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Abstract. When designing and implementing highly efficient scientific
applications for parallel computers such as clusters of workstations, it
is inevitable to consider and to optimize the single-CPU performance of
the codes. For this purpose, it is particularly important that the codes re-
spect the hierarchical memory designs that computer architects employ
in order to hide the effects of the growing gap between CPU perfor-
mance and main memory speed. In this paper, we present techniques to
enhance the single-CPU efficiency of lattice Boltzmann methods which
are commonly used in computational fluid dynamics. We show various
performance results to emphasize the effectiveness of our optimization
techniques.

1 Introduction

In order to enhance the performance of any parallel scientific application, it is
important to focus on two related optimization issues. Firstly, it is necessary to
minimize the parallelization overhead itself. These efforts commonly target the
choice of appropriate load balancing strategies as well as the minimization of
communication overhead by hiding network latency and bandwidth. Secondly, it
is necessary to exploit the individual parallel resources as efficiently as possible;
e.g., by achieving as much performance as possible on each CPU in the parallel
environment. This is especially true for distributed memory systems found in
computer clusters based on off-the—shelf workstations communicating via fast
networks. Our current research focuses on this second optimization issue.

In order to mitigate the effects of the growing gap between theoretically
available processor speed and main memory performance, today’s computer ar-
chitectures are typically based on hierarchical memory designs, involving CPU
registers, several levels of cache memories (caches), and main memory [10]. Re-
mote main memory and external memory (e.g., hard disk drives) can be consid-
ered as the slowest components in any memory hierarchy. Fig. [ illustrates the
memory architecture of a current high performance workstation [12].

Efficient execution in terms of work units per second can only be obtained
if the codes exploit the underlying memory design. This is particularly true for
numerically intensive codes. Unfortunately, current compilers cannot perform
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Fig. 1. Memory architecture of a workstation based on an Intel Itanium2 CPU with
three levels of on—chip cache [12].

highly sophisticated code transformations automatically. Much of this optimiza-
tion effort is therefore left to the programmer [S/14].

Generally speaking, efficient parallelization and cache performance tuning
can both be interpreted as data locality optimizations. The underlying idea is to
keep the data to be processed as close as possible to the corresponding ALU.
From this viewpoint, cache optimizations form an extension of classical paral-
lelization efforts.

Research has shown that the cache utilization of iterative algorithms for the
numerical solution of linear systems can be improved significantly by applying
suitable combinations of data layout optimizations and data access optimizations
[BIG]. The idea behind these techniques is to enhance the spatial locality as well as
the temporal locality of the code [11]. Similar work focuses on other algorithms of
numerical linear algebra and hardware-oriented FFT implementations [7].
An overview of cache optimization techniques for numerical algorithms can be
found in [13]. Our current work concentrates on improving the cache utilization
of a parallel implementation of the lattice Boltzmann method (LBM), which rep-
resents a particle-based approach towards the numerical simulation of problems
in computational fluid dynamics (CFD) :

This paper is structured as follows. Section Bl contains a brief introduction
to the LBM. Section [B presents code transformation techniques to enhance the
single-CPU performance of the LBM and introduces a compressed grid storage
technique, which almost halves its data set size. The performance results of LBM
implementations on various platforms are shown in Section @ We conclude in
Section

2 The Lattice Boltzmann Method

It is important to mention up front that we only give a brief description of
the LBM in this section, since the actual physics behind this approach are not
essential for the application of our optimization techniques.
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The usual approach towards solving CFD problems is based on the numerical
solution of the governing partial differential equations, particularly the Navier—
Stokes equations. The idea behind this approach is to discretize the computa-
tional domain using finite differences, finite elements or finite volumes, to derive
algebraic systems of equations and to solve these systems numerically.

In contrast, the LBM is a particle—oriented technique, which is based on a
microscopic model of the moving fluid particles. Using @ to denote the position in
space, u to denote the particle velocity, and ¢ to denote the time parameter, the
so—called particle distribution function f(x,u,t) is discretized in space, velocity,
and time. This results in the computational domain being regularly divided into
cells (so—called lattice sites), where the current state of each lattice site is defined
by an array of floating—point numbers that represent the distribution functions
w.r.t. to the discrete directions of velocity.

The LBM then works as follows. In each time step, the entire grid (lattice) is
traversed, and the distribution function values at each site are updated according
to the states of its neighboring sites in the grid at the previous discrete point in
time. This update step consists of a stream operation, where the corresponding
data from the neighboring sites are retrieved, and a collide operation, where the
new distribution function values at the current site are computed according to
a suitable model of the microscopic behavior of the fluid particles, preserving
hydrodynamic quantities such as mass density, momentum density, and energy.
Usually, this model is derived from the Boltzmann equation

of

ot
which describes the time—dependent behavior of the particle distribution func-
tion f. In this equation, f(°) denotes the equilibrium distribution function, \ is
the relaxation time, (.,.) denotes the standard inner product, and V f denotes
the gradient of f w.r.t. the spatial dimensions [17].

Vi) = 5 (5 7)

Fig. 2. Representation of the LBM updating a single lattice site by a stream operation
(left) and a subsequent collide operation (right).

Fig. [ shows the update of an individual lattice site in 2D. The grid on the
left illustrates the source grid corresponding to the previous point in time, the
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darker arrows represent the particle distribution function values being read. The
grid on the right illustrates the destination grid corresponding to the current
point in time, the dark arrows represent the new particle distribution function
values; i.e., after the collide operation.

Note that, in every time step, the lattice may be traversed in any order since
the LBM only accesses data corresponding to the previous point in time in order
to compute new distribution function values. From an abstract point of view,
the structure of the LBM thus parallels the structure of an implementation of
Jacobi’s method for the iterative solution of linear systems on structured meshes.
The time loop in the LBM corresponds to the iteration loop in Jacobi’s method.

In contrast to the lattice gas approach [I7] where hexagonal grids are more
common, we focus on orthogonal grids, since they are almost exclusively used
for the LBM.

3 Optimization Techniques for Lattice Boltzmann Codes

3.1 Fusing the Stream and the Collide Operation

A naive implementation of the LBM would perform two entire sweeps over the
whole data set in every time step: one sweep for the stream operation, copying
the distribution function values from each lattice site into its neighboring sites,
and a subsequent sweep for the collide operation, calculating the new distribution
function values at each site.

A first step to improve performance is to combine the streaming and the
collision step. The idea behind this so—called loop fusion technique is to enhance
the temporal locality of the code and thus the utilization of the cache [I]. Instead
of passing through the data set twice per time step, the fused version retrieves
the required data from the neighboring cells and immediately calculates the
new distribution function values at the current site, see again Fig. [l Since this
tuning step is both common and necessary for all subsequent transformations, we
consider this fused version as our starting point for further cache optimizations.

3.2 Data Layout Optimizations

Accessing main memory is very costly compared to even the lowest cache level.
Therefore, it is essential to choose a memory layout for the implementation of the
LBM which allows the code to exploit the benefits of the hierarchical memory
architecture.

Since we need to maintain the grid data for any two successive points in time,
our initial storage scheme is based on two arrays of records. Each of these records
stores the distribution function values of an individual lattice site. Clustering
the distribution function values is a reasonable approach since the smallest unit
of data to be moved between main memory and cache is a cache block which
typically contains several data items that are located adjacent in memory.

In the following, we present two data layout transformations that aim at
further enhancing the spatial locality of the LBM implementation; grid merging
and grid compression.
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.* Array t .'. .'. Array t+1 .'. o' Merged array .

Fig. 3. The two arrays which store the grid data at time ¢ and time ¢+ 1, respectively,
are merged into a single array.

Grid merging. During a fused stream—and-—collide step it is necessary to load
data from the grid (array) corresponding to time ¢, to calculate new distribution
function values, and to store these results into the other grid corresponding to
time ¢ 4 1.

Due to our initial data layout (see above) the first two steps access data
which are tightly clustered in memory. Storing the results, however, involves the
access of memory locations that can be arbitrarily far away. In order to improve
spatial locality, we introduce an interleaved data layout where the distribution
function values of each individual site for two successive points in time are kept
next to each other in memory. This transformation is commonly called array
merging [TTII3]. Fig. @ illustrates the application of this technique for the 2D
case.

Grid compression. The idea behind this data layout is both to save memory and
to increase spatial locality. We concentrate on the 2D case in this paper, while
the extension of this technique to the 3D case is currently being implemented.
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Fig. 4. Fused stream—and—collide step for the cell in the middle (left, 1 and 2), layout
of the two overlayed grids after applying the grid compression technique (right).

In an implementation of the LBM in 2D, nearly half of the memory can be
saved by exploiting the fact that only the data from the eight neighboring cells
are required to calculate the new distribution function values at any regular site
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of the griﬂ. It is therefore possible to overlay the two grids for both points
in time, introducing a diagonal shift of one row and one column of cells into
the stream—and—collide operation. The direction of the shift then determines
the update sequence in each time step since we may not yet overwrite those
distribution function values that are still required henceforth.

In Fig. @] the light gray area contains the values for the current time ¢. The
two pictures on the left illustrate the stream-and-—collide operation for a single
cell: the values for time ¢+ 1 will be stored with a diagonal shift to the lower left.
Therefore, the stream—and—collide sweep must also start with the lower left cell.
Consequently, after one complete sweep, the new values (time ¢ + 1) are shifted
compared to the previous ones (time t). For the subsequent time step, the sweep
must start in the upper right corner. The data for time ¢ + 2 must then be
stored with a shift to the upper right. After two successive sweeps, the memory
locations of the distribution functions are the same as before. This alternating
scheme is shown in the right picture of Fig. [l

3.3 Data Access Optimizations

Data access optimizations change the order in which the data are referenced
in the course of the computation, while respecting all data dependencies. Our
access transformations for implementations of the LBM are based on the loop
blocking (loop tiling) technique. The idea behind this general approach is to
divide the iteration space of a loop or a loop nest into blocks and to perform as
much computational work as possible on each individual block before moving on
to the next block. If the size of the blocks is chosen according to the cache size,
loop blocking can significantly enhance cache utilization and, as a consequence,
yield significant performance speedups [TJ8/T3].

In the following, we present two blocking approaches in order to increase the
temporal locality of the 2D LBM implementation. Both blocking techniques take
advantage of the stencil memory access exhibited by the LBM. Because of this
local operation, a grid site can be updated to time ¢ + 1 as soon as the sites it
depends on have been updated to time ¢.

It is important to point out that each of these access transformations can be
combined with either of the two layout transformations which we have introduced
in Section

1D blocking. Fig. Bl illustrates an example, where two successive time steps are
blocked into a single pass through the grid. White cells have been updated to
time t, light gray cells to time ¢ 4+ 1, and dark gray cells to time ¢ 4+ 2. It can
be seen that in Grid 2, all data dependencies of the bottom row are fulfilled,
and can therefore be updated to time ¢ 4 2, shown in Grid 3. This is performed
repeatedly until the entire grid has been updated to time ¢ + 2, see Grids 4 to
10. The downside to this method is that, even two rows may contain too much

! For the sake of simplicity, we focus on regular sites and omit the description of how
to treat boundary sites and obstacle sites separately.
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data to fit into cache if the grid is too large. In this case, no performance gain
will be observed.

6. 7. 8.

4. 5.
9. 10.
Fig. 5. 1D blocking technique to enhance temporal locality.

2D blocking. Fig. [ illustrates an example, in which a 4x4 block of cells is em-
ployed. This means that four successive time steps are performed during a single
pass through the grid. Since the data contained in the 2D block is independent
of the grid size, it will always (if the size is chosen appropriately) fit into the
highest possible cache level, regardless of the grid size. In Fig. 6l Grids 1 to 4
demonstrate the handling of one 4x4 block, and Grids 5 to 8 a second 4 x4 block.
The block which can be processed moves diagonally down and left in order to
avoid violating data dependencies. Obviously, special handling is required for
those sites near grid edges which cannot form a complete 4x4 block.

5. 6. 7. 8.

Fig. 6. 2D blocking technique to enhance temporal locality.
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4 Performance Results

In order to test and benchmark the various implementations of the LBM, a well
known problem in fluid dynamics known as the lid—driven cavity has been used. It
consists of a closed box, where the top of the box, the lid, is continually dragged
across the fluid in the same direction. The fluid eventually forms a circular flow
around the center of the box [0].
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Fig. 7. Performance in millions of lattice site updates per second (MLSUD/s) on
machines based on an AMD Athlon XP 2400+ (left) and on an Intel Itanium?2 (right),
respectively, for various grid sizes.

Performance. Fig. [[l demonstrates the performance of five different implemen-
tations of the LBM in ANSI C++ on two different machined] for various grid
sizes. Note that problem size n means that the grid contains n? cells. The simple
implementation involving a source and destination grid is the slowest, the im-
plementation using the layout based on grid compression is slightly faster. Two
implementations of 1D blocking are shown, one with two time steps blocked,
and one with eight. Initially, they show a significant increase in performance.
For large grids, however, performance worsens since the required data cannot fit
into even the lowest level of cache. This effect is more dramatic on the AMD
processor since it has only 256 kB of L2 and no L3 cache, whereas the Intel CPU
even has 1.5 MB of L3 cache on—chip. Finally, the 2D blocked implementation
shows a significant increase in performance for all grid sizes. It should be noted
that each implementation based on the grid merging layout performs worse than
its counterpart based on grid compression. Therefore, no performance results for
the grid merging technique are shown.

We have obtained similar performance gains on several further platforms. For
example, our results include speedup factors of 2—-3 on machines based on DEC

2 We use an AMD Athlon XP 2400+ based PC (2 GHz) [2], Linux, gec 3.2.1, as well as
an Intel Itanium?2 based HP zx6000 [12], Linux, Intel ecc V7.0. Aggressive compiler
optimizations have been enabled in all experiments.
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Alpha 21164 and DEC Alpha 21264 CPUs. Both of them particularly benefit
from large off—chip caches of 4 MB.
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Fig. 8. Cache behavior of the AMD Athlon XP measured with PAPI.

Cache Behavior. Fig.[§ demonstrates the behavior of the L1 and L2 cache of the
AMD Athlon XP for the different implementations of the LBM. These results
have been obtained by using the profiling tool PAPI []. When compared to
Fig. [[it can be seen that there is a strong correlation between the number of
cache misses and the performance of the code. The correlation between the per-
formance drop of the two 1D blocked implementations and their respective rise
in L2 cache misses is especially dramatic. Additionally, Fig. Bl reveals the cause
of the severe performance drop exhibited by the 2D blocked implementation at a
grid size of 8002. The high number of cache misses are conflict misses which are

caused when large amounts data in memory are mapped to only a small number
of cache lines [15].

5 Conclusions and Future Work

Due to the still widening gap between CPU and memory speed, hierarchical
memory architectures will continue to be a promising optimization target. The
CPU manufacturers have already announced new generations of CPUs with sev-
eral megabytes of on—chip cache in order to hide the slow access to main memory.
We have demonstrated the importance of considering the single-CPU perfor-
mance before using parallel computing methods in the framework of a CFD code
based on the LBM. By exploiting the benefits of hierarchical memory architec-
tures of current CPUs, we were have obtained factors of 2-3 in performance on
various machines. Unfortunately, the parallelization of cache—optimized codes is
commonly tedious and error—prone due to their implementation complexity.
We are currently extending our techniques to the 3D case. From our expe-
rience in cache performance optimization of iterative linear solvers, we expect
that appropriate data layout transformations and data access optimizations, in
particular loop blocking, can be applied to improve the performance.
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