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Abstract. Distributed Shared Memory systems allow the use of the shared
memory programming paradigm in distributed architectures where no physically
shared memory exist. Scope consistent software DSMs provide a relaxed mem-
ory model that reduces the coherence overhead by ensuring consistency only at
synchronisation operations, on a per-lock basis. Sequence comparison is a basic
operation in DNA sequencing projects, and most of sequence comparison meth-
ods used are based on heuristics, that are faster but do not produce optimal
alignments. Recently, many organisms had their DNA entirely sequenced, and
this reality presents the need for comparing long DNA sequences, which is a
challenging task due to its high demands for computational power and memory.
In this article, we present and evaluate a parallelisation strategy for implement-
ing a sequence alignment algorithm for long sequences in a DSM system. Our
results on an eight-machine cluster presented good speedups, showing that our
parallelisation strategy and programming support were appropriate.

1 Introduction

Distributed Shared Memory (DSM) is an abstraction that allows the use of the shared
memory programming paradigm in parallel or distributed architectures. The first DSM
systems tried to give parallel programmers the same guarantees they had when pro-
gramming uniprocessors and this approach created a huge coherence overhead [10].
To alleviate this problem, researchers have proposed to relax some consistency condi-
tions, thus creating new shared memory behaviours that are different from the tradi-
tional uniprocessor one.
In the shared memory programming paradigm, synchronisation operations are used
every time processes want to restrict the order in which memory operations should be
performed. Using this fact, hybrid Memory Consistency Models (MCM) guarantee
that processors only have a consistent view of the shared memory at synchronisation
time [10]. This allows a great overlapping of basic read and write operations that can
lead to considerable performance gains. By now, the most popular MCMs for DSM
systems are Release Consistency [2] and Scope Consistency [6].
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JIAJIA is a scope consistent software DSM system proposed by [4] that imple-
ments consistency on a per-lock basis. When a lock is released, modifications made
inside the critical section are made visible to the next process that acquires the same
lock. On a synchronisation barrier, however, consistency is globally maintained and all
processes are guaranteed to see all past modifications to the shared data.

In DNA sequencing projects, researchers want to compare two sequences to find
similar portions of them and obtain good local sequence alignments. In practice, two
families of tools for searching similarities between two sequences are widely used -
BLAST [1] and FASTA[13], both based on heuristics and used for comparing long
sequences. To obtain optimal local alignments, the most widely used algorithm is the
one proposed by  Smith-Waterman [12], with quadratic time and space complexity.

Many works are known that implement the Smith-Waterman algorithm for long
sequences of DNA. Specifically, parallel implementations were proposed using MPI
[9] or specific hardware [3]. As far as we know, this is the first attempt to use a scope
consistent DSM system to solve this kind of problem.

In this article, we present and evaluate a parallelisation strategy for implementing
the Smith-Waterman algorithm in a DSM system . Work is assigned to each processor
in a column basis with a two-way lazy synchronisation protocol. An heuristic de-
scribed in [11] was used to reduce the space complexity.

The results obtained in an eight-machine cluster with large sequence sizes show
good speedups when compared with the sequential algorithm. For instance, to align
two 400KB sequences, a speedup of 4.58 was obtained, reducing the execution time
from more than 2 days to 10 hours.

The rest of this paper is organised as follows. Section 2 describes the sequence
alignment problem and the optimal algorithm to solve it. In Section 3, DSM systems
are presented. Section 4 describes our sequential and parallel algorithm. Some ex-
perimental results are discussed in Section 5. Finally, Section 6 concludes the paper.

2 Smith-Waterman’s Algorithm for Local Sequence Alignment

To compare two sequences, we need to find the best alignment between them, which
is to place one sequence above the other making clear the correspondence between
similar characters or substrings from the sequences [11]. We define alignment as the
insertion of spaces in arbitrary locations along the sequences so that they finish with
the same size.

Given an alignment between two sequences s and t, an score is associated for them
as follows. For each column,  we associate +1 if the two characters are identical, -1 if
the characters are different and –2 if one of them is a space. The score is the sum of
the values computed for each column. The maximal score is the similarity between the
two sequences, denoted by sim(s,t). In general, there are many alignments with maxi-
mal score. Figure 1 gives and example.

Smith-Waterman [12] proposed an algorithm based on dynamic programming. As
input, it receives two sequences s, |s|=m, and t, |t|=n. There are m+1 possible prefixes



Comparing Two Long Biological Sequences Using a DSM System         519

G A - C G G A T T A G
G A T C G G A A T A G

+1 +1 –2 +1 +1 +1 +1 –1 +1 +1 +1 = 6

Fig. 1. Alignment of the sequences s= GACGGATTAG and t=GATCGGAATAG, with the score
for each column. There are nine columns with identical characters, one column with distinct
character and one column with a space, giving a total score 6 = 9*(+1)+1*(-1) + 1*(-2)

for s and n+1 prefixes for t, including the empty string. An array (m+1)x(n+1) is built,
where the (i,j) entry contains the value of the similarity between two prefixes of s and
t, sim(s[1..i],t[1..j]).

Fig. 2 shows the similarity array between s=AAGC and t=AGC. The first row and
column are initialised with zeros. The other entries are computed using Equation 1.

In equation 1, p(i,j) = +1 if s[i]=t[j] and –1 if s[i]�t[j]. If we denote the array by a,
the value of a[i,j] is the similarity between s[1..i] and t[1..j], sim(s[1..i],t[1..j]).

Fig. 2. Array to compute the similarity between the sequences s=AAGC and t=AGC.

We have to compute the array a row by row, left to right on each row, or column by
column, top to bottom, on each column. Finally arrows are drawn to indicate where
the maximum value comes from, according to Equation 1. Figure 3 presents the basic
dynamic programming algorithm for filling the array a.

Algorithm Similarity
Input: sequences s and t
Output: similarity between s and t
m � |s|
n � |t|
For i � 0 to m do
   a[i, 0] � i x g
For j � 0 to n do
   a[0, j] � j x g

For i � 1 to m do
 For j � 1 to n do
   a[i, j] � max( a[i –1, j] –2, a[i –1, j –1] ±1, a[i, j –1] –2, 0)
Return a[m, n]

Fig. 3. Basic dynamic programming algorithm to build a similarity array a.

An optimal alignment between two sequences can be obtained as follows. We be-
gin in a maximal value in array a, and follow the arrow going out from this entry until
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we reach another entry with no arrow going out, or until we reach an entry with value
0. Each arrow used gives us one column of the alignment. An horizontal arrow leaving
entry (i,j) corresponds to a column with a space in s matched with t[j], a vertical arrow
corresponds to s[i] matched with a space in t and a diagonal arrow means s[i] matched
with t[j]. An optimal alignment is constructed from right to left. The detailed explana-
tion of this algorithm can be found in [11]. Many optimal alignments may exist for
two sequences because many arrows can leave an entry.

The time and space complexity of this algorithm is 0(m n), and if both sequences
have approximately the same length, n, we get O(n2).

3 Distributed Shared Memory Systems

Distributed Shared Memory offers the shared memory programming paradigm in a
distributed environment where no physically shared memory exists. DSM is often
implemented a single paged, virtual address space over a network of computers that is
managed by the virtual memory system [8]. Local references usually proceed without
the interference of the DSM system and only generate exceptions by protection fault.
When a non resident page is accessed, a page fault is generated and the DSM system
is contacted to fetch the page from a remote node. The instruction that caused the page
fault is restarted and the application can proceed.

In order to improve performance, DSM systems usually replicate pages. Maintaining
strong consistency among the copies was the approach used by the first DSM systems
but it created a huge coherence overhead.[7]

Relaxed memory models aim to reduce this overhead  by allowing replicas of the
same data to have, for some period of time, different values [10].  By doing this, re-
laxed models provide a programming model that is complex since, at some moments,
the programmer is conscious of replication.

Hybrid memory models are a class of relaxed memory models that postpone the
propagation of shared data modifications until the next synchronisation point [10].
These models are quite successful in the sense that they permit a great overlapping of
basic memory operations while still providing a reasonable programming model. Re-
lease Consistency (RC) [2] and Scope Consistency (ScC) [6] are the most popular
memory models for software DSM systems.

The goal of Scope Consistency (ScC) [6] is to take advantage of the association
between synchronisation variables and ordinary shared variables they protect. In
Scope Consistency, executions are divided into consistency scopes that are defined on
a per lock basis. Only synchronisation operations and data accesses that are related to
the same synchronisation variable are ordered. The association between shared data
and the synchronisation variable that guards them is implicit and depends on program
order. Additionally, a global synchronisation point can be defined by synchronisation
barriers. JIAJIA [4] is an example of scope consistent software DSM.

JIAJIA implements the Scope Consistency memory model with a write-invalidate
multiple-writer home-based protocol. In JIAJIA, the shared memory is distributed
among the nodes in a NUMA-architecture basis. Each shared page has a home node. A
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page is always present in its home node and it is also copied to remote nodes on an
access fault. There is a fixed number of remote pages that can be placed at the mem-
ory of a remote node. When this part of memory is full, a replacement algorithm is
executed.

Each lock is assigned to a lock manager. The functions that implement lock ac-
quire, lock release and synchronisation barrier in JIAJIA are jia_lock, jia_unlock and
jia_barrier, respectively [5]. Additionally, JIAJIA provides condition variables that are
accessed by jia_setcv and jia_waitcv, to signal and wait on conditions, respectively.
The programming style provided is SPMD (Single Program Multiple Data) and each
node is distinguished from the others by a global variable jiapid [5].

4   Parallel Algorithm to Compare DNA Sequences

To analyse the performance of our parallel algorithm, we implemented a sequential
variant of the algorithm described in Section 2 that uses two linear arrays [11]. The bi-
dimensional array was not used since, for large sequences, the memory overhead
would be prohibitive. In this algorithm, we simulate the filling of the bi-dimensional
array just using two rows in memory, since, to compute entry a[i,j] we just need the
values of a[i-1,j], a[i-1,j-1] and a[i,j-1]. So, the space complexity of this version is
linear, O(n). The time complexity remains O(n2).

The algorithm works with two sequences s, |s|=m and t, |t|=n. First, one linear ar-
ray is initialised with zeros. Then, each entry of the second array is obtained from the
first one with the algorithm described in Section 2, but using a single character of s on
each step. We denote a[i,j]=sim(s[1..i,1..j]) as current score. Each entry also contains:
initial and final alignment coordinates, maximal and minimal score, gaps, matches
and mismatches counters and a flag showing if the alignment is a candidate to be an
optimal alignment. When computing the a[i,j] entry, all the information of a[i-1,j],
a[i-1,j-1] or a[i,j-1] is passed to the current entry.

The gaps, matches and mismatches counters are employed when the current score
of the entry being computed comes from more than one previous entry. In this case,
they are used to define which alignment will be passed to this entry. We use an ex-
pression (2*matches counter + 2*mismatches counter + gaps counter) to decide
which entry to use [9]. The greater value is considered as the origin of the current
entry. If the values are still the same, our preference will be to the horizontal, to the
vertical and at last to the diagonal arrow, in this order. At the end of the algorithm, the
coordinates of the best alignments are kept on the queue alignments. This queue is
sorted and the repeated alignments are removed. The best alignments are then reported
to the user.

The access pattern presented by this variant of the Smith-Waterman algorithm leads
to a non-uniform amount of parallelism. The parallelisation strategy that is tradition-
ally used in this case is the “wave-front method” since the calculations that are done in
parallel evolve as waves on diagonals.

We propose a parallel version of this variant where each processor p acts on two
rows, a writing and a reading row. Work is assigned in a column basis, i.e., each proc-
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essor calculates only a set of columns on the same row, as shown in figure 4. Syn-
chronisation is achieved by locks and condition variables provided by JIAJIA [5,6].
Barriers are only used at the beginning and at the end of computation.

In figure 4, p0 starts computing and, when value a1,3 is calculated, it writes this
value at the shared memory and signals p1, that is waiting on jia_waitcv. At this mo-
ment, p1 reads the value from shared memory, signals p0, and starts calculating from
a1,4 . P0 proceeds then calculating elements a2,1 to a2,3  When this new block is finished,
p0 issues a jia_waitcv to guarantee that the preceeding value was already read by p1.
The same protocol is executed by every processor pi and processor pi+1.

Fig. 4. Work assignment in the parallel algorithm. Each processor p is assigned N/P rows,
where P is the total number of processors and N is the length of the sequence.

5 Experimental Results

Our parallel algorithm was implemented in C, using the software DSM JIAJIA v.2.1
on top of Debian Linux 2.1. We ran our experiments on a dedicated cluster of 8
Pentium II 350 MHz, 160 MB RAM connected by a 100Mbps switch. Our tests used
real DNA sequences obtained from  www.ncbi.nlm.nih.gov/PMGifs/Genomes. Five
sequence sizes were considered (15KB, 50KB, 80KB, 150KB and 400KB). Execution
times and speedups for these sequences, with 1,2,4 and 8 processors are shown in
Table 1. Speedups were calculated considering the total execution time and thus in-
clude times for initialisation and collecting results.

Table 1.  Total execution times (seconds) and speedups for 5 sequence comparisons

Size Serial
Exec

2 proc
Exec /Speedup

4 proc
Exec /Speedup

8 proc
Exec /Speedup

15K x 15K 296 283.18/1.04 202.18/1.46 181.29/1.63
50K x 50K 3461 2884.15/1.20 1669.53/2.07 1107.02/3.13
80K x 80K 7967 6094.19/1.31 3370.40/2.46 2162.82/3.68
150K x 150K 24107 19522.95/1.23 10377.89/2.32 5991.79/4.02
400K x 400K 175295 141840.98/1.23 72770.99/2.41 38206.84/4.58

    As can be seen in table 1, for small sequence sizes, e.g. 15K, very bad speedups are
obtained since the parallel part is not long enough to surpass the amount of synchroni-
sation inherent to the algorithm. As long as sequence sizes increase, better speedups

A   A    T    C   G   G     C   T   C     A   T   G

a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7 a4,8 a4,9 a4,10 a4,11 a4,12

a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 a3,8 a3,9 a3,10 a3,11 a3,12

a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8 a2,9 a2,10 a2,11 a2,12

a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8 a1,9 a1,10 a1,11 a1,12
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Fig. 5. Execution time breakdown for 5 sequence sizes, containing the relative time spent in
computation, communication, lock and condition variable and barrier.

are obtained. This effect can be better noticed in figure 5, which presents a breakdown
of the execution time of each sequence comparison.

We also compared the results obtained by our implementation (denoted Geno-
meDSM) with BlastN, FASTA and PipMaker [14]. For this task, we used two 50KB
mithocondrial genomes, Allomyces acrogynus and Chaetosphaeridium globosum.

In table 2, we present a comparison among these four programs, showing the
alignments with the best scores found by GenomeDSM. Still in table 2, the second and
third best alignments were not found by FASTA. In FASTA, the query sequence had
to be broken, since our version of FASTA did not compute sequences greater that
20KB. Thus, the lack of these two sequence alignments can be due to this limitation.

Table 2. Comparison among results obtained by GenomeDSM, BlastN, FASTA and PipMaker

GenomeDSM BlastN FASTA PipMaker
Alignment  1 Begin (39109, 55559) (39099, 55549) (38396, 55317) (38396, 54897)

End (39839, 56252) (39196, 55646) (39840, 56673) (39828, 56239)
Alignment  2 Begin (39475, 48905) (39522, 48952) - (39617, 49050)

End (39755, 49188) (39755, 49005) - (39756, 49189)
Alignment  3 Begin (28637, 47919) (28667, 47949) - (28505, 47787)

End (28753, 48035) (28754, 48036) - (28756, 48038)

We also developed a tool to visualise the alignments found by GenomeDSM. An
example can be seen in figure 6.

Fig. 6. Visualisation of the alignments generated by GenomeDSM with the 50KB sequences.
Plotted points show the similarity regions between the two genomes.

Martins et al. [9] presented a version of the Smith-Waterman algorithm using MPI
that ran on a Beowulf system with 64 nodes each containing 2 processors. Speedups
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attained were very close to ours, e.g., for 800Kx500K sequence alignment, a speedup
of  16.1 were obtained for 32 processors.

6 Conclusions and Future Work

In this paper, we proposed and evaluated a DSM implementation of the Smith-
Waterman algorithm that solve the DNA local sequence alignment problem. Work is
assigned to each processor in a column basis and the wavefront method was used.

The results obtained in an 8-machine cluster present good speedups which are im-
proved as long as the sequence lengths increase. To compare sequences of 400KB, we
obtained a 4.58 speedup on the total execution time, reducing execution time of the
sequential algorithm from 2 days to 10 hours. This shows that that our parallelisation
strategy and the DSM programming support were appropriate to our problem.

As future work, we intend to port the algorithm implemented in MPI proposed in
[9] to our cluster and compare its results with ours. Also, we intend to propose and
evaluate a variant of our approach, which will use variable block size.
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