
An Enhanced Trace Scheduler for SPARC
Processors

Spiros Kalogeropulos

Sun Microsystems, 16 Network Circle MS: UMPK16-203,
Menlo Park CA 94025, USA.

spiros.kalogeropulos@sun.com

Abstract. In this paper an enhanced trace scheduler implementation
is described which targets processors with moderate support for paral-
lelism and medium size register file such as the SPARC processors Ultra-
SPARC(rtm) II and UltraSPARC(rtm) III. The enhanced trace sched-
uler is a global instruction scheduler, which identifies and exploits the
available instruction level parallelism in a routine, contributing to perfor-
mance improvement for UltraSPARC processor systems. The enhanced
trace scheduler is part of the Sun Forte 6 update 2 product compilers
for UltraSPARC II and UltraSPARC III processors. The enhanced trace
scheduler, in exploiting the available instruction level parallelism, at-
tempts to address issues such as register pressure, speculation and the
amount of compensation code.

1 Introduction

The SPARC processors UltraSPARC II and UltraSPARC III are in-order issue
superscalar processors which provide moderate support for parallelism by issuing
and executing up to four instructions per clock cycle. The SPARC processors rely
on the compiler to produce an instruction schedule that extracts and exploits the
available instruction level parallelism in a routine to maximize the instruction
issue rate and the parallelism of memory operations by issuing prefetches and
loads as early as possible.

The process of detecting and scheduling the available fine grain parallelism
is usually applied on the control flow graph of a routine. Instruction schedulers
use single basic blocks for detecting and scheduling the available fine grain par-
allelism. However, single basic blocks contain insufficient instruction level par-
allelism; therefore higher performance is achieved by exploiting instruction level
parallelism in consecutive basic blocks.

Several global instruction scheduling techniques have been described in the
literature, which perform instruction scheduling beyond the basic blocks bound-
aries. Trace scheduling [1], [2] selects a frequently executed sequence of con-
tiguous basic blocks from one path in the control flow, called trace, on which
instruction scheduling is performed. Most of the global scheduling techniques [1],
[2], [3] target wide issue processors with a big register file and hardware support

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 597–602, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



598 S. Kalogeropulos

for large amount of parallelism. The enhanced trace scheduling technique de-
scribed in this paper targets the UltraSPARC II and UltraSPARC III processors
which have a medium size architectural and physical register file of 32 integer
registers, 32 floating point registers and support for a moderate amount of par-
allelism. Therefore, the performance improvement due to the exploitation of the
available parallelism involves successfully addressing issues such as register pres-
sure, speculation and the amount of compensation code. For instance, aggressive
code motion might cause register spilling if the register pressure is high, which
negates the benefit of utilizing the parallelism. Furthermore, aggressive specu-
lation could hurt the performance of a program if the latency of the speculated
instructions is not hidden by using idle resources of the processor.

In the following section, we present an overview of the enhanced trace sched-
uler. Subsequently, we describe briefly a flexible trace formation scheme. Next,
the scheduling of traces and dealing with register pressure is discussed. Finally,
results are presented which evaluate the enhanced trace scheduler work.

2 An Overview of the Enhanced Trace Scheduler

The enhanced trace scheduler phase could be invoked twice. The first invoca-
tion is before the register allocation during a phase named as early instruction
scheduling. The second invocation could be after register allocation during the
late instruction scheduling phase. The early instruction scheduling is applied on
a compiler intermediate representation where values are kept in an unlimited
number of virtual registers. On the other hand, the late instruction scheduling
is applied on the same compiler intermediate representation after the register
allocation where values reside in actual machine register.

The enhanced trace scheduler performs the following actions repetitively us-
ing the control flow of a routine until it cannot form a trace:

– It forms a trace and annotates the trace with the following information:
• Data flow information for control flow edges entering, exiting the trace

for virtual registers which are accessed but will not be renamed.
• Information regarding the original basic block of each instruction in the

trace and its properties such as execution probabilities.
– It invokes the trace instruction scheduler which addresses issues such as

register pressure, speculative code motion.
– It introduces partial renaming, compensation code. Compensation code is

introduced in a similar way to [1], [2].

3 Trace Formation

The enhanced trace scheduler targets a wide variety of applications with diverse
enhancing performance requirements. For instance, in database applications the
main requirement for performance improvement is to improve the concurrency in
memory operations, since the portion of run time spent on memory operations is



An Enhanced Trace Scheduler for SPARC Processors 599

high. The enhanced trace scheduler tackles the above problem by being flexible
in the trace formation and by producing traces which match the performance
characteristics and potential of different applications.

The trace formation phase may form three different kinds of traces, called
hot trace, warm trace and long trace, by applying different edge execution prob-
abilities thresholds during the trace formation.

After determining the basic blocks that will be part of the trace using a tech-
nique similar to [1], [2], the next step is to collapse all the basic blocks into a
trace block. During the collapsing of the basic blocks a pseudo instruction called
join instruction is inserted at the beginning of each basic block. The join in-
struction represents the notion of the basic block in the trace and the data flow
information for control flow edges entering and exiting the trace. Furthermore,
a mapping of the instructions in each basic block to its join instruction is main-
tained before and after scheduling the instructions in the trace. This information
will enable us to identify the instructions that have moved from their original
block after scheduling the instructions in the trace.

4 Scheduling Traces

Our approach to schedule instructions in a trace is different from other trace
scheduling techniques [1], [2]. In the enhanced trace scheduler first the available
parallelism is exposed. We improve the available parallelism by ignoring the
data dependencies due to virtual register accesses and memory accesses in the
off-trace control flow paths which enter or exit a trace and employing virtual
register partial renaming on the hoisted instructions. Subsequently, its usefulness
is evaluated by using a cost benefit analysis scheme which calculates the impact
of speculation, compensation code and register pressure. Finally, the instructions
are scheduled in the trace.

The instruction scheduler exposes the available parallelism by viewing the
trace as one big basic block when it builds the necessary information for schedul-
ing such as the DAG (directed acyclic graph). However, the instruction scheduler
during scheduling views the basic blocks in the trace distinctively. Therefore the
instruction scheduler is able to analyze the code motion and distinguish between
a speculative code motion and a non speculative code motion. The above analy-
sis is facilitated by maintaining information about the current basic block under
scheduling and using the information of the join pseudo instructions. At the be-
ginning of the scheduling, the current basic block is the first block in the trace,
when all its instructions are scheduled, then the next block in the trace becomes
the current basic block.

Before the scheduling commences, the instruction scheduler builds a DAG for
the whole trace, where the nodes are instructions in the trace and the edges rep-
resent the data dependencies between the instructions. After building the DAG
the instruction scheduler maintains height information for each instruction in the
trace. The height of an instruction in a DAG is the estimated execution time of
the longest path from the instruction to the exit of the DAG. Height information



600 S. Kalogeropulos

is one of the factors for prioritizing the scheduling of ready for execution instruc-
tions. Furthermore, for each instruction in the trace, the information about its
original block is maintained. The above information helps the instruction sched-
uler to find the estimated execution probability of the instruction. The execution
probability is used by the cost benefit analysis scheme to determine the useful-
ness of the available parallelism.

The instruction scheduler is list driven and uses the DAG to build a ready
list of instructions in the trace which are available for execution. Subsequently, a
cost benefit analysis scheme is employed to evaluate the instructions which may
belong to different basic blocks using the following heuristics:
– Earliest instruction issue time.
– A speculative instruction which blocks the further execution of instructions

in the pipeline until its execution is completed, for instance a divide instruc-
tion, gets low priority.

– An instruction which will cause an amount of compensation code above a
certain threshold when moved from its original block gets low priority.

– An instruction which belongs to a basic block, other than the current basic
block, with execution probability relative to the head of the trace less than
a certain threshold gets low priority.

– If an instruction belongs to a basic block, other than the current basic block,
with low execution frequency then it may move only to a control equivalent
block.

After determining the useful parallelism, instructions are prioritized further
using the following main criteria: 1) Impact on register pressure. 2) Impact on
machine resources. 3) Critical path height reduction.

After considering all the above criteria the most suitable instruction is sched-
uled and is removed from the list of the available for execution instructions.

4.1 Dealing with Register Pressure

Our approach to deal with register pressure is to exploit the available parallelism
while the hardware register availability is high and focus on the register pressure
impact of the instructions in the trace when the hardware register availability is
close to zero.

During the scheduling of each instruction in the trace, we maintain informa-
tion about the number of live virtual registers and an estimate of the available
hardware registers. When our estimation shows that the availability of hardware
registers drops close to zero, then the instruction scheduler for the trace gives
highest priority to instructions which, if they were scheduled would free a used
virtual register or not define a new virtual register. In this way we try to reduce
the number of spills.

5 Results

In this section, we present results of experiments conducted to measure the
performance improvement when the enhanced trace scheduler is invoked on the



An Enhanced Trace Scheduler for SPARC Processors 601

benchmarks SPEC2000 INT. The compilation of the benchmarks used profile
feedback where the training data set is different from the actual testing data set
used by the benchmarks. The evaluation of the enhanced trace scheduler was
achieved by using the peak configuration file, used in Sun’s SPEC submissions,
to establish the peak SPEC2000 INT numbers. Then new peak SPEC2000 INT
numbers were produced by enabling the enhanced trace scheduler.

By using the peak options without enabling the enhanced trace scheduler,
the scheduling of the instructions is done by a basic block scheduler invoked
before and after the register allocation. However, before the first time the basic
block scheduler is invoked, a global code motion phase that redistributes the
available parallelism similar to [4] is applied. The main objective of the above
phase is to reduce the critical path of a basic block and its machine resource
usage by trying to move some of its instructions to other basic blocks without
increasing their height and utilizing the available hardware resources.

Figure 1 shows the performance improvement when the SPEC2000 INT
benchmarks are compiled with an additional sequence of options enabling the
enhanced trace scheduler on top of the peak flags. The enhanced trace scheduler
is invoked after the global code motion phase. The binaries run on a 450 MHz
UltraSPARC II processor with 4 Mbyte L2 cache, and a 1050 MHz UltraSPARC
III processor with 8 Mbytes L2 cache.

Fig. 1. Performance Improvement on UltraSPARC II and UltraSPARC III processors

The difference in performance improvement between UltraSPARC II and Ul-
traSPARC III is due to mainly the different processor characteristics and the
opportunities provided by the processors to hide the latency of integer load



602 S. Kalogeropulos

instructions missing the L1 data cache. The UltraSPARC II processor has a
16 Kbyte direct mapped L1 data cache in comparison to UltraSPARC III’s 64
Kbytes 4 way associative L1 data cache. Therefore there are a lot more L1 cache
misses when the SPEC2000 INT benchmarks run on UltraSPARC II in compar-
ison to UltraSPARC III. The loads which miss the L1 cache in UltraSPARC II
stall the pipeline only when an instruction using the value provided by the load
executes. The enhanced trace scheduler has the potential to hide the 9 cycles
latency of the loads which miss L1 cache in UltraSPARC II, by moving the loads
far away from the instructions that use the value provided by the loads and
achieve performance improvement. However, in the case of UltraSPARC III a
load instruction missing the L1 cache stalls the pipeline till the load instruction
completes execution, therefore the code motion cannot hide the latency of the
above load. Furthermore, in both processors when a load instruction hits the L1
data cache the latency for using the load’s value is 2-3 cycles. The enhanced trace
scheduler can hide the above load latency by scheduling the load instruction and
its data dependent instructions at an optimal cycle distance.

6 Conclusions

Most of the global scheduling techniques target processors with hardware fea-
tures supporting large amount of parallelism where register pressure, speculation
and compensation code is not a big issue. However, exploiting successfully the
available parallelism for processors with small or medium size register files and
moderate support for parallelism, such as UltraSPARC processors, involves suc-
cessfully addressing the issues of speculation, register pressure and compensation
code.

Our approach in the enhanced trace scheduler involves a flexible trace for-
mation scheme according to the performance needs of different applications. A
partial register renaming scheme is employed to improve the instruction level
parallelism. Finally, the usefulness of the available parallelism is determined by
using a cost benefit analysis scheme which takes into consideration the impact
of speculation, compensation code and register pressure.

References

1. Lowney G., Freudenberger S., Karzes T., and et al. The Multiflow Trace Scheduling
Compiler. The Journal of Supercomputing, Volume 7. p. 51–142, 1993.

2. Ellis J. Bulldog: A compiler for VLIW Architectures. Ph.D. thesis, MIT, 1986.
3. Hwu W. and et al. The Superblock: An Effective Structure for VLIW and Super-

scalar Compilation. The Journal of Supercomputing, Volume 7. p. 229–248, 1993.
4. Gupta R. and Soffa M. Region Scheduling: An Approach for Detecting and Redis-

tributing Parallelism. IEEE Transactions on Software Engineering, Volume 16. p.
421–431, 1990.

5. Moon S. and Ebcioglu K. Parallezing Non-Numerical Code with Selective Schedul-
ing and Software Pipelining. ACM Transactions on Programming Languages and
Systems, Volume 16. p. 1–40, 1997.


	Introduction
	An Overview of the Enhanced Trace Scheduler
	Trace Formation
	Scheduling Traces
	Dealing with Register Pressure

	Results
	Conclusions



