Skip to main content

Computational Methods for the Evaluation of Neuron’s Firing Densities

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2809))

Abstract

Some analytical and computational methods are outlined, that are suitable to determine the upcrossing first passage time probability density for some Gauss-Markov processes that have been used to model the time course of neuron’s membrane potential. In such a framework, the neuronal firing probability density is identified with that of the first passage time upcrossing of the considered process through a preassigned threshold function. In order to obtain reliable evaluations of these densities, ad hoc numerical and simulation algorithms are implemented.

This work has been performed within a joint cooperation agreement between Japan Science and Technology Corporation (JST) and Università di Napoli Federico II, under partial support by INdAM (GNCS). We thank CINECA for making computational resources available to us.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Donker, E.: An adaptive extrapolation algorithm for automatic integration. Signum Newsletter 13(2), 12–18 (1978)

    Article  Google Scholar 

  2. Di Nardo, E., Pirozzi, E., Ricciardi, L.M., Rinaldi, S.: Vectorized simulations of normal processes for first crossing-time problems. In: Moreno-Díaz, R., Pichler, F. (eds.) EUROCAST 1997. LNCS, vol. 1333, pp. 177–188. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. Di Nardo, E., Nobile, A.G., Pirozzi, E., Ricciardi, L.M.: On a non-Markov neuronal model and its approximation. BioSystems 48, 29–35 (1998)

    Article  Google Scholar 

  4. Di Nardo, E., Nobile, A.G., Pirozzi, E., Ricciardi, L.M.: Evaluation of upcrossing first passage time densities for Gaussian processes via a simulation procedure. In: Atti della Conferenza Annuale della Italian Society for Computer Simulation, pp. 95–102 (1999)

    Google Scholar 

  5. Di Nardo, E., Nobile, A.G., Pirozzi, E., Ricciardi, L.M.: Simulation of Gaussian processes and first passage time densities evaluation. In: Kopacek, P., Moreno-Díaz, R., Pichler, F. (eds.) EUROCAST 1999. LNCS, vol. 1798, pp. 319–333. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Di Nardo, E., Nobile, A.G., Pirozzi, E., Ricciardi, L.M.: A computational approach to first-passage-time problem for Gauss-Markov processes. Adv. Appl. Prob. 33, 453–482 (2001)

    Article  MATH  Google Scholar 

  7. Di Nardo, E., Nobile, A.G., Pirozzi, E., Ricciardi, L.M.: Gaussian processes and neuronal models: an asymptotic analysis. Cybernetics and Systems 2, 313–318 (2002)

    Google Scholar 

  8. Doob, J.L.: Heuristic approach to the Kolmogorov-Smirnov theorem. Ann. Math. Statist. 20, 393–403 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  9. Franklin, J.N.: Numerical simulation of stationary and non stationary gaussian random processes. SIAM Review 7, 68–80 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kostyukov, A.I.: Curve-Crossing Problem for Gaussian Stochastic Processes and its Application to Neural Modeling. Biol. Cybernetics 29, 187–191 (1978)

    Article  MATH  Google Scholar 

  11. Kostyukov, A.I., Ivanov, Y.N., Kryzhanovsky, M.V.: Probability of Neuronal Spike Initiation as a Curve-Crossing Problem for Gaussian Stochastic Processes. Biological Cybernetics 39, 157–163 (1981)

    Article  MATH  Google Scholar 

  12. Knuth, D.E.: The art of computer programming, vol. 2. Addison Welsey, Reading (1973)

    Google Scholar 

  13. Mehr, C.B., McFadden, J.A.: Certain Properties of Gaussian Processes and their First-Passage Times. J. R. Statist. Soc. (B) 27, 505–522 (1965)

    MATH  MathSciNet  Google Scholar 

  14. Ricciardi, L.M., Sato, S.: A note on first passage time for Gaussian processes and varying boundaries. IEEE Trans. Inf. Theory 29, 454–457 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ricciardi, L.M., Sato, S.: On the evaluation of first–passage–time densities for Gaussian processes. Signal Processing 11, 339–357 (1986)

    Article  Google Scholar 

  16. Ricciardi, L.M., Lánský, P.: Diffusion models of neuron activity. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 343–348. The MIT Press, Cambridge (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Nardo, E., Nobile, A.G., Pirozzi, E., Ricciardi, L.M. (2003). Computational Methods for the Evaluation of Neuron’s Firing Densities. In: Moreno-Díaz, R., Pichler, F. (eds) Computer Aided Systems Theory - EUROCAST 2003. EUROCAST 2003. Lecture Notes in Computer Science, vol 2809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45210-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45210-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20221-9

  • Online ISBN: 978-3-540-45210-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics