
Compression in Data Caches with Compressible
Field Isolation for Recursive Data Structures

Masamichi Takagi and Kei Hiraki

Dept. of CS, Grad. School of Info. Science and Tech., Univ. of Tokyo
{takagi-m, hiraki}@is.s.u-tokyo.ac.jp

Abstract. We introduce a software/hardware scheme called the Field
Array Compression Technique (FACT) which reduces cache misses due
to recursive data structures. Using a data layout transformation, data
with temporal affinity is gathered in contiguous memory, where the re-
cursive pointers and integer fields are compressed. As a result, one cache-
block can capture a greater amount of data with temporal affinity, es-
pecially pointers, improving the prefetching effect of a cache-block. In
addition, the compression enlarges the effective cache capacity. On a
suite of pointer-intensive programs, FACT achieves a 41.6% reduction in
memory stall time and a 37.4% speedup on average.

1 Introduction

Non-numeric programs often use recursive data structures (RDS). For example,
they are used to represent variable-length object-lists, trees for data repositories.
Such programs using RDS make graphs and traverse them, however the traversal
code often leads to cache misses. Many studies have proposed techniques effective
for reducing these misses. These are (1) data prefetching [3], (2) data layout
transformations, which gather data with temporal affinity in contiguous memory
to improve the prefetch effect of a cache-block [1], and (3) data compression in
caches, which compresses the data stored in the caches [4,5,6]. Not only does
compression enlarge the effective cache capacity, but it also increases the effective
cache-block size. Therefore applying it with the data layout transformation can
produce a synergy effect that further enhances the prefetch effect of a cache-
block. This combined method can be complementary to data prefetching. While
we can compress data into 1

8 or less of its original size in some programs, existing
data compression methods in data caches limit the compression ratio to 1

2 , mainly
due to the hardware complexity in the cache structure [4,5,6]. Therefore we
propose a method which achieves a compression ratio over 1

2 .
In this paper, we propose a software/hardware scheme which we call the

Field Array Compression Technique (FACT). FACT aims to reduce cache misses
caused by RDS through data layout transformation of the structures and com-
pression of the structure fields. This has several positive effects. (1) The data
layout transformation improves the prefetch effect of a cache-block. (2) FACT
compresses recursive pointer and integer fields of the structure, and this compres-
sion further enhances the prefetch effect by enlarging the effective cache-block

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 609–615, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



610 M. Takagi and K. Hiraki

size. (3) This compression also enlarges the effective cache capacity. Since FACT
utilizes a novel data layout scheme for both the uncompressed data and the
compressed data in memory and utilizes a novel form of addressing to refer-
ence the compressed data in the caches, it requires only slight modification to
the conventional cache structure. Therefore FACT exceeds the limit of existing
compression methods, which exhibit a compression ratio of 1

2 .

2 Field Array Compression Technique

The detailed steps of FACT are as follows: (1) We first take profile-runs to
inspect the runtime values of the recursive pointer and integer fields, and we
locate fields which contain values that are often compressible. These compressible
fields are the targets of the compression. (2) By modifying the source code,
we transform the data layout of the target structure to isolate and gather the
compressible fields from different instances in the form of an array of fields.
(3) We replace the load/store instructions which access the target fields with
special instructions, which also compress/decompress the data (we call these
instructions cld/cst). (4) During runtime, the cld/cst instructions carry out
the compression/decompression using special hardware, as well as performing
the normal load/store job. Since this method utilizes a field array, we call it the
Field Array Compression Technique (FACT). The compressed data is handled
in the same manner as the non-compressed data, and both reside in the same
cache.

2.1 Compression of Structure Fields

To compress the recursive pointer fields, we replace the absolute address of a
pointer with a relative address in units of the structure size, which can be rep-
resented using a narrower bit-width than the absolute address. Figure 1 illus-
trates the compression. Assume we are constructing a balanced binary tree in
depth-first order using RDS (1). We use the custom memory allocator which
arranges the instances in contiguous memory (2). Therefore we can replace the
pointers with relative orders (1). The compression/decompression is done when
writing/reading pointer fields. Assume the compression ratio is 1/R. Note that
since the difference between the addresses of two contiguous instances is 8 bytes
due to the data layout transformation, the relative order is equal to the address
difference of the two instances divided by 8, and we use this as the 64/R-bit
codeword. We use a special codeword to indicate incompressibility, and which is
handled differently by the cld instruction if the difference is outside the range
that can be expressed by a standard codeword. As to the integer field com-
pression, FACT utilizes two methods [7]. As to the selection of the compression
target fields in a program, we use profiling method, whose details are described
in [7]. In addition, we choose one compression ratio and one integer compression
method used in a program using this profiling.



Compression in Data Caches with Compressible Field Isolation 611

e

struct tree_t {

tree_t *L;

tree_t *R; 

};

struct tree_t {

tree_t *L;

tree_t *R; 

};

+1 +2 +1 +2

NULL NULLNULL NULL NULL NULLNULL NULL

g

+1

a

b

c d f

a.L d.Rb.L b.R c.L c.R d.L e.L e.R f.L f.R g.L g.Ra.R

L R

(2) nodes in memory

+1

+4 instance

+2+1

(1) using relative orders as pointers

+4

Fig. 1. Pointer compression.

a.n b.n c.n d.n e.n f.n a.v b.v c.v d.v e.v f.v

a.n d.vb.n b.v c.n c.v d.n e.n e.v f.n f.va.v

(1) Data Layout Transformation

struct list_t { list_t *n; int v; };

(A)

(B) …

2KB

a.v b.v c.v d.v e.v f.v(C) ……

(2) Field Array Compression

Fig. 2. Instance Interleaving (I2).

2.2 Data Layout Transformation for Compression

We transform the data layout of RDS to make it suitable for compression. The
transformation is the same as Instance Interleaving (I2) proposed in [1]. We
implement I2 by modifying the source code [7]. Since the compression shifts
the position of the data, accessing the compressed data in the caches requires a
memory instruction to translate the address for the uncompressed data into the
address which points to the compressed data in the caches. When we use the
different address space in the caches for the compressed data, the translation can
be done by shrinking the address for the uncompressed data by the compression
ratio. However, the processor must know the ratio which varies with the structure
types. To solve this problem, we transform the data layout of RDS to isolate
and group the compressible fields away from the incompressible fields. Assume
as an example compressing a structure which has a compressible pointer n and
an incompressible integer v. Figure 2 illustrates the isolation. Since field n is
compressible, we group all the n fields from the different instances of the structure
and make them contiguous in memory. We segregate n and v as arrays (B).
Assume all the n fields are compressible at the compression ratio of 1

8 , which
is often the case. Then we can compress the entire array of pointers (C). In
addition, the address translation becomes a simple division-by-eight. We can
also exploit temporal affinity between fields through the transformation. Assume
two n pointers contiguous in memory have temporal affinity and each instance
requires 16 bytes without I2. Using a 64-byte cache-block, 1 cache-block can hold
4 n pointers with temporal affinity (A). With I2, it can hold 8 of these pointers
(B), and with compression at a ratio of 1

8 , it can hold 64 of these pointers (C).
This transformation enhances the prefetch effect of a cache-block.

2.3 Address Translation for Compressed Data

Since we attempt to compress data which changes dynamically, we find it is
not always compressible. Therefore we need area for both the compressed and
uncompressed data. We allocate space for the both initially. This layout requires
an address translation from the uncompressed data to the compressed data. We



612 M. Takagi and K. Hiraki

can calculate it using an affine transformation with the following steps: FACT
uses a custom allocator, which allocates a memory block (for example, 2 KB) and
divides it into two for the compressed data and the uncompressed data. When
using a compression ratio of 1

8 , it divides the total block into a 1 : 8 ratio for
the compressed data block and the uncompressed data block. This layout also
provides the compressed data with spatial locality. However, this layout restricts
the position of the compressed data, thus causing cache conflicts. Therefore we
prepare new address space for the compressed data in the caches. We add a 1-
bit tag to the caches to distinguish the address spaces. Figure 3 illustrates these
address spaces. Consider the uncompressed data D and its physical address A
(1), the compressed data d and its physical address a (3), and the compression
ratio of 1

R . We utilize A
R in this new address space to point to d in the caches

(2). We need only to shift A to get A
R . That is, cld/cst instructions that access

D shift given address A into A
R and access d in the caches using A

R (X). When
the compressed data needs to be written-back to or fetched from main memory,
we translate address A

R into address a (Y).

(3) d

(1) D

compressed
data block

uncompressed

data block

addr space

for 

compressed 

data in 

caches

(2) d

(X
) l

oa
d/

st
ore

(Y) L2 miss/L2 write-back A/R

A

a

d:compressed

data

D:uncompressed

data

phys 

addr

space

Fig. 3. Address translation in FACT.

0

20

40

60

80

100

120

he
alt
h

tre
ea
dd

pe
rim

et
er tsp

em
3d bh m

st

bis
or
t

Program

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e 

(%
)

busy upto L2 upto mem

Fig. 4. Execution time comparison. In
each group, each bar shows from the left,
execution time of the baseline configura-
tion, with I2, and with FACT, respectively.

2.4 Deployment and Action of cld/cst Instructions

FACT replaces the load/store instructions that access the compression target
fields with cld/cst instructions. There are three types of cld/cst instructions,
corresponding to the compression targets and methods, and we choose an appro-
priate type for each replacement. The cst instruction checks whether its data is
compressible, and if it is, cst compresses it and puts it in the cache after the ad-
dress translation which shrinks the address by the compression ratio. When cst
encounters incompressible data, it stores the codeword indicating incompressibil-
ity, and then it stores the uncompressed data to the address before translation.
The details of the operation of the cst/cld instruction are described in [7].



Compression in Data Caches with Compressible Field Isolation 613

3 Evaluation Methodology, Results, and Discussions

Table 1. Simulation parameters

Fetch, up to 8 insts,
Decode, 128-entry inst. window,
Issue, 64-entry load/store queue,
Retire 256-entry ROB
Exec 4 INT, 4 LD/ST,
unit 2 other INT, 2 FADD,

2 FMUL, 2 other FLOAT
L1 data 32 KB, 2-way, 64 B blk size
cache 3-cycle load-to-use latency
L2 256 KB, 4-way, 64 B blk size
cache 13-cycle load-to-use latency
Memory 200-cycle load-to-use latency

We assume architecture employing
FACT uses a superscalar 64-bit micro-
processor, which uses 7-stage pipeline
and whose load-to-use latency is 3 cycles.
We assume the decompression performed
by the cld instruction requires one ad-
ditional cycle to the load-to-use latency.
When cst and cld instructions handle
incompressible data, they must access
both the compressed data and the
uncompressed data. We assume the
penalty in this case is at least 4 cycles
for cst and 6 cycles for cld. We assume
other compression operations of cld/cst
instructions do not require additional
latency. We developed an execution-driven, cycle-level software simulator of
a superscalar processor to evaluate FACT. Table 1 shows its parameters. We
used 8 programs from the Olden benchmark [2], health, treeadd, perimeter,
tsp, em3d, bh, mst, bisort. Table 2 shows characteristics and the compression
ratio used. They make graphs using RDS as their nodes. Note that different
input parameters are used for the profile-run and the evaluation-run. All
programs were compiled using Compaq CC version 6.2-504 on Linux Alpha,
using optimization “-O4”.

First we show the dynamic memory accesses of the compression target point-
ers (Atarget) normalized to the total dynamic accesses (access rate), and the
dynamic accesses of compressible pointers normalized to Atarget (success rate).

Table 2. Program used in the evalua-
tion. Note that we modified perimeter
and bh for simulation convenience [7]

Name Input param. Inst. Cmp.
for evaluation count ratio

health lev 5, time 300 69.5M 1/4
treeadd 1M nodes 89.2M 1/8
perim. 16K×16K img 159M 1/8
tsp 64K cities 504M 1/8
em3d 32K nodes, 3D 213M 1/8
bh 4K bodies 565M 1/4
mst 1024 nodes 312M 1/4
bisort 256K integers 736M 1/4

Table 3. Dynamic memory access rate and
compression success rate of compression tar-
get recursive pointers

Prog. Access (%) Success (%)
ratio→ 1/4 1/8 1/16 1/4 1/8 1/16
health 31.1 1.45 1.45 94.6 76.8 76.5
treeadd 11.6 11.6 11.5 100 98.9 96.5
perim. 17.6 17.5 17.6 99.8 95.9 85.6
tsp 10.2 10.2 10.2 100 96.0 67.1
em3d .487 .487 .487 100 99.6 99.6
bh 1.56 1.56 .320 88.2 51.3 52.2
mst 5.32 5.32 0 100 28.7 0
bisort 43.0 41.2 41.0 90.8 65.6 59.2

Table 3 summarizes the results with various compression ratios. treeadd,
perim, em3d, and tsp exhibit high success rates. This is because they organize



614 M. Takagi and K. Hiraki

the nodes in memory in the same order as the traversal. In these programs we
can compress many pointers into a single byte. On the other hand, bh, bisort,
health, and mst exhibit low success rates, because they organize the nodes in a
different order to the traversal order. Figure 4 compares the execution times of
the programs using the baseline configuration, with I2, and with FACT. Each
component in the bar shows from the bottom, busy cycles other than stall cycles
due to cache misses (busy), stall cycles due to accesses to the secondary cache
(upto L2), and due to accesses to main memory (upto mem). FACT reduces the
stall cycles due to cache misses by 41.6% on average. If the traversal order and the
memory order of the nodes in the programs are the same, I2 can exploit temporal
affinity between fields, which FACT can exploit further by compression. This is
the case in health, treeadd, perim, and em3d. I2 distributes the fields within
one data structure among multiple cache-blocks. It recovers this inefficiency by
gathering the fields with temporal affinity in one cache-block. When the memory
order and the traversal order of the nodes in the programs are different, I2
cannot recover this inefficiency thus lowering the utilization ratio of a cache-
block, resulting in degradation of performance. This is the case in bh, mst, and
bisort.

4 Summary

We proposed the Field Array Compression Technique (FACT) which reduces
cache misses caused by recursive data structures. Through software simulation,
we showed that FACT yields a 37.4% speedup and a 41.6% reduction of memory
stall time on average. This paper has four main contributions. (1) FACT achieves
the compression ratio of 1

8 . This ratio exceeds 1
2 , which is the limit of existing

compression methods. (2) We represent that we can compress many recursive
pointer fields into 8 bits. (3) We represent the notion of a split memory space,
where we allocate one byte of compressed memory for every 8 bytes of uncom-
pressed memory. Each uncompressed element is represented in the compressed
space with a codeword placeholder. This provides compressed data with spatial
locality and simplifies the address translation from uncompressed data address
to compressed data address. (4) We represent the notion of a new address space
for compressed data in the caches. which simplifies the addressing of compressed
data in the caches and avoids cache conflict.

References

1. D. N. Truong, F. Bodin, and A. Seznec. Improving cache behavior of dynamically
allocated data structures. In Proc. of PACT, pp. 322–329, Oct. 1998.

2. A. Rogers et al. Supporting dynamic data structures on distributed memory ma-
chines. ACM TOPLAS, 17(2):233–263, Mar. 1995.

3. A. Roth, A. Moshovos, and G. S. Sohi. Dependence based prefetching for linked
data structures. In Proc. of ASPLOS, pp. 115–126, Oct. 1998.

4. J. Yang, Y. Zhang, and R. Gupta. Frequent value compression in data caches. In
Proc. of MICRO, pp. 258–265, Dec. 2000.



Compression in Data Caches with Compressible Field Isolation 615

5. S. Y. Larin. Exploiting program redundancy to improve performance, cost and
power consumption in embedded systems. Ph. D. Thesis, ECE Dept., North Car-
olina State Univ., Raleigh, North Carolina, Aug. 2000.

6. Y. Zhang et al.Data compression transformations for dynamically allocated data
structures. In Proc. of Int. Conf on CC, LNCS 2304, pp. 14–28, Apr. 2002.

7. M. Takagi et al. Compression in data caches with data layout transformation for
recursive data structures. TR03-01, Dept. of CS, Univ. of Tokyo, May 2003.


	Introduction
	Field Array Compression Technique
	Compression of Structure Fields
	Data Layout Transformation for Compression
	Address Translation for Compressed Data
	Deployment and Action of {tt cld}/{tt cst} Instructions

	Evaluation Methodology, Results, and Discussions
	Summary



