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Abstract. We consider the use of a cluster of PC servers for Application
Service Providers where applications and databases must remain autonomous.
We use data replication to improve data availability and query load balancing
(and thus performance). However, replicating databases at several nodes can
create consistency problems, which need to be managed through special
protocols. In this paper, we present a lazy preventive data replication solution
that assures strong consistency without the constraints of eager replication. We
first present a peer-to peer cluster architecture in which we identify the
replication manager. Cluster nodes can support autonomous, heterogeneous
databases that are considered as black boxes. Then we present the multi-master
refresher algorithm and show all system components necessary for
implementation. Next we describe our prototype on a cluster of 8 nodes and
experimental results that show that our algorithm scales-up and introduces a
negligible loss of data freshness (almost equal to mutual consistency).

1   Introduction

Clusters of PC servers provide a cost-effective alternative to tightly-coupled multiprocessors.
They make new businesses such as Application Service Providers (ASP) economically viable.
In the ASP model, customers’ applications and databases (including data and DBMS) are
hosted at the provider site and need to be available, typically through the Internet, as efficiently
as if they were local to the customer site. Thus, the challenge is to fully exploit the cluster’s
query parallelism and load balancing capabilities to improve performance. The typical solution
is to replicate applications and data at different nodes so that users can be served by any of the
nodes depending on the current load. This arrangement also provides high-availability since, in
the event of a node failure, other nodes can still do the work. This solution has been
successfully used by, for example, Web search engines using high-volume server farms (e.g.,
Google). However, Web sites are typically read-intensive which makes it easier to exploit
parallelism. In the ASP context, the problem is far more difficult [1] since applications can be
update-intensive. Replicating databases at several nodes, so they can be accessed by different
users through the same or different applications in parallel, can create consistency problems [4].
___________________________
* Work partially funded by the Leg@net RNTL project.
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Nevertheless, replication is the best solution to efficiently manage high transaction
loads by exploiting parallelism.

In this paper, we present a data replication solution that assures strong consistency
for parallel query processing in a cluster of autonomous databases. There are two
basic approaches to manage data replication: eager and lazy. With Eager replication
(e.g. Read-One-Write All – ROWA [9]) whenever a transaction updates one replica,
all other replicas are updated inside the same transaction. Therefore mutual
consistency of replicas and strong consistency1 are enforced; however it violates
system autonomy.

With lazy replication [4], a transaction can commit after updating one replica copy
at some node. After the transaction commits, the updates are propagated to the other
replicas, and these replicas are updated in separate transactions. Hence, the property
of mutual consistency is relaxed and strong consistency is eventually assured. A
major virtue of lazy replication is its easy deployment. In addition, lazy replication
has gained considerable pragmatic interest because it is the most widely used
mechanism to refresh data in several emerging distributed application environments
[7]. In this paper, we focus on a particular lazy replication scheme, called multi-
master, adapted for PC clusters.

In lazy replication, a primary copy is stored at a master node and secondary copies
are stored in slave nodes. A primary copy that may be stored at and updated by
different master nodes is called a multi-owner copy. These are stored in multi-owner
nodes and a multi-master configuration2 (or lazy group) consists of a set of multi-
owner nodes on a common set of multi-owner copies.

This paper makes several contributions. First, we introduce architecture for
processing user requests to applications into the cluster system and discuss our
general solutions for submitting transactions and managing replicas. Second, we
propose a multi-master refresher algorithm that prevents conflicts, by exploiting the
cluster’s high speed network, thus providing strong consistency, without the
constraints of eager replication. We also show the architectural components necessary
to implement the algorithm. Third, we describe the implementation of our algorithm
over a cluster of 8 nodes and present experimental results that show that it scales-up
and introduces a negligible loss of data freshness.

The rest of the paper is structured as follows. Section 2 presents the ASP cluster
architecture in which we identify the role of the replication manager. Section 3
presents the refreshment management issues including the principles of the refresher
algorithm and the architectural components necessary for its implementation. Section
4 describes our prototype over a cluster of 8 nodes and show our performance model
and experiments results. Section 5 compares our work with the most relevant related
work. Finally, section 6 concludes the paper.

                                                          
1 For any two nodes, the same sequence of transactions is executed in the same order.
2 In addition to the multi-master that we consider in this paper, there are other lazy cluster

configurations such as lazy master and hybrid. Our research addresses these as well, but
space limitations force us to focus only on multi-master.
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2   Multi-master Cluster Architecture

In this section, we discuss the system issues and solutions when using the multi-
master refreshment management to refresh multi-owner copies in a cluster of
replicated databases. We introduce the architecture for processing user requests
against applications into the cluster system and discuss our general solutions for
placing applications, submitting transactions and managing replicas. Therefore, the
replication layer is identified together with all other general components.

Shared-nothing is the only architecture that supports sufficient node autonomy
without the additional cost of special interconnects. Thus, we exploit a shared-nothing
architecture. Each cluster node is composed of five layers (see Figure 1): Request
Router, Application Manager, Transaction Load Balancer and Replication Manager.
We discuss these in the following. A request may be a query or update transaction on
a specific application.

The general processing of a user request is as follows. When a user request arrives
at the cluster, traditionally through an access node, it is sent randomly to a cluster
node. There is no significant data processing at the access node to avoid bottlenecks.
Within that cluster node, the user is authenticated and authorized through the Request
Router, available at each node, using a multi-threaded global user directory service.
Notice that user requests are managed completely asynchronously. Next, if a request
is accepted, then the Request Router chooses a node j, to submit the request. . The
choice of j involves selecting all nodes in which the required application is available,
and, among these nodes, the node with the lightest load. Therefore, eventually i may
be equal to j. The Request Router then routes the user request to an application node
using a traditional load balancing algorithm.

Fig. 1. Cluster Architecture

Notice, however, that the database accessed by the user request may be placed at
another node k since applications and databases are both replicated and not every
node hosts a database system. In this case, the choice regarding node k will depend on
the cluster configuration and the database load at each node.

A node load is specified by a current load monitor available at each node. For each
node, the load monitor periodically computes application and transaction loads using
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traditional load balancing strategies. For each type of load, it establishes a load grade
and multicasts the grades to all the other nodes. A high grade corresponds to a high
load. Therefore, the Request Router chooses the best node for a specific request using
the node grades.

The Application Manager is the layer that manages application instantiation and
execution using an application service provider. Within an application, each time a
transaction is to be executed, the Transaction Load Balancer layer is invoked which
triggers transaction execution at the best node, using the load grades available at each
node. The “best” node is defined as the one with lightest transaction load.

The Replication Manager layer manages access to replicated data and assures
strong consistency in such a way that transactions that update replicated data are
executed in the same serial order at each node. Transaction execution is managed by
the local transaction of each DBMS. Therefore the ACID (atomicity, consistency,
isolation, durability) properties [9] are ensured. The Replication Manager signals to
the Transaction load balancer whenever a transaction commits or abort. Afterwards
the transaction load balancer signals the Application Manager the same event. We
employ data replication because it provides database access parallelism for
applications. Our preventive replication approach, implemented by the multi-master
refreshment algorithm, avoids conflicts at the expense of a forced waiting time for
transactions, which is negligible due to the fast cluster network system.

3   Multi-master Refreshment

In this section, we present, in more detail, multi-master refreshment with its algorithm
and system architecture. In a first step we consider fully replicated multi-master
configurations3. We assume that the network interface provides a global FIFO reliable
multicast: messages multicast by one node are received at the multicast group nodes
in the order they have been sent. We denote by Max, the upper bound of the time
needed to multicast a message from a node i to any other node j [3]. We also assume
that each node has a local clock. For fairness reasons, clocks are assumed to have a
drift and to be ε-synchronized [3]. This means that the difference between any two
correct clocks is not higher that the ε (known as the precision). We now describe the
multi-master refresher algorithm.

To define the algorithm, we need a formal correctness criterion to define strong
consistency. In Multi-Master configurations, inconsistencies may arise whenever the
serial orders of two multi-owner transactions at two nodes are not equal. Therefore,
multi-owner transactions must be executed in the same serial order at any two nodes.
Thus, Global FIFO Ordering is not sufficient to guarantee the correctness of the
refreshment algorithm. Hence the following correctness criterion is necessary:

Definition 3.1 (Total Order). Two multi-owner transactions MOT1 and MOT2 are said
to be executed in Total Order if all multi-owner nodes that commit both MOT1 and
MOT2 commit them in the same order.

                                                          
3 N multi-master nodes. Each node stores the same set of multi-owner copies.
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Proposition 3.1. For any cluster configuration C that meets a multi-master
configuration requirement, the refresh algorithm that C uses is correct if and only if
the algorithm enforces total order.

We now present the refresher algorithm. Similar to [8], each multi-owner
transaction is associated with a chronological time stamp value. The principle of the
multi-master refresher algorithm is to submit a sequence of multi-owner transactions
in chronological order at each node. As a consequence, total order is enforced since
multi-owner transactions are executed in same serial order at each node. To assure
chronological ordering, before submitting a multi-owner transaction at node i, the
algorithm has to check whether there is any older committed multi-owner transaction
enroute to node i. To accomplish this, the submission time of a new multi-owner
transaction MOTi is delayed by Max + ε (recall that Max is the upper bound of the
time needed to multicast a message from a node to any other node). After this delay
period, all older transactions are guaranteed to be received at node i. Thus
chronological and total orderings are assured.

However, different from [8], for the multi-master configuration, whenever a multi-
owner transaction MOTi is to be triggered at some node i, the same node multicasts
MOTi to all nodes 1,2,…n, of the multi-owner configuration, including itself. Once
MOTi is received at some other node j (notice that i may be equal to j), it is placed in
the pending queue for the multi-owner triggering node i, called multi-owner pending
queue (noted moqi). Therefore, at each multi-owner node i, there is a set of multi-
owner queues, moq1, moq2,…moqn. Each pending queue corresponds to a node of the
multi-owner configuration and is used by the refresher to perform chronological
ordering.

To implement the multi-master refresher algorithm in a multi-owner node we
assume that six components are added to a regular DBMS in order to support lazy
replication. Our goal is to maintain node autonomy since the implementation solution
does not require the knowledge of system internals. We also assume that it is known
whether users write on multi-owner copies. Figure 2 shows all architectural
components necessary to implement our algorithm. The Replica Interface manages
the incoming multi-owner transaction submission. The Receiver and Propagator
implement reception and propagation of messages, respectively. The Refresher
implements the multi-master refreshment algorithm. Finally, the Deliverer manages
the submission of multi-owner transactions to the local transaction manager in FIFO
order using a running queue. In the following we focus on the Replica Interface and
Refresher components.

Multi-owner transactions are submitted through the Replica Interface. The
application program calls the Replica Interface passing as parameter the multi-owner
transaction MOT. The Replica Interface then establishes a timestamp value C for
MOT, that corresponds to MOT start submission time. Afterwards, the sequence of
operations of MOT is written in the Owner Log followed by C. Whenever the multi-
owner transaction commits, the Deliverer notifies the Replica Interface. Meanwhile,
the Replica Interface waits for MOT commitment.
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Fig. 2. Multi-owner node Architecture

The Refresher continuously reads the contents of the multi-owner pending queues.
Each pending queue i stores a sequence of multi-owner transactions in multicast
order. Therefore the contents of these pending queues form the input for the refresher
algorithm. Whenever a MOT is selected for submission the refresher inserts it into the
running queue, which contains all ordered transactions that are not yet entirely
executed. The Deliverer then manages the submission of multi-owner transactions to
the local transaction manager in the order in which they were inserted into the running
queue.

4   Validation

To validate our solution to multi-master refreshment, we implemented the refresher
algorithm and architecture in a cluster system. We use this implementation to study
the refresher’s behavior in terms of scalability [10] and data freshness. In this section,
we briefly describe our implementation and present our performance model and
experimentation results.

We did our implementation on a cluster of 5 nodes, where one node is used
exclusively as the access point to the cluster. Each node is configured with a 2GHz
Pentium 4 processor, 512 MB of memory and 40GB of disk. The nodes are linked by
a 1 Gb network. We use Linux Mandrake 8.0/Java and Spread toolkit that provides a
reliable FIFO message bus and high performance message service among the cluster
nodes that is resilient to faults. We use Oracle8i as the underlying database system at
each node. In our implementation we consider four modules: Client, Replicator,
Network and Database Server. The Client module simulates the clients of the ASP. It
submits multi-owner transactions randomly to any cluster node, via RMI-JDBC,
which implement the Replica Interface. Each cluster node hosts a Database Server
and at least one instance of the Replicator module. The Replicator module implements
all system components necessary for a multi-owner node: Replica Interface,
Propagator, Receiver, Refresher and Deliverer. Notice that each time a transaction is
to be executed it is first sent to the Replica Interface which checks whether the
incoming transaction writes on replicated data. Whenever a transaction does not write
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on replicated data it is sent directly to the local transaction manager. Even though we
do not consider node failures in our performance evaluation, we implement all the
necessary logs for recovery to understand the complete behaviour of the algorithm.
The Network module interconnects all cluster nodes through the Spread toolkit.

Our performance model takes into account multi-owner transaction size, arrival
rates and the number of multi-owner nodes. We vary multi-owner transactions’ arrival
rates (noted λ). We define two types of multi-owner transactions (denoted by |MOT|),
defined by the number of write operations. Small transactions have size 5, while long
transactions have size 50. To understand the behaviour of our algorithm in the
presence of short and long transactions, we define four scenarios. Each scenario is
defined in terms of a parameter called long transaction ratio (denoted by ltr). We set
ltr as follows: ltr = 0 (all update transactions are short), ltr = 30 (30% of update
transactions are long), ltr = 60 (60% of update transactions are long) and ltr = 100 (all
update transactions are long). Updates are done on the same attribute of a different
tuple. Nb-Inst defines the number of multi-owner instances i (Replicator instances) on
the same node. That is, since our cluster has 4 nodes, we let the same cluster node
execute more than one Replicator instance to be able to simulate up to 8 multi-owner
nodes. Hence, Nb-Multi-Owner defines the number of multi-owner nodes. To
simulate 8 multi-owners, each cluster node carries two Replicator instances. Each
node may execute at most 2 multi-owner node instances because the delay introduced
by memory management may compromise our results. For fairness, we always
consider an equal number of multi-owner instances at each node. Finally our single
table schema has two attributes and carry 100000 tuples and no indexes. The
parameters of the performance model are described in Table 1.

Table 1. Performance parameters

 Param.  Definition Values

 |MOT|
 Ltr
 Nb-Multi-Owner
 Nb-Inst
 λ
 M
 Max + ε

 Transaction size
 Long transaction ratio
 Number of Replicators
 Number of Replicators on 1 node
 Mean time between transactions (workload)
 Time of the test
 Submission time of a multi-owner transaction is delayed

 5; 50
 0; 30; 60; 100%
 2; 3; 4; 8
 1, 2
 bursty: 200ms; low: 20s
 60000ms; 600000ms
 100ms

We describe two experiments to study scalability and freshness. The first
experiment studies the algorithm’s scalability. That is, for a same set of incoming
multi-owner transactions, scalability is achieved whenever in augmenting the number
of nodes the response times remain the same. We consider bursty and low workloads
(λ = 200ms and λ = 20s), varying the number of multi-master nodes (2, 4 and 8). In
addition, we vary the ratio of long transactions (ltr = 0/30/60/100). Finally, we
perform this experiment during a time interval of 60000ms.

This experiment results (see Figure 3.a and 3.b) clearly shows that for all ltr values
scalability is achieved. In fact, for each ltr value the response times4 correspond to the
average transaction response time. We can clearly see in Figure 3 that the difference
in response times is a function of the long transaction ratio (ltr). The higher the ltr

                                                          
4 Time spent to execute a transaction submitted by a client (involves the Multi-Master

Refresher Algorithm).
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value, the higher are the response times, because, due to the size of transactions and
the bursty (Figure 3.a) workload, the running queue (recall that the running queue is
used by the Deliverer to submit multi-owner transactions), becomes a bottleneck for
transaction processing, since transaction submission is done sequentially. As a
consequence the average response times are much higher compared to the low
workload scenario (Figure 3.b). However, the algorithm still scales-up since the
network delay introduced to multicast a message is very small, avoiding network
contention. Furthermore, in contrast with synchronous algorithms, our algorithm has
linear response time behaviour since it requires only the multicast of n messages for
each incoming multi-owner transaction, where n corresponds to the number of nodes.

The second experiment ���������	
�����
�������
��
�������������� ����i,j,k…} is a
set of multi-owner nodes of R5. Intuitively, the degree of freshness of R on node i over
� ��� �������� ��� 	
�� �����
����� ��	����� 	
�� �����
� ��� �����		��� multi-owner

transactions on R at node i and the average of number of committed multi-owner
transactions on others ���	������
�������� ���i).

   
3.a: Scalability (bursty workload)       3.b: Scalability (low workload)

Fig. 3. Performance Results

Thus, the best degree of freshness is 1, which means that multi-owner copies are
mutually consistent. Recall that the mutual consistency property is assured by eager
algorithms. On the other hand, degrees of freshness close to zero express the fact that
there are a significant number of updates committed at some multi-owner copy that
were still not performed in others copies.

We consider bursty workloads (λ = 200ms) varying the number of multi-owner
nodes (Nb-Multi-Owner = 2/4/8) and the long transactions ratio (ltr = 0/30/60/100).
Finally, we perform this experiment during a time interval of 60000ms. The freshness
degrees for the 4 scenarios are almost equal (between 0.98 and 0.99). In all cases very
good degrees of freshness are attained (very close to 1). These results clearly
demonstrate that the time delay introduced to submit transactions at each node is the
same, because all nodes executed the same sequence of multi-owner transactions. As
a result, the transaction processing speed at each node is uniform, independent of the
number of nodes and the ratio of long transactions. Notice however that we do not

                                                          
5 Each node holds a multi-owner copy R.
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consider query loads. Nevertheless, we can safely assume that query loads do not
impact freshness degrees whenever the underlying database server does not use strict
two-phase-locking concurrency protocol [9]. That is, queries do not block multi-
owner transactions. This experiment shows that our algorithm, in a cluster
environment, does not introduce any significant loss of data freshness. In fact, it
almost provides mutual consistency.

5 Related Work

There are several interesting projects that deal with replicated data management in
cluster architectures: PowerDB [2], GMS [11], and TACT [13]. However, none of
them employ asynchronous multi-master replication as we do. A general framework
for optimistic and preventive data replication for the same ASP cluster system is
presented in [1]. As an evolution of [1], we propose, in this paper, a cluster
architecture that enables user requests to be managed completely asynchronously in
order to avoid any type of bottleneck. In addition, we detail the preventive
refreshment management, showing the implementation environment and some
performance results. In the following, we compare our replication solution with other
existing solutions.

With synchronous (or eager) replication, the property of mutual consistency is
assured. A solution proposed in [5] reduces the number of messages exchanged to
commit transactions compared to 2PC, but the protocol is still blocking and it is not
clear if it scales up. It uses, as we do, communication services [6] to guarantee that
messages are delivered at each node according to some ordering criteria.

Recently, [8] proposed a refreshment algorithm that assures strong consistency for
lazy master-based configurations. They do not consider the multi-master
configuration as we do. Our solution uses the same principle of their refreshment
algorithm. However, in our work, we show how it can be employed in a multi-master
configuration.

6   Conclusion

In this paper, we proposed a preventive lazy multi-master replication database
solution in a cluster system for ASP management. In this context, data replication is
used to improve data availability and query load balancing (and thus performance). In
this paper we first proposed a cluster architecture that enables users’ requests to be
managed completely asynchronously in order to avoid any type of bottleneck. Second,
we proposed a multi-master refresher algorithm that prevents conflicts, by exploiting
the cluster’s high speed network, thus providing strong consistency, without the
constraints of eager replication. Cluster nodes can support autonomous,
heterogeneous databases that are considered as black boxes. Thus our solution
achieves full node autonomy. We also showed the system architecture components
necessary to implement the refresher algorithm. Finally, we described our
experiments over a cluster of 8 nodes. In our experimental results, we showed that the
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multi-master algorithm scales-up and introduces a negligible loss of data freshness
(almost equal to mutual consistency).

For future work, we will propose some optimizations for the refresher algorithm in
managing multi-owner transactions on the running queue. For instance, for bursty
workloads one can check whether ordered transactions in the running queue do not
conflict. If there is no conflict, these transactions can be triggered concurrently. In
addition, we plan to consider other types of multi-master configurations.
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