Skip to main content

Positive Games and Persistent Strategies

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2803))

Abstract

At CSL 2002, Jerzy Marcinkowsi and Tomasz Truderung presented the notions of positive games and persistent strategies [8]. A strategy is persistent if, given any finite or infinite run played on a game graph, each time the player visits some vertex already encountered, this player repeats the decision made when visiting this vertex for the first time. Such strategies require memory, but once a choice is made, it is made for ever. So, persistent strategies are a weakening of memoryless strategies.

The same authors established a direct relation between positive games and the existence of persistent winning strategies. We give a description of such games by means of their topological complexity. In games played on finite graphs, positive games are unexpectedly simple. On the contrary, infinite game graphs, as well as infinite alphabets, yield positive sets involved in non determined games.

Last, we discuss positive Muller winning conditions. Although they do not help to discriminate between memoryless and LAR winning strategies, they bear a strong topological characterization.

The author sincerely thanks Erich Grädel for numerous remarks and corrections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duparc, J.: La forme normale des Boréliens de rangs finis. Th‘ese de Doctorat, Université Denis Diderot Paris VII. Juillet (1995)

    Google Scholar 

  2. Duparc, J.: Wadge hierarchy and Veblen hierarchy: part I Borel sets of finite rank. J. Symbolic Logic 66(1), 56–86 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Duparc, J.: A Hierarchy of Deterministic Context-Free ω-languages. Theoretical Computer Science 290(3), 1253–1300 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Duparc, J., Finkel, O., Ressayre, J.-P.: Computer Science and the fine Structure of Borel Sets. Theoretical Computer Science 257(1-2), 85–105 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 2, 326–336 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kechris, A.S.: Classical descriptive set theory. Graduate texts in mathematics, vol. 156. Springer, Heidelberg (1994)

    Google Scholar 

  7. Louveau, A.: Some Results in the Wadge Hierarchy of Borel Sets. Cabal Sem 79-81. Lecture Notes in Mathematics, vol. 1019, pp. 28-55

    Google Scholar 

  8. Marcinkowski, J., Truderung, T.: Optimal Complexity Bounds for Positive LTL Games. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 262–275. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Martin, D.A.: Borel determinacy. Ann. of Math. 102(2), 363–371 (1975)

    Article  MathSciNet  Google Scholar 

  10. Martin, D.A., Steel, J.R.: A proof of projective determinacy. J. Amer. Math. Soc. 2(1), 71–125 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nash-Williams, C.S.J.A.: On well-quasi-ordering finite trees. In: Proceedings of the Cambridge Philosophical Society, vol. 59, pp. 833–835 (1963)

    Google Scholar 

  12. Thomas, W.: Automata on Infinite Objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 4, Elsevier Science Publishers B. V, Amsterdam (1990)

    Google Scholar 

  13. Thomas, W.: Languages, automata, and logic. In: Handbook of formal languages, vol. 3, pp. 389–455. Springer, Berlin (1997)

    Google Scholar 

  14. Wadge, W.W.: Degrees of complexity of subsets of the Baire space. Notice A.M.S., A-714 (1972)

    Google Scholar 

  15. Wadge, W.W.: Ph.D. Thesis, Berkeley

    Google Scholar 

  16. Wagner, K.W.: On ω-regular sets. Inform. and Control 43(2), 123–177 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. In: Theoret. Comput. Sci., vol. 200(1-2), pp. 135–183 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duparc, J. (2003). Positive Games and Persistent Strategies. In: Baaz, M., Makowsky, J.A. (eds) Computer Science Logic. CSL 2003. Lecture Notes in Computer Science, vol 2803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45220-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45220-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40801-7

  • Online ISBN: 978-3-540-45220-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics