objects.The proposed
parallel algorithm can be used in many problems such as the event detection



A Parallel Algorithm for Incremental Compact Clustering 317

tasks, in the knowledge discovery problems and others. Besides, the resulting
parallel algorithm is portable, because it is based on standard tools, including
the message-passing library MPI.

We have implemented and tested the parallel code in a cluster of personal
computers. The experimental evaluations on a variety of synthetics and real data
sets with varying dimensionality and data sizes show the gains in performance.
The obtained results show a good behaviour of the parallel algorithm that clearly
reduces the sequential time. Moreover, we have achieved near linear speedups
when the collection of objects and the number of features are large. The main
reason for this behaviour is that we have tried to minimize the communications
and to balance the load on the processors by carefully distributing the objects
and the tasks that each processor performs during each step of the algorithm.

References

1. Dhillon, I. and Modha, B. A.: Data Clustering Algorithm on Distributed Memory
Multiprocessor. Workshop on Large-scale Parallel KDD Systems (2000) 245–260.

2. Nagesh, H., Goil, S. and Choudhary, A.: A Scalable Parallel Subspace Clustering
Algorithm for Massive Data Sets. International Conference on Parallel Processing
(2000) 447–454.

3. Gil-Garćıa, R. and Bad́ıa-Contelles, J.M.: GLC Parallel Clustering Algorithm. In
Pattern Recognition. Advances and Perspectives. Research on Computing Science
CIARP’2002 (In Spanish), México D.F., November (2002) 383–394.

4. Hill, D. R.: A vector clustering technique. Samuelson (ed.), Mechanized Information
Storage, Retrieval and Dissemination, North-Holland, Amsterdam (1968).

5. Walls, F., Jin, H., Sista, S. and Schwartz, R.: Topic Detection in Broadcast news.
Proceedings of the DARPA Broadcast News Workshop (1999) 193–198.

6. Aslam, J., Pelekhov, K. and Rus, D.: Static and Dynamic Information Organization
with Star Clusters. Proceedings of the 1998 Conference on Information Knowledge
Management CIKM 98, Baltimore, MD (1998).

7. Pons-Porrata, A., Ruiz-Shulcloper, J., Berlanga-Llavori, R. and Santiesteban-
Alganza, Y.: An Incremental Clustering Algorithm to find partitions with mixed
data. In Pattern Recognition. Advances and Perspectives. Research on Computing
Science, CIARP’2002 (In Spanish). México D.F., November (2002) 265–276.

8. Pons-Porrata, A., Berlanga-Llavori, R. and Ruiz-Shulcloper, J.: Detecting events
and topics by using temporal references. Lecture Notes in Artificial Intelligence
2527, Springer Verlag (2002) 11–20.


	Introduction
	Incremental Compact Algorithm
	Incremental Compact Parallel Algorithm
	Performance Evaluation
	Conclusions



