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Abstract. Cache memory represents an important percentage of the total energy
consumption of today’s processors. This paper proposes a novel cache design
based on data compression to reduce the energy consumed by the data cache.
The new scheme stores the same amount of information as a conventional cache
but in a smaller physical storage. At the same time, the cache latency is pre-
served, thus no performance penalty is introduced. The benefits of energy vary
from 15.5% to 16%, and the reduction in die area ranges from 23% to 40%.

1 Introduction

Caches occupy a very important part of die area in most processors. Percentages of
around 50% are relatively common. On the other hand, some authors have reported
that caches may be responsible for 10%-20% of total energy consumed by a processor.

The objectives of this work are twofold: to reduce the area of the cache and its en-
ergy consumption while maintaining the same amount of information. We present a
novel cache architecture that provides significant advantages in terms of these metrics.

The key idea is based on the observation that many values stored in the data cache
can be represented with a small number of bits instead of the full 32-bit or 64-bit
common representation. Using less bits to store the data, together with a simple en-
coding/decoding scheme, allows the processor to reduce the storage required for a
given amount of data, and thus, reduces the area and energy consumption of the mem-
ory.

The rest of the paper is organized as follows. Section 2 discusses and evaluates
schemes for compressing data values. The proposed cache architecture is presented in
section 3 and evaluated in section 4. Section 5 outlines some related work and finally,
section  6 summarizes the main conclusions of this work.

A detailed description of section 2 and 3 is in the following technical report
http://www.ac.upc.es/pub/reports/DAC/2003/UPC-DAC-2003-10.ps.Z
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2 Data Value Compression

Data values have significant redundancy in their representation. In this section we
quantify this phenomenon and discuss some different types of data compression that
can be used to take advantage of this redundancy.

In general, we focus on 64-bit and 32-bit wide data values. This allows for a huge
rang of values to be represented. However, the significant bits of these values are
relatively few. We avoid to store non-significant bits using: integer data compression
and address data compression.

              Fig. 1. Integer data compression                             Fig. 2. Address data compression

Integer data compression is applied when the data can be represented with a few
bits and the rest of the bits are all ones or zeros. Figure 1 shows the different types of
data compression applied to 64 bits. We will only store in the cache the black part
(significant bits). The arrow indicates sign extension, and the “0..0” means that the
field is all zeros.

Another type of data are addresses stored in memory. In this case, we apply address
data compression. There are three sources of addresses: data pointers, code pointers
and stack pointers. The compiler distributes the memory logical space in three major
components: code, data and stack. These addresses are 64-bit wide, but only a part of
their bits is variable. The rest of bits remain unaltered and are common to all ad-
dresses. We try to recognize the pattern of the common part and store only the vari-
able part. Figure 2 depicts the components of the address data compression. We have
experimentally observed that with 8 patterns we can represent 83% of total value
addresses.

These 7 types of data compression allow us to compress data form 64 to 22 bits.
This can be done for 70% of all data stored in a 16KB data cache, being type 1(t1) and
type address(ta) the most significant. (see framework described in section 4)

3 Pattern Cache

The Pattern Cache is proposed to store data values in a compressed form. Thus the
proposed cache architecture reduce the storage area and energy consumption.

The Pattern Cache is divided into two areas: the tag and the data areas. The tag area
or Location Table (LT) stores compressed values and pointers to the data area or
Value Table (VT). LT is indexed as a conventional data cache. Each LT entry has two
fields: a tag that identifies the memory address stored in each line, as in a usual cache,
and the location field that determines for each 64-bit word in the line where and how

t1: t4:
t2: t5:
t3: t6:

    ta:0--0 0---------0
0---------0 0--0

0---------0

0----0 0----0
Pattern0----0 0
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Fig. 3. Pattern cache block diagram

to find its value. Each location field has two parts: type and compressed data. The
first one determines how to find the value and the second one is a compressed data or
a pointer to VT (Table 1 summarizes the different types of compression). On the other
hand, a VT entry has a full 64-bit data value.

Table 1. Compression Type Codification

Type Information Type Information Type Information Type Information
0000 Pointer 0100 Data: type4 1000 Address: prefix0 1100 Address: prefix4
0001 Data: type1 0101 Data: type5 1001 Address: prefix1 1101 Address: prefix5
0010 Data: type2 0110 Data: type6 1010 Address: prefix2 1110 Address: prefix6
0011 Data: type3 0111 Not used 1011 Address: prefix3 1111 Address: prefix7

There are three ways of obtaining the data values: a) a value may be stored in the
LT entry itself using an integer compressed form; b) a value may be stored partly in
the LT entry and partly in the Address Table (AT) using an address compressed form;
and c) the value may be stored in the Value Table (VT) in a non-compressed form.
The behavior of the Pattern Cache may be summarized as follows:
1. Miss on Read or Write: the new line from memory is stored in LT + VT or the

Assisting Buffer (AB). Those 64-bits words that can be compressed are stored di-
rectly in LT, the others are stored in VT. The AB store the full line when one of 64-
bits words cannot be store in LT-VT. The AB also works as a victim cache for lines
replaced from the LT [7]

2. Hit on read: if there is a hit in LT, the location field provides either the value or a
pointer to the VT. If the value is compressed it is necessary to restore the full value.
With Integer Data Compression (Figure 1) only sign extension and zero concatena-
tion is necessary. With Address Data Compression it is necessary to access the Ad-
dress Table (AT  in Figure 3) to obtain the pattern to restore the full value.

3. Hit on write: there are four cases: a) The replaced value is in the VT and the new
value cannot be compressed, the latter is stored in the location of the former. b) The
replaced value is in the VT and the new value can be compressed, the later is stored
in the LT and the VT entry is invalidated. c) The replaced value is in the LT and
the new value can be compressed, the later is stored in the location of the former. d)
The replaced value is in the LT and the new value cannot be compressed, the value
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is tried to be stored in an empty entry of the VT. If there is no space in the VT, all
the line is moved to the AB and the entries in the LT and the VT are invalidated.
The compression test requires very few hardware effort and only on Miss or Write.

For the integer type compression it is necessary an AND gate to detect a set of ones
and an OR gate to detect a set of zeros. For address data compression, an AND gate
with some entries inverted is needed for each different pattern. We consider those
gates and the AT table (8 entries of 13 bits) negligible in terms of area and energy
consumption.

4 Performance and Evaluation

4.1 Static Analysis

This subsection presents an evaluation of the cache area, access time and energy con-
sumption of the Pattern Cache. These evaluations are done by means of the CACTI
tool version 3.0 [9]. The input parameters of the CACTI tool have been adapted to
model the structure of the Pattern Cache. The assumed technology is 0.09�m.

The baseline cache is a 16KB direct-mapped cache with 32-bytes line size, with a
Victim Cache(VC) of 16 entries full associative. For the Pattern cache: the LT has the
same number of lines and associativity as the base cache. Both tags are identical. The
location field has 22 bits for each word in a line. And the VT is managed as a direct
mapped cache with 8-byte line size. The AB has the same structure of the VC. VTxx
means that the VT capacity has been reduced to xx% of the baseline size.
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Fig. 4. (a) Die area (cm2)     (b) Access time(ns) (c) Energy consumption (nJ)

Figure 4.a shows the total die area. Different colors in each bar represent the con-
tribution of tags, location field and data. The rightmost bar represents the area of the
VC o AB, that has to be added to all cache configurations, including the baseline. As
expected, the achieved area reduction is significant in all cases. For instance, VT30
achieves a reduction of 26% with respect to the baseline cache. Below, it is discussed
how these reductions interact with the miss ratio.

The access time on Hit is shown in Figure 4.b. Notice that, every cache configura-
tion has three bars. First bar determines the time required for tag check. Second bar
determines the time required to access the value (in a compressed form o through VT).
Finally, last bar determines the access time to the VC or AB. In order to determine the
total access time, the maximum of those three bars has to be considered. The main

Base VT40 VT30 VT20 AB Base VT40 VT30 VT20 Base VT40 VT30 VT20 AB
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conclusion of this study is that the AB determines the access time. This is only true for
caches of less than 128KB.

Finally Figure 4.c shows the energy consumption for a cache hit. In particular, the
Hit pattern corresponds to the energy consumed by an access in the Pattern Cache that
hits in LT. Hit VT corresponds to the energy consumed by the Pattern Cache when the
value is obtained from VT (LT + VT). Hit is the average consumption of the Pattern
Cache considering the percentage of Hit pattern and Hit VT during the execution of
programs. Simulations have shown that on average, 75% of the time the value is ob-
tained from LT.

Statistics for cache capacities ranging from 4KB to 64 KB are detailed in Table 2.

4.2 Dynamic Analysis

The simulation environment is built on top of the Simplescalar [4] Alpha toolkit that
has been modified to model the Pattern Cache.

The following Spec2000 benchmarks have been considered: crafty, eon, gcc, gzip,
mcf, parser, twolf, vortex and vpr from the integer suite; and ammp, apsi, art, equake,
mesa, mgrid, sixtrack, swim and wupwise from the FP suite. The programs have been
compiled with maximum level of optimization. The reference input set was used and
statistics were collected for 1000 million of instructions after skipping the initializa-
tions.

4.3 Analysis of Results

This subsection presents and analyzes the results obtained for different memory level
hierarchy configurations in terms of die area, energy consumption and miss ratio.
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Fig. 5. Energy Consumption

Miss Rate vs. Power Consumption
In order to determine the performance benefits of the cache design proposed in this
paper, the scenario described in previous subsection is considered. The size of cache
varies from 4KB to 64KB.
Figure 5. shows the energy consumption of the memory hierarchy. Each bar denotes
the average energy consumed per access for different cache configurations, which is
obtained through the following formula:
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EC = (Hit_ratio * DL1_EC) + (Miss_ratio * (2 * DL1_EC+ DL2_EC)) (1)

DL1_EC is the average energy consumed by an access to the first level data cache.
DL2_EC is the energy consumed by an access to the second level cache. This cache is
assumed to be 512KB. Note that this expression computes the total energy by consid-
ering the consumption of the first level data cache on hit, and the consumption of the
first and the second level data cache on miss. A miss produces two accesses to DL1
(one for detecting the miss, and another for storing the values) and one access to DL2
to obtain the data.

As expected, the Pattern Cache outperforms the base model in terms of energy con-
sumption. The main contribution to this reduction is due to the LT, which provides the
data in 75% of the hits. Note also that the VT reduction hardly affects power dissipa-
tion since decreasing the VT size increases miss ratio and more data must be provided
by the second level cache.

From these numbers and the results in the previous section, we can conclude that
the Pattern Cache is an effective architecture for first level data caches in terms of
power, die area and access time. Table 2 summarizes all the statistics for each cache
configuration being considered. For instance, a reduction of VT to 40% produces an
average die area reduction of 19%, a energy consumption reduction of 16% and a very
minor (1.5%) increase in the miss ratio.

Table 2. Statistics for different capacities

Die Area Reduction Energy Consumption Reduction Miss Ratio Increment
Cache VT40 VT30 VT20 VT40 VT30 VT20 VT40 VT30 VT20
4KB 16% 18% 27% 16.5% 16% 14.5% 1.2% 2.4% 8.6%
8KB 22% 26% 36% 16% 15.5% 14% 1.4% 2.8% 10.0%

16KB 20% 26% 33% 18% 17% 16.5% 1.6% 3.2% 11.0%
32KB 17% 27% 35% 12.5% 12% 12% 1.7% 5.2% 12.2%
64KB 20% 28% 36% 19% 19.5% 20% 1.8% 5.5% 12.9%

AMEAN 19% 25% 33% 16% 16% 15.5% 1.5% 3.8% 10.9%

5 Related Work

Zhang et al. [13] propose the design of the FCV (Frequent Value Cache). The FVC
only contains frequently accessed values stored in a compact encoded form and it is
used in conjunction of a traditional Direct-Mapped Cache. Yang et al [12] present a
similar cache design and evaluation called CC (Compression Cache) where each line
can hold one uncompressed line or two cache lines compressed to at least half. A
modification of the FVC is proposed in [11] in order to improve energy efficiency.

Significance compression is used by Brooks et al. [3] and Canal et al. [5] to reduce
power dissipation, not only in data cache but in the full pipeline. Brooks et al. present
a mechanism that dynamically recognizes whether the most significant bits of values
are just sign extension and in this case, the functional units operate just on the least
significant bits. Canal et al. propose a new significance compression scheme that ap-
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pends two or three extension bits to each data value to indicate the significant byte
positions. Other different data compression are also presented in [1],[8] and [10].

6 Conclusions

We have introduced a novel data cache architecture called Pattern Cache. The pro-
posed cache applies different types of compression to values in order to reduce the
required storage. Simulation results show that in a data cache, close to 70% of the
values stored in 64-bit may be compressed to 22 bits. We have shown that the Pattern
Cache significantly reduces power dissipation and die area with a minimum loss in
terms of miss ratio while maintaining the same access time as a conventional cache.
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