
Cost Optimality and Predictability of Parallel
Programming with Skeletons

Holger Bischof, Sergei Gorlatch, and Emanuel Kitzelmann

Technical University of Berlin, Germany
{bischof|gorlatch|jemanuel}@cs.tu-berlin.de

Abstract. Skeletons are reusable, parameterized components with well-
defined semantics and pre-packaged efficient parallel implementation.
This paper develops a new, provably cost-optimal implementation of the
DS (double-scan) skeleton for the divide-and-conquer paradigm. Our im-
plementation is based on a novel data structure called plist (pointed list);
implementation’s performance is estimated using an analytical model.
We demonstrate the use of the DS skeleton for parallelizing a tridiagonal
system solver and report experimental results for its MPI implementa-
tion on a Cray T3E and a Linux cluster: they confirm the performance
improvement achieved by the cost-optimal implementation and demon-
strate its good predictability by our performance model.

1 Introduction

A promising approach to improve and systematize the parallel programming
process is to use well-defined patterns of parallelism, called skeletons [4]. The
programmer expresses an application using skeletons as reusable, parameterized
components, whose efficient implementations for particular parallel machines
are provided by a compiler or library. A rich collection of both very basic and
complex parallel skeletons have been proposed and implemented in systems like
P3L, HDC, Skil, SKElib etc. [3,6,7,11], and have a potential to be actively used
in future problem solving environments [5].

This paper addresses two questions that have a major impact on the choice
and use of skeletons in the programming process: (1) whether the parallel cost
of a particular skeleton implementation, i. e. its time-processor product [15], is
optimal, and (2) whether the performance of a skeleton-based program can be
predicted in advance early on in the design process. We answer these questions for
two fairly complicated skeletons introduced by ourselves earlier, both embodying
the divide-and-conquer paradigm: DH (distributable homomorphism) [8] and DS
(double-scan) [1].

The contributions and organization of the paper are as follows:

– We introduce basic data-parallel skeletons and our two skeletons DH and
DS, and prove conditions for the generic parallel implementations of both
DH and DS to be cost-optimal (Section 2).

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 682–693, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Cost Optimality and Predictability of Parallel Programming with Skeletons 683

– We introduce a novel data structure called plists (pointed lists), develop
a new parallel DS-implementation that uses plists internally, estimate the
runtime of this implementation and prove its cost optimality (Section 3).

– We report experimental results for a tridiagonal system solver based on the
DS-skeleton on a Cray T3E and a Linux cluster using MPI. They demon-
strate both a substantial performance improvement achieved by our cost-
optimal implementation and the high quality of the analytical runtime pre-
diction (Section 4).

We conclude the paper by discussing our results in the context of related work.

2 Skeletons and Their Cost Properties

A skeleton can be formally viewed as a higher-order function, customizable for
a particular application by means of functional parameters that are provided by
the application programmer. The first parallel skeletons studied in the literature
were traditional second-order functions known from functional programming:
map, reduce, scan, etc. They are defined on non-empty lists as follows, function
application being denoted by juxtaposition, i. e. f x stands for f(x):

– Map: Applying a unary function f to all elements of a list:

map f [x1, . . . , xn] = [f x1, . . . , f xn]

– Zip: Component-wise application of a binary operator ⊕ to a pair of lists of
equal length (it is similar to the Haskell function zipWith):

zip(⊕)([x1, . . . , xn], [y1, . . . , yn]) = [(x1 ⊕ y1), . . . , (xn ⊕ yn)]

– Scan-left and scan-right: Computing prefix sums of a list by traversing the
list from left to right (or vice versa) and applying a binary operator ⊕:

scanl(⊕)([x1, . . . , xn]) = [x1, (x1⊕ x2), . . . , (· · ·(x1⊕ x2)⊕ x3)⊕· · ·⊕ xn)]
scanr(⊕)([x1, . . . , xn]) = [(x1⊕· · ·⊕ (xn−2⊕ (xn−1 ⊕ xn)· · ·), . . . , xn]

We call these second-order functions “skeletons” (or patterns) because each of
them describes a whole class of functions, obtainable by substituting application-
specific operators for parameters ⊕ and f .

Our basic skeletons have obvious data-parallel semantics: the asymptotic
parallel complexity is constant for map and zip and logarithmic for both scans
if ⊕ is associative. If ⊕ is non-associative, then the scans have to be computed
sequentially with linear time complexity.

The need to manage important classes of applications led to the introduction
of more complex skeletons, e. g. different variants of divide-and-conquer, etc. In
[8], we defined one such skeleton, the DH (distributable homomorphism):

684 H. Bischof, S. Gorlatch, and E. Kitzelmann

Definition 1. The DH skeleton is a higher-order function with two parameter
operators, ⊕ and ⊗, defined as follows for arbitrary lists x and y of equal length,
which is a power of two:

dh (⊕, ⊗) [a] = [a] ,
dh (⊕, ⊗) (x ++ y) = zip(⊕)(dh x, dh y) ++ zip(⊗)(dh x, dh y) (1)

The DH skeleton is a special form of the well-known divide-and-conquer
paradigm: to compute dh on a concatenation of two lists, x ++ y, we apply dh
to x and y, then combine the results elementwise using zip with the parameter
operators ⊕ and ⊗ and concatenate them. For this skeleton, there exists a family
of generic parallel implementations, directly expressible in MPI [9].

In [1], we introduced a more special skeleton, double-scan (DS), which is more
convenient than DH for expressing some application classes:

Definition 2. For binary operators ⊕ and ⊗, two double-scan (DS) skeletons
are defined:

scanrl(⊕, ⊗) = scanr(⊕) ◦ scanl(⊗) (2)
scanlr(⊕, ⊗) = scanl(⊕) ◦ scanr(⊗) (3)

where ◦ denotes function composition from right to left, i. e. (f ◦ g) x = f(g(x)).
Both double-scan skeletons have two functional parameters, which are the base
operators of their constituent scans. If the parameter operator ⊕ is associative,
then as shown in [1], DS can be parallelized.

An important efficiency criterion for parallel algorithms is their cost, which is
defined as the product of the required time and the number of processors used,
i. e. c = t · p (see [15]). A parallel implementation is called cost-optimal on p
processors, iff its cost equals the cost on one processor, i. e. p · tp ∈ Θ(tseq). Here
and in the rest of this paper, we use the classical notations o, O, ω and Θ to
describe asymptotic behaviour (see, e. g., [12]).

Our first question is whether the known implementations of DH [8] and DS
[1] are cost-optimal. We are especially interested in a skeleton’s generic imple-
mentation, which can be applied to all particular instances of the skeleton.

The generic DH-implementation partitions the input list into p blocks of
approximately the same size, computes DH locally in the processors, and then
performs log2 p rounds of pairwise communications and computations in a hyper-
cube-like manner [8]. Its time complexity is Θ(tseq(m)+m · log p), where tseq(m)
is the time taken to sequentially compute DH on a block of length m ≈ n/p.
There always exists an obvious sequential implementation of the formula (1)
on a data block of size m, which has a time complexity of Θ(m · log m). So,
in the general case, the time complexity of the generic DH-implementation is
Θ(n/p · max{log(n/p), log p}).

The sequential time complexity of a particular DH instance may also be
asymptotically smaller than m · log m. An example relevant for us is the DS
skeleton. On the one hand, as proved in [1], the DS skeleton can be expressed as

Cost Optimality and Predictability of Parallel Programming with Skeletons 685

an instance of the DH skeleton for particular values of parameters ⊕ and ⊗, with
additional pre- and postcomputations performed locally. On the other hand, the
sequential time complexity of DS is obviously linear.

The following theorem shows how the cost optimality of the generic DH-
implementation, used for a particular instance of the DH-skeleton, depends on
the optimal sequential complexity of this instance, i. e. particular application:

Theorem 1. The generic parallel implementation of DH, when used for a DH
instance with optimal sequential time complexity of tseq, is
(a) cost-optimal on p ∈ O(n) processors, if tseq(n) ∈ Θ(n · log n), and
(b) non-cost-optimal on p ∈ ω(1) processors, if tseq(n) ∈ o(n · log p).

Here is the proof sketch: (a) cp ∈ Θ(n · max{log(n/p), log p}) ⊆ O(n · log n), and
(b) cp ∈ Θ(n · max{log(n/p), log p}) ⊆ Ω(n · log p).

From Theorem 1(b) it follows that the generic DH-implementation is not cost-
optimal for the DS skeleton, whose tseq(n) ∈ Θ(n). Our next question is whether
there exists a cost-optimal implementation of the DS skeleton? Since there are
applications that are instances of the DS skeleton and that still have cost-optimal
hand-coded implementations, we can strive to find a generic, cost-optimal so-
lution for all instances. This motivates our further search for a better parallel
implementation of DS.

3 Towards a Cost-Optimal Double-Scan

In this central section of the paper, we develop a new generic, cost-optimal im-
plementation of the DS skeleton. The implementation makes internal use of a
novel special data structure, which, however, remains invisible to the program-
mer using the skeleton.

3.1 Plists and Functions on Them

We introduce a special intermediate data structure – pointed lists (plists).
A k-plist, where k > 0, consists of k conventional lists, called segments, and
k − 1 points between the segments:

�������� ���� ���� ��

If parameter k is irrelevant, we simply speak of a plist instead of a k-plist.
Conventional lists are obviously a special case of plists. To distinguish between
functions on lists and plists, we prefix the latter with the letter p, e. g. pmap.
To transform between lists and plists, we use the following two functions:

– list2plistk transforms a list into a plist, consisting of k segments and k−1
points. It partitions an arbitrary list into k segments:

list2plistk (l1 ++ [a1] ++ · · · ++ [ak−1] ++ lk) = [l1, a1, . . . , ak−1, lk]

686 H. Bischof, S. Gorlatch, and E. Kitzelmann

Our further considerations are valid for arbitrary partitions but, in practice
of parallelism, one tries to obtain segments of approximately the same size.

– plist2listk is the inverse of list2plistk, transforming a k-plist into a conven-
tional list:

plist2list([l1, a1, . . . , ak−1, lk]) = l1 ++ [a1] ++ · · · ++ [ak−1] ++ lk

We now develop a parallel implementation for a distributed version of scanrl ,
function pscanrl , which computes scanrl on a plist:

scanrl(1©, 2©) = plist2list ◦ pscanrl(1©, 2©) ◦ list2plistk

We introduce the following auxiliary skeletons as higher-order functions on
plists, omitting their formal definitions and illustrating them instead graphically:

– pmap l g applies function g, which operates on conventional lists, to all seg-
ments of a plist:

���

���� ��������

– pscanrl p(⊕, ⊗) applies function scanrl(⊕, ⊗), defined in (2), to the list con-
taining only the points of the argument plist:

][�����������

– pinmap l(�, ⊕, ⊗) modifies each segment of a plist depending on the seg-
ment’s neighbouring points, using operation ⊕ for the left-most segment, ⊗
for the right-most segment and operation � for all inner segments, where
operation � is a three-adic operator, i. e. it gets a pair of points and a single
point as parameters:

��������

����������

����

�������� ���������������

– pinmap p(⊕, ⊗) modifies each single point of a plist depending on the last
element of the point’s left neighbouring segment and the first element of the
point’s right neighbouring segment.

��

���������� ���� ����������
� �� �

�� ������

The implementations and time complexity analysis of these functions are
provided in the next section.

Cost Optimality and Predictability of Parallel Programming with Skeletons 687

3.2 A Cost-Optimal Implementation of Double-Scan

In this section, we present a theorem that shows that the distributed version
of the double-scan skeleton can be expressed using the auxiliary skeletons in-
troduced above. We use here the following definition: a binary operation �
is called to be associative modulo �, iff for arbitrary elements a, b, c it holds:
(a � b) � c = (a � b) � (b � c). Usual associativity is associativity modulo oper-
ation first , which yields the first element of a pair.

Theorem 2. Let 1©, 2©, 3© and 4© be binary operators, such that 1© and 3©
are associative, scanrl(1©, 2©) = scanlr(3©, 4©), and 2© is associative modulo 4©.
Moreover, let 5© be a three-adic operator, such that (a, a 3©c) 5©b = a 3©(b 1©c).
Then, the double-scan skeleton pscanrl on plists can be implemented as follows:

pscanrl(1©, 2©) = pinmap l(5©, 1©, 3©) ◦ pscanrl p(1©, 2©) (4)
◦ pinmap p(2©, 4©) ◦ (pmap l scanrl(1©, 2©))

For the theorem’s proof, see [2]. To help the user in finding the operator 5©,
we show in [2] how 5© can be generated if (a 3©) is bijective for arbitrary a and if
3© distributes over 1©. Since pscanrl(1©, 2©) = pscanlr(3©, 4©), equality (4) holds

also for pscanlr(3©, 4©).
Let us analyze the pscanrl implementation (4) provided by Theorem 2. On a

parallel machine, we partition plists so that each segment and its right “border
point” are mapped to a processor. The last processor contains no extra point
because there is no point to the right of the last segment in a plist. We further
assume that all segments are of approximately the same size.

The right-hand side of (4) consists of four stages executed from right to left,
whose parallel time complexity we now study, relying on the graphical represen-
tation in Section 3.1:

1. The function pmap l scanrl(1©, 2©) can be computed by simultaneously ap-
plying scanrl(1©, 2©) on all processors, provided that the argument plist is
partitioned among p processors as described above. Because scanrl(1©, 2©) =
scanlr(3©, 4©), we can apply either of both on all processors, so the min-
imum of their runtimes should be taken. Thus, the time complexity is
T1 = (n/p − 2) · min{t 1© + t 2©, t 3© + t 4©} ∈ O(n/p), where t 1©, . . . , t 4©
denote the time for one computation with operators 1©, . . . , 4©, respectively.

2. To compute pinmap p(2©, 4©), each processor sends its first element to the
preceding processor and receives the first element from the next processor.
Then operations 2© and 4© are applied to the last element of each processor:

/* first buffers 1st element of each processor */
/* first_next receives 1st element of following processor */
MPI_Sendrecv(first, preceding,..., first_next, following,...);
if (!last_processor) {
otwo(last, point);
ofour(point, first_next);
/* last denotes the last element of each segment */ }

688 H. Bischof, S. Gorlatch, and E. Kitzelmann

The resulting time complexity is T2 = ts + tw + t 2© + t 4© ∈ O(1), where ts
is the communication startup time and tw the time needed to communicate
one element of the corresponding datatype.

3. As described in Section 3.1, pscanrl p(1©, 2©) applies scanrl(1©, 2©) on the
points of the argument plist, which are distributed across the first p − 1
processors. Since DS is an instance of the DH skeleton, the generic DH
implementation developed in [8] can be used for this step:

for (dim=1; dim<p-1; dim<<=1){
neighbour = my_rankˆdim;
MPI_Sendrecv(data, neighbour, ..., tmp, neighbour, ...);
if (my_rank < neighbour) oplus(tmp, data);
else otimes(tmp, data);}

The shown code is a sequence of log2 p swaps iterating over the dimensions
of the virtual hypercube. A swap consists of pairwise, two-directional com-
munications between neighbouring nodes, followed by a computation in each
processor. It takes time T3 =log2(p−1) ·(ts+3tw+t⊕/⊗)∈O(log p), t⊕/⊗ denot-
ing the time for one computation with operator ⊕ or ⊗ of the DH-skeleton.
Operators ⊕ and ⊗ are defined on triples of values using 1©, . . . , 4© (see [1]).

4. To compute pinmap l(5©, 1©, 3©), each processor sends its last element to the
next processor. Then operation 5© is applied to the elements of the “inner”
processors. The elements of the first processor are manipulated by 1©, and
the elements of the last processor by 3©:

/* last_prec receives last element of preceding processor */
MPI_Sendrecv(last, following, ..., last_prec, preceding, ...);

/* elements denotes the datablock of each processor */
if (first_processor) // oone will be applied
for (i=0; i<(m-1); i++)
oone(elements[i], last);

else if (last_processor) // othree will be applied
for (i=0; i<(m-1); i++)
othree(last_prec, elements[i]);

else // ofive will be applied
for (i=0; i<(m-1); i++)
ofive(last_prec, last, elements[i]);

The computations in the processors are mutually independent, which results
in a time complexity of T4 = ts + tw + (n/p − 1) · t 5© ∈ O(n/p), where t 5©
denotes the time required by 5©.

To obtain the overall time complexity of the implementation (4), we sum up the
times of the four stages discussed above:

Cost Optimality and Predictability of Parallel Programming with Skeletons 689

t = T1 + T2 + T3 + T4 (5)

≈ (n/p−1)·(min{t 1©+ t 2©, t 3©+ t 4©} + t 5©) + (2 + log2(p−1))·(ts+ 3tw + t⊕/⊗)

∈ Θ(n/p + log p)

Recall that, as shown in Section 2, the time complexity of the generic DH-
implementation is Θ(n/p · max{log(n/p), log p}), so we have substantially im-
proved the asymptotic complexity.

The cost of our new DS-implementation is obviously Θ(n + p · log p), which
by choosing an appropriate value of p can be made equal to the (linear) cost of
DS in the sequential case. Thus, we have proved the following proposition:

Proposition 1. The parallel implementation (4) of the double-scan skeleton is
cost-optimal if p ∈ O(n/ log n) processors are used.

Though in principle a very important characteristic of the quality of parallel
implementation, cost optimality characterizes asymptotic behaviour. In practice,
the actual performance for a particular application and particular machine are
very important. This will be our topic in the next section.

4 Performance Prediction and Case Study

Programming with skeletons offers a major advantage in terms of performance
prediction: performance has to be estimated once for a skeleton on a target archi-
tecture. In this section, we study how the performance of an application using DS
can be predicted based on the estimates for our cost-optimal DS-implementation.
This is done by tuning the generic estimate obtained in the previous section to a
particular machine and/or application. The order of tuning steps can be chosen
depending on the specific goals of the application programmer.

We start with the generic performance estimate for the cost-optimal DS (5)
and tune it first to two particular machines, a Cray T3E and a Linux cluster,
and then to a particular application case study (tridiagonal system solver).

4.1 Tuning Estimates to Particular Machines

Variables ts and tw in (5) are machine-dependent. On a Cray T3E, ts is ap-
proximately 16.4 µs. The value of tw also depends on the size of the data type:
tw = d · tB, where tB is the time needed to communicate one byte and d is
the byte count of the data type. Measurements show that for large array sizes
the bidirectional bandwidth on our machine is approximately 300 MB/s, i. e.
tB ≈ 0.0033 µs. Inserting these values of ts and tB into (5), we obtain the fol-
lowing runtime estimate, tCray, for the double-scan skeleton on a Cray T3E:

690 H. Bischof, S. Gorlatch, and E. Kitzelmann

tCray = (n/p − 1) · (min{t 1© + t 2©, t 3© + t 4©} + t 5©) (6)

+ (2 + log2(p−1)) · (16.4 µs + d · 0.0099 µs + t⊕/⊗)

On a Linux Pentium IV cluster with SCI interconnect we measured ts ≈ 25 µs
and tB ≈ 0.0123 µs for large data sizes. Substituting these values into (5), we
obtain the following runtime estimate, tCluster, for the double-scan skeleton on
a Linux cluster:

tCluster = (n/p−1) · (min{t 1© + t 2©, t 3© + t 4©} + t 5©) (7)

+ (2 + log2(p−1)) · (25 µs + d · 0.0369 µs + t⊕/⊗)

4.2 Tuning Estimates to an Application

By way of an example application, we consider the solution of tridiagonal system
of equations, described in detail in [1]. The given system is represented as a list
of rows consisting of four values: the value on the main, upper and lower diagonal
and the value of the right-hand-side vector. A typical sequential algorithm for
solving a tridiagonal system is Gaussian elimination (see e. g. [15,12]) which
eliminates the lower and upper diagonal of the matrix in two steps: (1) eliminates
the lower diagonal by traversing the matrix from top to bottom according to the
scanl skeleton using an operator 2©tds; (2) eliminates the upper diagonal of the
matrix by a bottom-up traversal, i. e. using the scanr skeleton with an operator
1©tds. We can alternatively eliminate first the upper and then the lower diagonal

using two other row operators, 3©tds and 4©tds, see [1] for a formal definition.
Being a composition of two scans, the tridiagonal system solver is a natural

candidate to be treated as an instance of the DS skeleton. In [2] we proved that
the conditions of Theorem 2 are indeed satisfied, so that our new cost-optimal
DS-implementation can be used for the tridiagonal solver. For the solver, im-
plementation (4) operates on lists of rows, which are quadruples of double val-
ues, thus having a size of d = 32 Bytes. We have measured the operations
1©tds, . . . , 5©tds, ⊕, ⊗ of the tridiagonal system solver by executing the opera-

tions in a loop over a large array. Operators ⊕ and ⊗, presented in [2], are the
DH operators, defined using 1©, . . . , 4©. Measurement results are presented in
Table 1.

Table 1. Measured times in µs for operations of the tridiagonal system solver

architecture t 1© t 2© t 3© t 4© t 5© t⊕/⊗

Cray T3E 0.24 0.36 0.37 0.27 0.43 2.44
Cluster 0.10 0.15 0.15 0.10 0.14 0.73

Inserting operations’ times and the value of d into (6) and (7), we obtain:
tCray-tds = n/p · 1.03 µs + log2(p−1) · 19.16 µs + 37.28 µs

tCluster-tds = n/p · 0.39 µs + log2(p−1) · 26.91 µs + 53.43 µs
(8)

Cost Optimality and Predictability of Parallel Programming with Skeletons 691

The next tuning step is to substitute a particular problem size n into (8):
e. g. by substituting n = 219 ≈ 5 · 105, we obtain the following runtime estimate
depending on the number of processors:

TCray-tds-n=219 = 1/p · 0.540 s + log2(p−1) · 19.16 µs + 37.28 µs

TCluster-tds-n=219 = 1/p · 0.204 s + log2(p−1) · 26.91 µs + 53.43 µs
(9)

Another tuning sequence is to fix the number of processors and vary the
problem size. E.g., the estimate for the runtime on 17 processors depending on
the problem size is:

TCray-tds-p=17 = n · 0.061 µs + 113.92 µs

TCluster-tds-p=17 = n · 0.023 µs + 161.07 µs
(10)

Here, we assume that one MPI process runs on a processor of a parallel machine.

4.3 Experimental Results

We conducted experiments with the tridiagonal system solver on two machines:
(1) a Cray T3E machine with 24 processors of type Alpha 21164, 300 MHz, 128
MB, using native MPI implementation and (2) a Linux cluster with 16 nodes,
each consisting of two processors of type Pentium IV, 1.7 GHz, 1 GB, using an
SCI port of MPICH.

We are interested in two questions: (1) What is the performance improve-
ment achieved by our cost-optimal implementation as compared with the generic,
non-cost-optimal implementation? (2) How well is the performance of the imple-
mentation predicted by our analytical model, in particular by formulae (9)–(10)?

The first question is answered by Fig. 1. The cost-optimal solution demon-
strates a substantial time improvement compared with the generic, non-cost-
optimal version: up to 13 on 17 processors of the Cray T3E and up to 18 on 9
processors of the cluster. Note that we use a logarithmic scale for the time axis.

To answer the second question, we compare in Fig. 1 the predicted runtime
using (9) with the measured times for a fixed problem size. The quality of pre-
diction is quite good: the difference to the measured times is less than 12% on
both machines.

The number of processors in our generic DS implementation is p = 2k +1 for
some k, because the third step of algorithm (4), pscanrl p(1©, 2©), applies the
generic DH implementation to p − 1 points of the argument plist and p − 1 is
always a power of 2 in the generic DH implementation.

Another interesting point is the absolute speedup, i. e. the parallel version
compared to the optimal sequential implementation. Our estimates yield the
speedup of approximately 0.6 p, which has been confirmed by our measurements.

5 Related Work and Conclusions

Our main contribution is a new, cost-optimal parallel implementation of the
DS-skeleton, which is directly applicable for the whole class of applications that

692 H. Bischof, S. Gorlatch, and E. Kitzelmann

Fig. 1. Runtimes of the tridiagonal solver: cost-optimal vs. non-cost-optimal imple-
mentation vs. predicted runtime. Left: on the Cray T3E; Right: on the Linux cluster.

(or their parts) are instances of DS. We have expressed the implementation in
MPI to make it portable over different parallel architectures and exploitable in
practical skeleton-based programming systems. The cost optimality guarantees
not only good runtime but also economical use of processors. We have also for-
mulated a general condition for the cost optimality of the generic implementation
of a more general DH skeleton. Cost optimality of divide-and-conquer algorithms
was studied earlier in the context of the HDC system [10].

Our implementation makes internal use of the data structure called plist. The
plist data structure is new, to the best of our knowledge. A closer look reveals
that plists are present, albeit implicitly, in some parallel algorithms: if a block
distribution is used, the border points of the blocks being handled specifically,
then the data structure used can often be seen as a plist. Our contribution in this
respect is in defining and treating explicitly a data structure that traditionally
has remained hidden in the design of algorithms.

O’Donnell presented in [14] a bidirectional scan that combines a left and a
right scan, independent of each other. By contrast, our DS describes a composi-
tion of scans, where the result of the first scan is used by the second scan.

An important advantage of the skeleton approach is good predictability of
performance early in the design process. We have demonstrated that the per-
formance of a particular application can be predicted by stepwise tuning of the
generic performance estimate of the DS skeleton to a particular target machine
and problem size. We have verified experimentally a quite good prediction qual-
ity: the error is less than 12%.

The parallelization of our case study – the tridiagonal system solver – is
known to be a non-trivial task owing to the sparse structure and restricted
amount of potential concurrency [12,13]. It is interesting to observe that our
generic DS-implementation, when customized for the tridiagonal solver, is very
similar to the implementation by Wang and Mou [17], based on Wang’s algorithm
[16], which is today probably the solution most widely used in practice. The good
speedup of the obtained solution is confirmed by experiments on a Cray T3E
and a Linux cluster.

Cost Optimality and Predictability of Parallel Programming with Skeletons 693

Acknowledgements. We are grateful to the referees, and especially to
Christoph A. Herrmann, for improving the original manuscript, to Roman
Leshchinskiy and Martin Alt for many fruitful discussions, and to Phil Bacon
who helped a great deal in brushing up the presentation.

References

1. Bischof, H., Gorlatch, S.: Double-scan: Introducing and implementing a new data-
parallel skeleton. In Monien, B., Feldmann, R., eds.: Euro-Par 2002. Volume 2400
of LNCS., Springer (2002) 640–647

2. Bischof, H., Gorlatch, S., Kitzelmann, E.: The double-scan skeleton and its paral-
lelization. Technical Report 2002/06, Technische Universität Berlin (2002)

3. Botorog, G., Kuchen, H.: Efficient parallel programming with algorithmic skele-
tons. In Bougé, L., et al., eds.: Euro-Par’96: Parallel Processing. Lecture Notes in
Computer Science 1123. Springer-Verlag (1996) 718–731

4. Cole, M.I.: Algorithmic Skeletons: A Structured Approach to the Management of
Parallel Computation. PhD thesis, University of Edinburgh (1988)

5. Cunha, J.C.: Future generations of problem solving environments. In: Proceedings
of the IFIP WG 2.5 Conference on the Architecture of Scientific Software. (2000)

6. Danelutto, M., Pasqualetti, F., Pelagatti, S.: Skeletons for data parallelism in
P3L. In Lengauer, C., Griebl, M., Gorlatch, S., eds.: Euro-Par’97. Volume 1300 of
LNCS., Springer (1997) 619–628

7. Danelutto, M., Stigliani, M.: SKElib: parallel programming with skeletons in C. In
Bode, A., Ludwig, T., Karl, W., Wismüller, R., eds.: EuroPar 2000. Volume 1900
of LNCS., Springer (2000) 1175–1184

8. Gorlatch, S.: Systematic efficient parallelization of scan and other list homomor-
phisms. In Bougé, L., Fraigniaud, P., Mignotte, A., Robert, Y., eds.: Euro-Par’96:
Parallel Processing, Vol. II. Lecture Notes in Computer Science 1124. Springer-
Verlag (1996) 401–408

9. Gorlatch, S., Lengauer, C.: Abstraction and performance in the design of parallel
programs: overview of the SAT approach. Acta Informatica 36 (2000) 761–803

10. Herrmann, C.A.: The Skeleton-Based Parallelization of Divide-and-conquer Re-
cursions. PhD thesis (2000) ISBN 3-89722-556-5.

11. Herrmann, C.A., Lengauer, C.: HDC: A higher-order language for divide-and-
conquer. Parallel Processing Letters 10 (2000) 239–250

12. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publ. (1992)

13. López, J., Zapata, E.L.: Unified architecture for divide and conquer based tridiag-
onal system solvers. IEEE Transactions on Computers 43 (1994) 1413–1424

14. O’Donnell, J.: Bidirectional fold and scan. In: Functional Programming: Glasgow
1993. Workshops in Computing (1993) 193–200

15. Quinn, M.J.: Parallel Computing. McGraw-Hill, Inc. (1994)
16. Wang, H.H.: A parallel method for tridiagonal equations. ACM Transactions on

Mathematical Software 7 (1982) 170–183
17. Wang, X., Mou, Z.: A divide-and-conquer method of solving tridiagonal systems

on hypercube massively parallel computers. In: Proceedings of the Third IEEE
Symposium on Parallel and Distributed Processing, IEEE Computer Society Press
(1991) 810–816

	Introduction
	Skeletons and Their Cost Properties
	Towards a Cost-Optimal Double-Scan
	Plists and Functions on Them
	A Cost-Optimal Implementation of Double-Scan

	Performance Prediction and Case Study
	Tuning Estimates to Particular Machines
	Tuning Estimates to an Application
	Experimental Results

	Related Work and Conclusions

