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Abstract. It is well known that in problems where both amplitude and
phase recovery is essential - like in signal processing for communications,
or in problems of nonlinear signal distortions, like control, signal process-
ing and imaging applications - it is important to consider the complex
nature (and thus the intimate relation between real and imaginary part)
of the data.
One of the main problem to design complex neural networks (CpxNN)
consists in the definition of the complex Activation Functions (AF): to
ensure the universal approximation network capabilities, the AFs should
be bounded and differentiable. In the complex domain these characteris-
tics are in contrast with Louiville’s theorem, which asserts that the only
bounded and differentiable (analytic) function is the constant function.
In this paper we investigate the use of 2D spline to define a new class
of flexible activation functions, which are bounded and (locally) ana-
lytic suitable to define a new class of complex domain neural networks
(CpxNN).

1 Introduction

The classical neuron computes the weighted sum of its inputs and feeds it into a
nonlinear function called activation function (AF) [1]. The behavior of a neural
network (NN) built with such neurons, as in the multi-layer perceptron (MLP),
thus depends on the chosen AFs. Sigmoids are commonly used for this purpose.
Different classes of nonlinear AFs, depending on some free parameters, have also
been widely studied and applied (see for example [2]).

Although the main theoretical developments are defined for real valued NNs,
it is well known that complex domain NNs (CpxNN) are suitable for many signal
processing applications.

It is well known that using CpxNN is more advantageous than using a real-
valued NN fed with a pair of real numbers [3] - [5].

In CpxNNs, one of the main problem is related to the complex domain AF.
Let f(z) be the complex AF with z ∈ C (z is the complex linear combiner
output); the main properties that f(z) should satisfy are:



1) f(z) = u(x, y) + jv(x, y);
2) f(z) should be non linear and bounded;
3) In order to derive the backpropagation (BP) algorithm the partial derivatives

of f(z) should exist and be bounded.

Unfortunately the main difficulty is the lack of bounded and at the same
time analytic complex nonlinear AFs in the complex plane C. In fact Liouville’s
theorem (see [10] for more details) states that: ’The only bounded differentiable
(analytic) functions defined for the entire complex domain are constant func-
tions’.

Clearly the properties of boundedness and differentiability in all the complex
domain are contrasting requirements, if we want to use a complex AF defined in
C. In other words f(z) should be defined as a nonlinear complex function that
is bounded almost everywhere in the complex domain C.

Recently, a complex-valued adaptive spline neural network has been pre-
sented [12]. The author used the splitting method, where the two real functions
are substituted by two flexible spline curves controlled by a small number of
parameters. It is shown that this architecture is well suited for supervised signal
processing applications, because it is based on an efficient Catmull-Rom spline
AF whose regularization properties are described in [13].

In this paper we introduce the use of bi-dimensional (2D) spline in order
to define a new class of flexible AF, called generalized split AF (GSAF), which
are bounded and (locally) analytic functions, suitable to define a new class of
complex domain neural networks. In order to demonstrate the effectiveness of
the proposed model, experiments on channel equalizations are described in the
last Section.

2 On the Complex Activation Functions

In the last years several studies have been carried out in order to develop a
complex domain learning algorithm using suitable AFs. Kim and Guest [3], pro-
posed a complex domain modification of the BP algorithm by an extension of
the real valued sigmoidal activation function to the complex plane. However,
this function has a periodic singularity:

1
1 + e−z

→∞ forz = ±j(2k + 1)π ∀k ∈ N (1)

In [4] Clarke proposed to use a hyperbolic function (tanh z) in the complex
domain as a generalization of real valued activation functions.

In order to have a bounded and differentiable AF, Benvenuto et al. and Leung
and Haykin [5]-[7], proposed an ad-hoc extension of the real valued backpropaga-
tion. According to properties 2) and 3) previously stated, they proposed a split
activation function consisting of the superposition of a real and an imaginary (I
and Q signal components) part AF

f(z) = fI(<e(z)) + jfQ(=m(z)) ; (2)



where functions fI(.) and fQ(.), can be simple real-valued sigmoids or more
sophisticated adaptive functions. However such split activation function is not
analytic and the BP from the output layer takes split paths through disjoint
real-valued gradients.

In order to develop a fully complex domain BP Georgiou and Koutsougeras
in [8] proposed the AF defined as

f(z) =
z

c + 1
r |z|

; (3)

where c and r are suitable constants. This function maps the complex signals
into an open circle of radius r. By this way the activation function takes only
values belonging to the interval (0, r].

Hirose in [9] proposed the use of a fully complex AF defined as

f(skejβk) = tanh(sk/m)ejβk ; (4)

where sk and βk are the norm and the argument of the summation of the input
vector fed from the previous hidden layer ( jβk = Σjwkjyj), and m is a constant
which is inversely related to the gradient of the absolute function value |f | along
the radius direction around the origin of the complex coordinate.

The suitable constants of the AFs (3) and (4) are chosen in order to normalize
or to scale the amplitude of the complex input signal. However, these functions
preserve the phase, thus being incapable of learning the phase variation between
the input and the target in NN without delay lines at the input layer. Moreover
due to their radial mapping, as stated in [15], in the case of time-delayed NN
they perform poorly in restoring nonlinear amplitude and phase distortion of
non constant modulus signals.

A. Elementary Transcendental Functions

More recently Kim and Adali, in order to define a family of useful fully com-
plex AFs, proposed the use of the so called elementary transcendental functions
(ETF) [15].

They reduced the ’desirable properties’ of a complex AF to the unique con-
dition:

f ′(z) = fx = −ify (5)

that is the Cauchy-Riemann equation.
They classified the ETFs in two categories of unbounded functions, depending

on which kind of singularities they possessed. A singularity is a point in which
a function is not analytic (and thus not differentiable): if limz→z0 f(z) →∞
but the function is analytic in a deleted neighborhood of z0 (that is a pole),
the singularity is said to be isolated; if limz→z0 f(z) exists it is isolated but
removable; if none of these cases are met, the function has an isolated essential
singularity.



The proposed elementary functions including tan(z), atan(z), sin(z), asin(z),
acos(z), tanh(z), atanh(z), etc. are identified to provide adequate nonlinear dis-
criminant capabilities as required for an AF.

These transcendental functions are entire (analytic) and bounded almost ev-
erywhere, i.e. they are unbounded only on a set of points having zero measure.
If used as AFs in neural networks they assure convergence almost everywhere
(with probability 1).

Moreover, in signal processing applications where the domain of interest is
a bounded neighborhood of the unit circle these singular points scarcely pose a
problem.

B. Universal approximation property

Recently in [16] the universal approximation theorem for fully CpxNNs has
been demonstrated.

Let In denote the n-dimensional unit cube [0, 1]n and C(In) ⊂ M(In) the
space of all continuous complex functions on In. The finite sums of the form

G(z) =
N∑

k=1

βkf(wT
k z + θk) ; (6)

where βk, θk ∈ C wk, z ∈ Cn, N is the number of hidden units and f(z) : Cn →
C are dense in C1(In) if f(z) is a complex bounded measurable discriminatory
function i.e.

∀g ∈ C(In),∀ε > 0, ∀z ∈ C(In) ⇒ ∃ G(z) |G(z)− g(z)| < ε (7)

where f(z) is an activation function of the hidden layer and G(z) is an output
of the net.

In [16] they also demonstrated the theorem for any complex bounded mea-
surable discriminatory function and further for functions having isolated or es-
sential singularities, but in compact subsets of the deleted neighborhood of the
singularity.

All these functions are bounded almost everywhere and have countable sin-
gular points; some of them can be handled separately during the learning process
(removable singularities) or can be placed outside of the working domain. In this
way the conflicting requirements between boundedness and differentiability can
be relaxed by paying attention to the domain of operation, that can be easily
identified for almost all applications.

3 Generalized Split AF by 2D Spline

This section is dedicated to the description of the new AF starting from the
theories on fully CpxNNs: starting from previously reported considerations we
tried to employ a generalization of the split method proposed in [12].



If we consider the expression of a fully complex function in relation to the
real and imaginary part we may write:

f(z) = f(x, y) = u(x, y) + jv(x, y) (8)

in which, as we have shown in the introduction, the two functions must be
bounded and differentiable at least in the whole domain of the problem at hand.

If we consider each part as a function of two variables, we can perform each
of them with a bi-dimensional spline; one plays the role of the real part and
one of the imaginary part of the complex activation function. With regard to
the ’desired properties’ stated for the fully complex AFs we can note that 2D
splines:

• They are non linear functions with respect to the coordinates; thus f(z) is
a nonlinear function with respect to x and y;

• They haven’t singularities and they are bounded for each z = x + jy;
• The partial derivatives ux, uy, vx, vy are continuous and bounded;
• The condition uxvy 6= vxuy is verified;

If we consider Adali’s conditions, the Cauchy-Riemann equations are not
satisfied by the complex 2D spline AF itself, but we tried to impose them by an
algorithm constraint during the learning process:

ux = vy =
(ux + vy)

2
, uy = −vx =

(vx + uy)
2

; (9)
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Fig. 1. Generalized splitting activation function. The functions u(x, y) and v(x, y) are
built using flexible bi-dimensional splines.

The neural architecture apparently is the same as a traditional MLP, but the
difference lays inside each neuron.



¦ Backpropagation for the generalized splitting AF

Clearly the input to the neuron is the complex weighted sum of the outputs of
the previous layer (l − 1) of the net:

zin = x + jy =
Nl−1∑

k=0

wkxk =
Nl−1∑

k=0

(
wI,k + jwQ,k

)(
xI,k + jxQ,k

)
(10)

When a signal zin comes to the input of the neuron, both real and imaginary
part are sent to the two functions, which are each a bi-dimensional spline. The
output of each function is a real value; we impose these two outputs to be
respectively the real and imaginary part of the output of the whole activation
function. This pair is met at the output of a neuron, is weighted with complex
weights and summed with all the other weighted outputs, ready to be sent to
the next layer. Consequently the BP algorithm is fully complex.

Let e(n) = d(n) − y(n), during the backward pass the δ’s are calculated as
follows:

J =
1
2

NM∑

j=0

|ej |2; (11)

δ = −∂J

∂u
− j

∂J

∂v
; (12)

where for a neuron of the output layer (M − 1) it follows that

∂J

∂uk
=

1
2

∂

∂uk

NM∑

j=0

|ej |2 = eI,k
∂

∂uk

NM∑

j=0

(
dj − fj(z)

)
= −eI,k

∂J

∂vk
=

1
2

∂

∂vk

NM∑

j=0

|ej |2 = eQ,k
∂

∂vk

NM∑

j=0

(
dj − fj(z)

)
= −eQ,k (13)

and for a hidden layer (l):

∂J

∂um
=

l+1∑

i=0

∂J

∂ui

(∂ui

∂xi

∂xi

∂um
+

∂ui

∂yi

∂yi

∂um

)

∂J

∂vm
=

l+1∑

i=0

∂J

∂vi

( ∂vi

∂xi

∂xi

∂vm
+

∂vi

∂yi

∂yi

∂vm

)
(14)

We called xi + jyi the generic input to layer (l + 1), meaning by that, as before,
the weighted sum of the outputs of the previous layer.

This new architecture differs from the network with real 2D splines in two
main aspects:
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Fig. 2. Connection between a neuron of a layer and all the neurons in the following
layer.

• When used to process complex signals, the real 2D spline considers the real
and imaginary part of an input as two distinct signals; they are fed two
times to each input neuron (a neuron j in the input layer has two inputs
s1,j and s2,j) but with different weights; as a consequence the number of free
parameters is higher than in a complex S.N.

• The output of an activation function of the real 2D spline is single and real;
no more trace of the complex nature of the data is held, thus forcing the use
of a pseudo-complex backpropagation.

4 Experimental Results

In order to proof the effectiveness of the generalized splitting AF CpxNN and of
its adaptation scheme, several experiments, consisting in communication channel
equalization using different channels model have been carried out.

The first experiment consists in the equalization of a non-minimum-phase
linear channel modelled by an impulse response h=(0.3482, 0.8704, 0.3482) [17].
At the filter’s output is applied a polynomial memoryless nonlinear function f ,
as shown in Figure 3.

Source h f( ) +
CpxNN

Equaliser

[ ]r̂ n[ ]S n [ ]r n [ ]x n [ ]y n

[ ]q n

Fig. 3. Discrete time model of a digital communication system.



The output of the channel can be simply computed as

r̂[n] =
L−1∑

k=0

h[k]s[n− k] (15)

where the memoryless nonlinear function is quadratic polynomial

r[n] = r̂[n] + 0.2r̂2[n] (16)

and finally, by adding Gaussian white noise q[n] with variance σ2
N

x[n] = r[n] + q[n] (17)

such that the signal to noise ratio (SNR) is defined as

SNR =
limN→∞ 1

N

∑N
n=1 E

[
|r[n]|2

]

σ2
N

(18)

where E[.] represents the expectation operator.
The waveform is a 4−QAM (quadrature amplitude modulation) whose al-

phabet is the set: 1√
2
{(1, j); (1,−j); (−1,−j); (−1, j)} .

The network is composed of two layers: the hidden has two neurons with
complex multidimensional spline activation functions, while the output is linear.

In figure 4 is shown the symbol error rate (SER), in relation to the SNR;
both are expressed in dB.

The network was compared with a real 2D spline with two neurons in the
hidden layer and linear output, and with a MLP network with 20 hidden neurons
and linear output.

The number of free parameters for NN 20 is 302, for Sp 2D 2 is 88 and for
CpxSp2D 2 is 98.

As we can see from the table, the performances of the complex network are
better than that of the other two networks.

In the second experiment the complex spline network is compared with a
fully complex network using tanh(z) as AF and with a split (real) network using
tanh(x). The problem is still channel equalization, but with a different channel
model and a QPSK signal of alphabet {(1, 0); (0, j); (−1, 0); (0,−j)}.

The channel is modelled by a complex FIR filter defined by the following
transfer function

H(z) =
√

2
2

(1 + j) + 0.1z−1 (19)

while the nonlinear part is a third order component providing a nonlinear rota-
tion of the constellation points

r[n] = r̂[n] + 0.2r̂3[n] (20)

White Gaussian noise, with independent real and imaginary parts, with zero
mean and variance σ2

N is added at the channel output.



Channel Equalisation Experiment 1
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Fig. 4. Symbol error rate vs signal to noise ratio for the nonlinear channel H(z) with
a 4-QAM signal.

The complex spline network is composed of two layers: the hidden has only
one spline neuron and the output is linear, for a total of 50 free parameters. The
other two networks have both 5 neurons in the hidden layer and linear output,
for a total of 50 free parameters. The networks are trained with 5x103 symbols
(independent and uniformly distributed), while the test set is composed of 3x106

symbols. For the spline network the learning rate was fixed to µ = 0.001 and
the spline rate was ηsp = 0.01 in all the trials. The tests were repeated for ten
distinct realizations, each with different initialization (the free parameters were
initialized randomly as in the previous experiments.

Figure 5 reports the results of the performed experiment. As we can note
the spline complex network reaches better performances with respect to tanh
networks.

It must be pointed out that in simulations with complex tanh as AF, if no
limitation is imposed to the range swept away by the function, the learning is
discontinuous and for low levels of SNR the algorithm may not converge at all.
Moreover, the weights are constrained to be initialized to small values, otherwise
the updating is oscillating. The learning process is very sensitive to the size of
the learning rate, constraining it to very small values and it must be changed
during the training process (by trials). As a consequence, for low levels of SNR,
the convergence is very slow and very often the target MSE (prefixed for each
SNR test and reached by the spline network) is not reached (3 or 4 dB less).

5 Conclusions

In this work we introduce a new complex activation function for neural networks,
based on spline interpolation and in order to process complex data. Only in



Channel Equalisation Experiment 2
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Fig. 5. Symbol error rate vs signal to noise ratio for the nonlinear channel H(z) with
a QPSK signal.

recent time efforts were made to find a way of handle these kind of signals: in
fact previously the traditional approach considered complex signals just like a
pair of real numbers and real and imaginary parts were elaborated separately as
independent from each other. This approach doesn’t take advantage of the deep
correlation between real and imaginary part of a complex signal and represents a
compromise to avoid the difficulty to find nonlinear complex activation functions.
In fact the main obstacle to their use is the conflict between the boundedness
and the differentiability of complex functions in the whole complex plane.

Another approach is that of using fully complex neural networks with ac-
tivation function that are differentiable and bounded almost everywhere. We
think that fully complex neural networks are best suited to deal with complex
data because they are defined in the same domain (the complex plane) and pro-
vide substantial advantages in learning complex nonlinear mappings because of
their efficiency. The experimental results confirm the validity of this approach.
In particular complex bidimensional spline networks outrun the performances of
other complex networks in both generalization capability and speed of conver-
gence. This is due to the desirable properties owned by spline functions, that
demonstrated to be a very powerful tool.

However this work is only a preliminary step in the field of complex networks
and further investigation may lead to new discoveries and better improvements.
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