Improving Performance of Hypermatrix
Cholesky Factorization*

José R. Herrero, Juan J. Navarro

Computer Architecture Department, Universitat Politecnica de Catalunya,
Jordi Girona 1-3, Modul D6, E-08034 Barcelona, (Spain)
{josepr, juanjo}@ac.upc.es

Abstract. This paper shows how a sparse hypermatrix Cholesky fac-
torization can be improved. This is accomplished by means of efficient
codes which operate on very small dense matrices. Different matrix sizes
or target platforms may require different codes to obtain good perfor-
mance. We write a set of codes for each matrix operation using different
loop orders and unroll factors. Then, for each matrix size, we automati-
cally compile each code fixing matrix leading dimensions and loop sizes,
run the resulting executable and keep its Mflops. The best combina-
tion is then used to produce the object introduced in a library. Thus,
a routine for each desired matrix size is available from the library. The
large overhead incurred by the hypermatrix Cholesky factorization of
sparse matrices can therefore be lessened by reducing the block size when
those routines are used. Using the routines, e.g. matrix multiplication,
in our small matrix library produced important speed-ups in our sparse
Cholesky code.

1 Introduction

The Cholesky factorization of a sparse matrix is an important operation in the
numerical algorithms field. This paper presents our work on the optimization of
the sequential algorithm when a hypermatrix data structure is used.

1.1 Hypermatrix representation of a sparse matrix

Sparse matrices are mostly composed by zeros but often have small dense blocks
which have traditionally been exploited in order to improve performance [1].
Our application uses a data structure based on a hypermatrix (HM) scheme
[2]. The matrix is partitioned recursively into blocks of different sizes. The HM
structure consists of several (N) levels of submatrices. The top N-I levels hold
pointer matrices which point to the next lower level submatrices. Only the last
(bottom) level holds data matrices. Data matrices are stored as dense matri-
ces and operated as such. Null pointers in pointer matrices indicate that the
corresponding subblock does not have any non-zero elements and is therefore

* This work was supported by the Ministerio de Ciencia y Tecnologia of Spain and
the EU FEDER funds (TIC2001-0995-C02-01)

http://people.ac.upc.edu/josepr/

josepr
http://people.ac.upc.edu/josepr/

http://people.ac.upc.edu/josepr/

unnecessary, both for storage and computation. Figure 1 shows a sparse matrix
and its corresponding hypermatrix with 2 levels of pointers.

The main potential advantages of a HM structure w.r.t. 1D data structures,
like the Compact Row Wise structure, are: the ease of use of multilevel blocks to
adapt the computation to the underlying memory hierarchy; and the operation
on dense matrices.

Matrix : HyperMatrix

Fig. 1. A sparse matrix and its corresponding hypermatrix.

Choosing a block size for data submatrices is rather difficult. Large block
sizes favour greater potential performance when operating on dense matrices.
On the other hand, the larger the block is, the more likely it is to contain zeros.
Since computation with zeros is useless, effective performance can therefore be
low. Thus, a trade-off between performance on dense matrices and operation
on non-zeros must be reached. The use of windows of non-zero elements within
blocks allows for a larger default block size. When blocks are quite full operations
performed on them can be rather efficient. However, in those cases where only a
few non-zero elements are present in a block, only a subset of the total block is
computed. Figure 2 shows a window of non-zero elements within a larger block.
The window of non-zero elements is defined by it’s top-left and bottom right
corners. Zeros stored outside those limits are not used in the computations. Null
elements within the window are still computed. However, the overhead can be
greatly reduced.

Data Submatrix

Window

0x0x
0x0x

Fig. 2. A data submatrix and a window within it.

A commercial package known as PERMAS uses the hypermatrix structure [3].
It can solve very large systems out-of-core and can work in parallel. However, the
disadvantages of the hypermatrix structure mentioned above introduce a large
overhead. Recently a variable size blocking was introduced to save storage and
to speed the parallel execution [4]. In this way the HM was adapted to the sparse
matrix being factored.

The work presented in this paper is focused on the optimization of a hy-
permatrix Cholesky factorization based on the data structure presented above.

We have developed some rather efficient routines which work on small matrices.
The purpose of these routines is to get high performance while keeping low the
overhead due to unnecessary computations on null elements.

1.2 Goals

This work focuses on obtaining high performance from a hypermatrix Cholesky
factorization. We want to reduce the overhead introduced by operations on zeros
when large blocks are used. This can be done by reducing the block size. However,
in order to keep high performance, we need specialized routines which operate
very efficiently on small matrices.

1.3 Motivation

Figure 3 shows the performance of different routines for matrix multiplication
for several matrix sizes on an Alpha-21164 processor.

ALPHA 21164

450

400
350
300

Odgemm_nts
) Emxmts_g
s 200 W mxmts_fix

2 250
5}

150
100

50

444 16_16_16
Matrix size

Fig. 3. Comparison of performance of different routines for matrix sizes 4x4 and 16x16.

The vendor’s BLAS routine, labeled as dgemm_nts, fails to produce good
performance for a very small matrix product (4x4) getting better results as
matrix dimensions grow towards a size that fills the L1 cache (16x16). A simple
matrix multiplication routine mamts_g which avoids any parameter checking and
scaling of matrices (alpha and beta parameters in dgemm) can outperform the
BLAS for very small matrix sizes. The matrix multiplication code mamts_fix in
our library gets excellent performance for small matrices of sizes 4x4 and 16x16.
There is actually one routine for each matrix size. In this paper we call all of
them mamts_fix for convenience. Each mamts_fix routine is obtained by fixing
leading dimensions and loop limits at compilation time and trying a set of codes
with different loop orders and unroll factors. The one producing the best result
is then selected.

1.4 Related work
The Cholesky factorization of a sparse matrix has been an active area of research
for more than 30 years [1,5-9].

Tterative compilation [10] consists in a repetitive compilation of code using
different parameters. Program transformations like loop tiling and loop unrolling
are very effective techniques to exploit locality and expose instruction level par-
allelism. The authors claim that finding the optimal combination of tile size and
unroll factor is difficult and machine dependent. Thus, they propose an opti-
mization approach based on the creation of several versions of a program and

decide upon the best by actually executing them and measuring their execution
time. Our approach for obtaining high performance codes is similar with the
difference that, while they apply a set of transformations, we use simple codes
and let the compiler do its best.

Several projects were targeted at producing efficient BLAS routines through
automatic tuning [11-13]. The difference with our work is that they are not
focused on operations on small matrices.

A software for the parallel solution of sparse linear systems called Block-
Solve95 [14] uses macros to put code inline for Level 2 BLAS routines GEMV
and TRMV. They claim an improvement ratio between 1.2 and 2 for single pro-
cessor codes working on small systems. Our approach however, is based on the
improvement of Level 3 BLAS routines working on small matrices.

The reminder of the paper is organized as follows: first we present our optimiza-
tion of routines operating on small matrices, namely the matrix multiplication
operation. Then we show the impact of its application to the HM Cholesky
factorization.

2 The Small Matrix Library (SML)

2.1 Generation of efficient code

Creation of efficient code has traditionally been done manually using assembly
language and based on a great knowledge of the target architecture. Such an
approach, however cannot be easily undertaken for many target architectures
and algorithms.

Alternatively, creation of efficient codes specific for a target computer can
be written in a high level language [15, 16]. This approach avoids the use of the
assembly language but keeps the difficulty of manually tuning the code. It still
requires a deep knowledge of the target architecture and produces a code that,
although portable, will rarely be efficient on a different platform.

A cheaper approach relies on the quality of code produced by current com-
pilers. The resulting code is usually less efficient than that written manually by
an expert. However, its performance can still be extremely good and some times
it can even yield better code. We have taken this approach for creating a Small
Matrix Library (SML).

For each desired operation, we have written a set of codes in Fortran. For in-
stance, for a matrix multiplication we have codes with different loop orders (kji,
igk, etc.) and unroll factors. Using a Benchmarking Tool [17], we compile each
of them using the native compiler trying several optimization options. For each
resulting executable, we automatically execute it and register its highest perfor-
mance. These results are kept in a database and finally employed to produce a
library using the best combination of parameters.

By fixing the leading dimensions of matrices and the loop trip counts we
have managed to obtain very efficient codes for matrix multiplication on small
matrices. Since several parameters are fixed at compilation time the resulting
object code is only useful for matrix operations using these fixed values. Actual

parameters of these routines are limited to the initial addresses of the matrices
involved in the operation performed. Thus, there is one routine for each matrix
size. For convenience, we call all of them mxmts_fix in this paper, but each one
has its own name in the library.

We also tried feedback driven compilation using the Alpha native compiler
but performance either remained the same or even decreased slightly. We con-
clude that, as long as a good compiler is available, fixing leading dimensions and
loop limits is enough to produce high performance codes for very small dense
matrix kernels.

2.2 Matrix multiplication performance

Figure 4a shows the performance of different routines for matrix multiplication
for several matrix sizes on an Alpha-21164. The matrix multiplication performed
in all routines benchmarked uses the first matrix without transposition (n),
the second matrix transposed (t), and subtracts the result from the destination
matrix (s). This is the reason why we call the BLAS routine dgemm_nts.

ALPHA 21164 R10000
500
450

400
300 350
§ 20 I | Ec;g:x:;n _gnts g 300 Odgemm_nts
= 200 - S 250 W mxmts_g

W mxmts_fix S L0 W mxmts_fix

150
100
50 50

™ > £\ £ J £V o v S ™ > o > J SV) 42 4
' N ' b *) N &l b ' o
» @ (NN 7

LIy >/ D o7 o7 S LI 24 > D o/ o7 A

L LA R VN SIS 1 RN A YIRS RS a1

N e ' N N >
Matrix size Matrix size
a) b)

Fig. 4. Comparison of the performance of different routines for several matrix sizes: a)
on an Alpha b) on an R10000.

The vendor BLAS routine dgemm_nts yields very poor performance for very
small matrices getting better results as matrix dimensions grow towards a size
that fills the L1 cache (8 Kbytes). This is due to the overhead of passing a large
number of parameters, checking for their feasibility, and scaling the matrices (al-
pha and beta parameters in dgemm). This overhead is negligible when operation
is performed on large matrices. However, it is notable when small matrices are
multiplied. Also, since its code is prepared to deal with large matrices, further
overhead can appear in the inner code by the use of techniques like strip mining.

A simple matrix multiplication routine mxmts_g which avoids any parameter
checking and scaling of matrices can outperform the BLAS for very small matrix
sizes.

Finally, our matrix multiplication code mazmits_fiz with leading dimensions
and loop limits fixed at compilation time gets excellent performance for all block
sizes ranging from 4x4 to 16x16. The latter is the maximum value that allows
for a good use of the L1 cache on the Alpha unless tiling techniques are used.

Figure 4b shows the performance of different routines for several matrix sizes
on the R10000 processor. Results are similar to those of the Alpha with the only
differences that the L1 cache is larger (32 Kbytes) and mamts_g performs very
well. This is due to the ability of the MIPSpro F77 compiler to produce software
pipelined code, while the Alpha compiler hardly ever manages to do so.

Though our SML codes were adapted to the underlying architecture, they
were written in a high level programming language (FORTRAN). The resulting
codes were very good for both the Alpha-21164 and the R10000 processors. We
believe these results can be generalized for other current superscalar architec-
tures.

3 Using SML routines as computational kernels for HM
Cholesky

We have used SML routines to improve our sparse matrix application based
on hypermatrices. Matrices were ordered with METIS [18] and renumbered by
an elimination tree postorder. Performance varies substantially from matrix to
matrix due to the different sparsity patterns and density. However, we see that
using our matrix multiplication in SML improves performance substantially for
all the benchmarks and block sizes.

Figure 5 shows results of the HM Cholesky factorization on an R10000! for
matrix QAP15 from the Netlib set of sparse matrices corresponding to linear
programming problems [19]; and problem pds40 from a Patient Distribution
System (40 days) [20]. Ten submatrix sizes are shown: 4x4, 4x8, 4x16, ... 32x32.
Effective Mflops are presented. They refer to the number of useful floating point
operations performed per second. This metrics excludes useless operations on
zeros performed by the HM Cholesky algorithm when data submatrices contain
Zeros.

Matrix QAP15 Matrix pds40
9 350 9 250
o £ a0
s 200 O dgemm_nts s 150 Odgemm_nts
S 150 4 Emxmts_g S 100 Emxmts_g
S 100 4 B mxmts_fix B B mxmts_fix
2] L 50
= 50 =
[T [T
» 0 0N O > 0 OO O
WP S e i %+%Q%%)%,-€;@

Fig. 5. Factorization of matrices QAP15 and pds40: Mflops obtained by different MxM
codes in HM Cholesky on an R10000.

When dgemm_nts is used, the best performance is usually obtained with data
submatrices of size 16 x 16 or 16 x 32. Since the amount of zeros used can be
large, the effective performance is quite low. Using mamits_fixr however, smaller
submatrix sizes usually produce better results than larger submatrix sizes. Par-
ticularly effective in this application is the use of rectangular matrices due to the
fill-in produced by the Cholesky factorization (skyline). For instance, using 4 x 16

! Results on the Alpha are similar.

or 4 x 32 submatrix sizes the routine used yields very good performance. Since
the number of operations on zeros is considerably lower, the effective Mflops ob-
tained are much higher than those of any other combination of size and routine.

The use of a fixed dimension matrix multiplication routine speeded up our
Cholesky factorization between 20% and 100% depending on the input matrix.

|Matrix || Dimension|Factor NZs| Density| Mﬂops”
TRIPART1 4.2 1.1] 0.127 | 223.0
TRIPART2 19.7 5.9| 0.030 | 226.9
TRIPART3 38.8 17.8| 0.023 | 2374
TRIPART4 56.8 76.8| 0.047 | 278.2
pds40 76.7 27.6| 0.009 | 236.6
pdsb0 95.9 36.3| 0.007 | 249.9
pds80 149.5 64.1| 0.005 | 254.4
pds90 164.9 70.1] 0.005 | 263.3
QAP15 6.3 8.7 0.436 | 303.1

Table 1. Characteristics and performance of HM Cholesky on several LP problems

Table 1 shows the characteristics of several matrices obtained from linear
programming problems [19,20] and the performance obtained by our modified
hypermatrix code. The factorization was performed on an R10000 processor with
a theoretical peak performance of 500 Mflops. Dimensions are in thousands and
Factor non-zeros are in millions. Using SML routines our HM Cholesky often gets
over half of the processor’s peak performance for medium size matrices factored
in-core.

4 Conclusions

We have shown that fixing dimensions and loop limits is enough to produce high
performance codes for very small dense matrix kernels. Since no single algorithm
was the best for all matrix sizes in any platform, we conclude that an exhaustive
search is necessary to get the best one for each matrix size. For this reason we
have implemented a Benchmarking Tool which automates this process.

We have generated a small matrix library (SML) on a couple of systems
obtaining very efficient codes specialized on operations on small matrices. These
routines outperform the vendor’s BLAS routine for small matrix sizes.

Fast computations on small matrices are of great utility in sparse matrix
computations. A direct application of our small matrix library can be found in
the hypermatrix Cholesky factorization. High performance routines operating on
small matrices allow for the election of small block sizes. This choice avoids oper-
ation of non-zeros while retaining good performance. In practice, we found that
blocks of size 4x16 and 4x32 often produced the best results for the hypermatrix
Cholesky factorization.

We obtained important speed-ups in our Cholesky factorization application
by using the SML routines. Therefore, we believe it is worthwhile to develop this
sort of library.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

Duff, I.S.: Full matrix techniques in sparse Gaussian elimination. In: Numerical
analysis (Dundee, 1981). Volume 912 of Lecture Notes in Math. Springer, Berlin
(1982) 71-84

Fuchs, G., Roy, J., Schrem, E.: Hypermatrix solution of large sets of symmetric
positive-definite linear equations. Comp. Meth. Appl. Mech. Eng. 1 (1972) 197-216
Ast, M., Fischer, R., Manz, H., Schulz, U.. PERMAS: User’s reference manual,
INTES publication no. 450, rev.d (1997)

Ast, M., Barrado, C., Cela, J., Fischer, R., Laborda, O., Manz, H., Schulz,
U.: Sparse matrix structure for dynamic parallelisation efficiency. In: Euro-Par
2000,LNCS1900. (2000) 519-526

George, A., Liu, JW.H.: Computer Solution of Large Sparse Positive-Definite
Systems. Prentice-Hall, Englewood Cliffs, NJ (1981)

George, A., Gilbert, J.R., Liu, J.W., eds.: Graph Theory and Sparse Matrix Com-
putation. Volume 56 of The IMA volumes in mathematics and its applications.
Springer-Verlag, New York (1993)

Ng, E.G., Peyton, B.W.: Block sparse Cholesky algorithms on advanced unipro-
cessor computers. SIAM J. Sci. Comput. 14 (1993) 1034-1056

Ashcraft, C., Grimes, R.G.: The influence of relaxed supernode partitions on the
multifrontal method. ACM Trans. Math. Software 15 (1989) 291-309

Rothberg, E., Gupta, A.: An efficient block-oriented approach to parallel sparse
Cholesky factorization. SIAM J. Sci. Comput. 15 (1994) 1413-1439

Kisuki, T., Knijnenburg, P., O’Boyle, M.: Combined selection of tile sizes and unroll
factors using iterative compilation. In: Parallel Architectures and Compilation
Techniques. (2000) 237-246

Bilmes, J., Asanovic, K., Chin, C.W., Demmel, J.: Optimizing matrix multiply
using PHiPAC: a portable, high-performance, ANSI C coding methodology. In:
11th ACM Int. Conf. on Supercomputing, ACM Press (1997) 340-347

Cuenca, J., Gimenez, D., Gonzalez, J.: Towards the design of an automatically
tuned linear algebra library. In: Proceedings. 10th Euromicro Workshop on Paral-
lel, Distributed and Network-based Processing. (2002) 201-208

Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In:
Supercomputing '98, IEEE Computer Society (1998) 211-217

Jones, M.T., Plassmann, P.E.: BlockSolve95 users manual: Scalable library soft-
ware for the parallel solution of sparse linear systems. Technical report, Argonne
National Laboratory (1995)

Kamath, C., Ho, R., Manley, D.: DXML: A high-performance scientific subroutine
library. Digital Technical Journal 6 (1994) 44-56

Navarro, J.J., Garcia, E., Herrero, J.R.: Data prefetching and multilevel blocking
for linear algebra operations. In: Proceedings of the 10th international conference
on Supercomputing, ACM Press (1996) 109-116

Herrero, J.R., Navarro, J.J.: Automatic benchmarking and optimization of codes:
an experience with numerical kernels. In: Proceedings of the 2003 International
Conference on Software Engineering Research and Practice, CSREA Press (2003)
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. Technical Report TR95-035, Department of Computer Science,
University of Minnesota (1995)

NetLib: (Linear programming problems) http://www.netlib.org/lp/.

Frangioni, A.: (Multicommodity ~ Min Cost Flow problems)
http://www.di.unipi.it/di/groups/optimize/Data/.

