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Abstract

Central to Model-Driven Engineering (MDE) is seeing models as objects
that can be handled and organized into metamodel stacks and multi-model
architectures. This work contributes with a unique way of doing consistency
modeling where the involved models are explicitly organized in a multi-model
architecture; a general model for creating multi-model architectures that
allows semantics to be attached is defined and applied; explicit attachment of
semantics is demonstrated by attaching Java classes that implement different
instantiation semantics in order to realize the consistency modeling and the
automatic generation of consistency data.

The kind of consistency addressed concerns relations between data re-
siding in legacy databases defined by different schemas. The consistency
modeling is meant to solve the problem of exposing inconsistencies by relat-
ing the data. The consistency modeling combines in a practical way visual
modeling and logic (OCL). The approach is not limited to exposing incon-
sistencies, but may also be used to derive more general information given
one or more data sets.

The consistency is modeled by defining a consistency model that relates
elements of two given legacy models. The consistency model is expressed
in a language specially designed for consistency modeling. The language al-
lows definition of classes, associations and invariants expressed in OCL. The
interpretation of the language is special: Given one conforming data set for
each of the legacy models, the consistency model may then be automatically
instantiated to consistency data that tells if the data sets are consistent or
not. The invariants are used to decide what instances to generate when
making the consistency data. The amount of consistency data to create is
finite and limited by the given data sets. The consistency model is instanti-
ated until no more elements can be added without breaking some invariant
or multiplicity. The consistency data is presented as a model which can be
investigated by the user.
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Chapter 1

Introduction

During the past several decades, the Internet and its connected resources
have become a huge collective database that is playing a major role for
mankind. The database is composed of data sources that together may
contain overlapping but inconsistent data. The different data sources are
often based on different models (schemas), which complicates the process
of revealing inconsistencies. A manual check for inconsistencies can for ef-
ficiency reasons only be applied to small data sets, and consequently there
is a need to automate this process. The area of data warehousing [Inm96]
offers techniques that can be used to do this kind of checking. While data
warehousing is typically based on SQL, another approach, which is proposed
in this work, is based on a combination of visual modeling and first order
predicate logic. The approach proposed allows the user to model consistency
requirements and then later automatically generate consistency data for se-
lected data sources; this emphasis on modeling (together with generation)
coincides with the current research direction called Model-Driven Engineer-
ing! (MDE) [Ken02]. This direction is currently addressing the notion of
models and model architecture. Jean Bézivin states [Béz04]:

... This consists in giving first-class status to models and model
elements, similarly to the first class status that was given to
objects and classes in the 80s, at the beginning of the object
technology era. The essential change is that models are no longer
used only as mere documentation for programmers, but can now
be directly used to drive software production tools.

!"While the main sections of this dissertation uses the term MDE, there are many
strongly related terms such as Model-Driven Development (MDD) [AKO03], Model-Driven
Architecture (MDA) [MMO03, KWB03] from the Object Management Group (OMG).



CHAPTER 1. INTRODUCTION

A model-driven approach for defining and testing consistency requirements is
presented in this work; it involves several models, e.g., the models of the data
sources and the data sets (data sets are seen as terminal models, i.e., models
that cannot be instantiated further). To allow the definition and utilization
of webs of models, like the one being presented, new flexible modeling frame-
works need to be developed. A megamodel [BJV04,Fav05] is a model whose
elements represent and refer to models, metamodels, metametamodels, ser-
vices, tools, etc. Explicit megamodels are essential to the understanding
and evolution of MDE. This work proposes a partial megamodel called 1Be
for defining multi-model architectures; IBe is also used as the name of the
approach as a whole.

Another trend, related to MDE, advocates use of languages tailored to
specific problem domains, i.e., Domain Specific Languages (DSLs). This
trend is based on the understanding that a language that is not suitable
for its application domain will typically inflict limitations on communica-
tion and understanding; (linguistic) metamodeling meets this challenge as a
vehicle for designing suitable languages. Examples of this approach are
Language-Driven Development (LDD) [CESW04] and Software Factories
(SF) [GSCKO04] from Microsoft. The language proposed for doing consis-
tency modeling is a domain specific language; by using 1Be, this DSL can
be defined and placed as a (meta)model in a metamodel architecture; this
model may again be instantiated to statements corresponding to consistency
requirements.

1.1 Problem Statement and Architecture Sketch

Comparing and relating different models of the same entity is often of inter-
est since inconsistencies and also a more comprehensive set of properties may
be revealed; these operations are complicated when the different representa-
tions are stored in different data sources that are defined by different models
(schemas). Some inconsistencies are complex and require complex querying
for exposure; one example may be to detect whether a criminal suspect has
been lying about where he has been, assuming that there are three legacy
systems involved. Legacy system one contains information given by the sus-
pect concerning where he has been, legacy system two contains pictures of
the suspect, and legacy system three records photos at specific observation
posts. In this case, a suspect is exposed as lying if he claims to have stayed
in one place, but has been observed at the same time from an observation
post located elsewhere. Specifying complex consistency requirements is not

2
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trivial, and despite the widespread use of SQL, this language may not be
the best solution when specifying such requirements — “divide and conquer”
is a common strategy when solving complex problems and some means to
support this strategy also in our case would be beneficial.

Several of the sources available on the Internet offer semantically over-
lapping data, and it is often of interest to integrate such data sources (e.g.,
the merging of ontologies [SS04]); however, the lack of consistency among
them makes this integration difficult. In certain cases the goal is not to per-
manently integrate the data, but rather just to expose inconsistency among
different data sources with related data. A similar problem is to analyze
one single data source to determine whether it matches requirements that
have been added to its model; for example, such an approach may be used
to model and test accessibility requirements for web documents.

The problems stated above involve data sources, models and also meta-
models that are specified more or less explicitly — which leads to the un-
derstanding that a modeling environment? is needed. Furthermore, in the
spirit of MDE, consistency requirements should be modeled explicitly in a
type model, and the results of testing requirements should appear in the
form of a model (some would call this a terminal model or a token model)
that is generated automatically. Continuing along the same line, explicit
metamodels defining the languages used is also seen as an advantage.

The contours of metamodel stacks appear when approaching the problem
of consistency modeling from an MDE point of view, and it seems natural
to define a language (metamodel) to use for the consistency modeling. By
so doing, the consistency requirements modeled by the consistency modeler
become an instance of the metamodel. Finally, the result of testing consis-
tency requirements appears as an instance of the consistency model (i.e., the
result appears as a data set where each element is an instance of an element
of the consistency model), this instance is called consistency data. Fig. 1.1
gives one possible multi-model architecture depicting the situation.

Fig. 1.1 shows three metamodel stacks, one for each of the legacy databas-
es and one for the consistency modeling. In Fig. 1.1 all metamodels conform
to the same metametamodel, which is supplied by the environment as an
embedding language. The embedding language may also be termed repre-
sentational language or representational model (also the term realization

2The terms environment and framework are used interchangeably when describing the
proposed solution; in this context the term (modeling) environment means the obvious:
An environment for doing modeling. The term framework is also applicable since some
(Java) classes are supplied and meant for subclassing, e.g., generic interpreters of class
descriptions.
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Representational Model
(Realization Language)
Metmodel Stack Metmodel Stack Metmodel Stack
Legacy DB1 Consistency Data Legacy DB2
MetaModel Consistency MetaModel MetaModel
(MMDBI1) (MMCD) (MMDB2)
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1 1 1
Legacy Model Consistency Model Legacy Model
(MDB1) (MMCD) (MDB2)
N\ N N
: : :
Legacy Data Consistency Data Legacy Data
(DB1) (CD) (DB2)

Figure 1.1: Multi-model architecture with three metamodel stacks

language seems adequate since it is already realized and it functions as a
tool for realizing the other languages being defined). While a consistency
modeler defines only the consistency model, the other models are either
supplied or generated automatically.

The metamodel stacks are not hard to see; it is, however, not obvious
how to connect the models (the arrows and lines between the models in
Fig. 1.1) and determining how the language for doing consistency modeling
should look. A possible consistency metamodel is supplied by this work
together with a partial megamodel that defines multi-model architectures
(the megamodel can also be seen as a representational model for multi-
model architectures).

The following is a list of requirements and issues involved when defining
a suitable environment (framework):

Req. 1 A language (metamodel) is required for consistency modeling.

Req. 2 Consistency data is to be generated automatically (a suitable algo-
rithm is needed) and also the different models must in some way be
established in the environment. Consequently, the environment needs
to support behavior.

Req. 3 The consistency and legacy models must be connected when making

4
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a consistency model. Consequently simultaneous handling of models
in different metamodel stacks is required.

The consistency data is to be generated automatically and connected
to legacy data, so simultaneous handling of different terminal models
(data sets) is also required.

In short, the environment should support multi-model architectures
(e.g., as seen in Fig. 1.1) so that the user is not forced to merge ele-
ments from different metamodel stacks, but is allowed to manage the
individual models as pluggable modules (objects).

Req. 4 Modeling and generation of consistency data should be tightly in-
tegrated and it should not be necessary to leave the modeling environ-
ment to generate the consistency data (i.e., the modeling environment
is the runtime environment).

Req. 5 Visual modeling is considered beneficial and should be supported.

Req. 2 states that behavior should be supported by the environment.
Behavior must include different types of instantiations, e.g., the algorithm
for the automatic generation of consistency data is a kind of model instan-
tiation; also the establishing of the other models in the environment may be
handled as instantiation.

It is practical to stay in the same environment when doing consistency
modeling and generation of consistency data — this is what motivates Req. 4;
if the data sets are huge and the consistency model is complex then this ar-
gument is weakened; on the other hand, in a situation where the correctness
of a consistency model is tested then the argument for a tight integration
of modeling and generation of consistency data is strengthened, e.g., having
the consistency data generated immediately when the consistency model is
changed gives a truly interactive system.

The solution sought is a type of executable modeling where the consis-
tency model is like a statement (declaration) that returns the consistency
data when executed (interpreted). Seeing the approach as a form of ex-
ecutable modeling together with Req. 4 gives the understanding that the
approach should be more like an interpreter-based approach than a compiler-
based approach. (At a later point when the presented technology has ma-
tured then also a compiled version may be developed. Compilation will
typically give faster execution once the compilation has been performed,
but more time will be needed before the modeler gets from modeling to
execution. Consequently, offering interpretation and compilation lets the
modeler choose the approach that fits best in a given situation.)

5
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The next section will relate the contributions of the work to the require-
ments.

1.2 Contributions

This section introduces the papers of the dissertation and the research
method used. Subsection 1.2.1 explains how the papers relate to each other,
forming in turn a coherent research contribution. Subsection 1.2.2 exempli-
fies contributions when identifying research method used.

1.2.1 Publication topics

It is often the case that the same entity is represented more than once in
either identical or different databases. This may lead to inconsistencies, e.g.,
one data source claims that the number of apartments in a building is 10
and another data source claims it is 11. For data sources with semantically
related models, one simple consistency rule may be the following: Two ob-
jects (entities) with the same identity must have the same values stored for
corresponding attributes; otherwise, they are not consistent with each other.

Modeling and Testing Legacy Data Consistency
Requirements:

authors = Jan Pettersen Nytun,
Christian S. Jensen

year = 2003

type = conference UML

Figure 1.2: Paper found in Appendix A

The paper entitled Modeling and Testing Legacy Data Consistency Re-
quirements [NJO3] (Fig. 1.2) focuses on the consistency problems that occur
when previously uncoordinated, yet semantically overlapping, data sources
are being integrated. The technique proposed is related to constraint sat-
isfaction [Kum92] and constraint programming [Bar07] where relations be-
tween variables may be stated in the form of constraints. The paper is found
in Appendix A.
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The approach presented allows the consistency modeler to introduce new
associations and classes with attributes, in this manner a consistency model
is defined. The consistency model ties (existing) legacy models together and
models consistency requirements (or other types of data that it is possible to
derive in this manner). The consistency testing is performed on the consis-
tency model instance level (i.e., the consistency data is a consistency model
instance), were the legacy data is found. Initially, the consistency model
does not have a model instance due to the fact that this data is automati-
cally derived. Invariants stated in OCL are added to the consistency model
and used when establishing the consistency data. The consistency data is
derived data as specified by the consistency model.

The invariants are used to decide which instances to generate when mak-
ing the consistency data — e.g., assigning a Boolean property the value that
fulfills an accompanying invariant, an invariant where the property is used
as the left hand side in an equality comparison. The approach is declara-
tive: The consistency model declares which instances should be present at
its model instance level (given legacy data). The declarations in question
provide automatic instantiation.

Fig. 1.3(d) gives an example of automatically generated consistency data.
Fig. 1.3(a) shows the schema (MDB1) for a legacy system in the form of a
UML class diagram, and it also shows the data (DB1) for this legacy system in
the form of a UML object diagram; Fig. 1.3(b) shows another legacy system
with semantically overlapping data. Fig. 1.3(c) relates the just mentioned
models to Fig. 1.1. We can see from Fig. 1.3(a) and Fig. 1.3(b) that DB1 has
two apartments with building id bl and that this is consistent with DB2 that
has a building with building id b1 and an apartment count of 2; DB1 has
an apartment with building id b2 that is not consistent with DB2 that has a
building with building id b2 and an apartment count of 0. Fig. 1.3 does not
show the consistency model, but Fig. 1.3(d) shows some possibly automati-
cally generated consistency data, e.g., property cApartmentCount is false
for the instance of the consistency class ConsistencyApartmentBuilding
(this class is defined in the consistency model) which is connected to the
Building instance with id equal to b2. Fig. 1.3(e) relates the models of
Fig. 1.3(d) to Fig. 1.1.

The paper makes the following contributions:
e A technique for consistency modeling that includes visual modeling.

e A metamodel to instantiate when the technique is used. For the con-
sistency model to be applicable, it must conform to the specified meta-
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Legacy Model (MDB1) Legacy Model (MDB2)
Apartment Building
ald bld
bld apartmentCount
Legacy Data (DB1) Legacy Data (DB2)
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bld = “b1” bld = “bl1” apartmentCount = “2”| | apartmentCount = “0” A
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Legacy Data (DB1) |€ Consistency Data (CD) ->| Legacy Data (DB2)
al:Apartment :ConsistencyApartmentBuilding
bld = “b1” cApartmentCount="true”
—| b1:Building
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bld =“b2” apartmentCount="0"
(d) (e)
Figure 1.3: Generation of consistency data
model.

e A unique manner of utilizing OCL to produce a model instance.
e An algorithm for automatic testing the consistency of legacy data.

The paper Modeling and Testing Legacy Data Consistency Requirements
is important to the project’s overall objectives, satisfying the following: Req.
1 (a language for achieving consistency modeling) and Req. 2 (an algorithm
for the automatic generation of consistency data). It is also demonstrating
visual modeling (Req. 5) as it should be experienced by the modeler, but
it does not specify how to implement this. Realizing the solution presented
in this paper involves the management and organization of models into a
multi-model architecture — this issue is the target of some of the later papers.

The focus of the paper Towards a Data Consistency Modeling and Test-
ing Framework for MOF Defined Languages [NJOO3] (Fig.1.4) is the archi-
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Towards a Data Consistency Modeling and Testing
Framework for MOF Defined Languages:

authors = Jan Pettersen Nytun,
Christian S. Jensen,
Vladimir A. Oleshchuk

year = 2003

type = conference NIK

Figure 1.4: Paper found in Appendix B

tecture and components for building a modeling framework that supports
multi-model architectures. The paper can be found in Appendix B.

The paper considers models to be objects that can be connected to form
multi-model architectures and considers Eclipse [Dri01, DFKT03] as a po-
tential implementation platform. Eclipse is designed for building integrated
development environments; it has a plug-in architecture that makes it suit-
able for extensions, and several useful plug-ins are already available.

UML 2.0 introduces the metaclass InstanceSpecification that can be
used to model an instance of a model element. For example, it may be used
to illustrate an object of a class. The paper proposes to use a modified
version of InstanceSpecification for the representation of model element
instances.

Representation of Levels and Instantiation in a
Metamodelling Environment:

authors = Jan Pettersen Nytun,
Andreas Prinz,
Andreas Kunert

year = 2004

type = workshop NWUML

Figure 1.5: Paper found in Appendix C

The paper Representation of Levels and Instantiation in a Metamodel-
ing Environment [NPK04] (Fig.1.5) continues to elaborate on the modeling

9



CHAPTER 1. INTRODUCTION

framework (the paper is presented in Appendix C). Its main contribution is
the definition of a uniform way of representing metadata and object infor-
mation in a metamodeling environment. The proposed solution comprises
an enhanced instance model in which there are objects, slots, links and refer-
ences to metadata. The instance of relation is made completely visible, and
the representation may be used at all levels; the metamodel border between
two levels is seen as an interface composed of symbols (e.g., names of classes)
which, from the lower level, represent the instantiable elements (types) of
the higher level. When combined with its upper and lower interfaces, one
metalevel constitutes a manageable module. Such a module may initially be
stored together with its interfaces and subsequently retrieved and connected
with an adjacent level in the metamodel stack; the two interfaces selected
from both the models include one upper and one lower interface. The two
interfaces are merged into what is called a (metalevel) border that comprises
the set of symbols from both the interfaces.
The uniform representation of levels has several benefits:

e Tools based on this representation may be used on all levels, e.g., an
OCL-evaluator.

e It is possible to compile the classes of the representation in advance
and obtain an interpretative solution.

e [t is easy to define an XML schema that may be used for all levels
(including the data level).

When the paper was written, the instance representation was called
Form; a visual syntax for Form is defined. The paper does not give a com-
plete description of instantiation; however, it discusses the problem of decid-
ing whether two given single levels may be seen as neighbor levels. Two levels
may be connected by simply fusing the symbols mentioned above; however,
this approach may not function well, especially if no namespace information
is “stored in” the symbols. The paper considers basic instantiation patterns
for all the elements of Form, and it proposes to store some information in
the instances of Form revealing the basic instantiation patterns that have
been used when the instances were established. While this approach may
strengthen the process of connecting the levels inside the framework, it does
not fully solve the question of instantiation. Nevertheless, the paper does
make some major steps towards realizing Req. 3. The paper is found in
Appendix C.

The paper Accessibility testing XHTML documents using UML [GNPTO05]
(Fig.1.6) introduces a new application. The paper is presented in Appendix
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Accessibility testing XHTML documents using UML:

authors = Terje Gjosater,
Jan Pettersen Nytun,
Andreas Prinz,
Merete S. Tveit

year = 2005

type = workshop NWUML

Figure 1.6: Paper found in Appendix D

D. The basic instance representation (called Form above) has been modi-
fied and it is now being called Model All Types with Extent Realization
(MATER). MATER models level borders and levels explicitly, and names-
paces are also included in this version.

The paper focuses on the modeling and testing of accessibility require-
ments for web documents, where accessibility relates to people with disabil-
ities. A web page is created according to certain specifications, e.g., the
XHTML specification, and it may then be seen as a model instance of the
specification. The model (e.g., the XHTML specification) and the model in-
stance are both represented in MATER. OCL formulas may be attached to
the model, thus expressing simple and advanced accessibility requirements.
This application may be seen as a subset of the more general application de-
scribed above (modeling and testing legacy data consistency requirements)
— it is a simplification because only one model and model instance are in-
volved; the testing may be completed in the same manner as described above.

The paper Modeling Accessibility Constraints [GNPT06] (Fig.1.7), pre-
sented in Appendix E, continues to investigate how to do modeling and test-
ing of accessibility constraints, offering a more mature (simpler) and robust
approach. The metamodel in question is extremely simple: Only classes with
properties and composition are considered. Although the approach specified
does not need the metamodel to be present in the framework, the under-
standing it represents will still pervade a solution. Moreover, the model
(e.g., the specification of XHTML) in which the accessibility constraints are
attached may be incomplete making this approach more robust. The ap-
proach describes how a model is automatically constructed given a model
instance (a web document), the created model reflects what the model in-
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Modeling Accessibility Constraints:

authors = Terje Gjosater,
Jan Pettersen Nytun,
Andreas Prinz,
Mikael Snaprud,
Merete S. Tveit

year = 2006

type = conference ICCHP

Figure 1.7: Paper found in Appendix E

stance is composed of (elements from the specification not used will not be
modeled). The premade model with the attached accessibility constraints
is merged with the model that has been created automatically, and at this
point the constraints are tested on the model instance. A report describing
the accessibility violations is subsequently created. Several benefits of this
approach are described in the paper, e.g., the parts of a document that con-
form to common deviations may be tested for accessibility, which is done
by including model elements describing common deviations and attaching
accessibility constraint to these same elements.

The paper demonstrates the usefulness of allowing models to be treated
as pluggable modules by having a “model instance” first created and then
attached to a possible model.

The papers in Appendix E and Appendix D make it clear that “in-
complete metamodel stacks” may also be interesting (e.g., starting with a
terminal model and then establish a model by doing analysis). This un-
derstanding is added to Req. 3 which concerns a model for representing
multi-model architectures.

The paper Automatic Generation of Modeling Tools [NPTO06] (Fig. 1.8),
presented in Appendix F, defines a terminology for aspects of metamodels,
and it investigates how they are supported by existing metamodeling tools.
The term metamodel is used in a general sense: A metamodel is a model
that defines a language completely, including the concrete syntax, abstract
syntaz and semantics.®> The paper places MATER in a broader context in
which requirements for metamodeling frameworks are discussed — the paper

3Today this is not a common view; often the metamodel is only seen as defining the
abstract syntax.
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Automatic Generation of Modeling Tools:

authors = Jan Pettersen Nytun,
Andreas Prinz,
Merete S. Tveit

year = 2006

type = conference ECMDA

Figure 1.8: Paper found in Appendix F

functions as a related-work study.

The paper A Generic Model For Connecting Models In A Multi-level

Modeling Framework [Nyt06], found in Appendix G, (Fig.1.9) presents a
generic way of both connecting models placed at adjacent levels and con-
necting models placed at the “same level”. The MATER model is extended
to support this weaving of models, where for example two connected models
may reside at the same level while conforming to different metamodels at
the level above.
The testing of legacy data is used as an example; handling of execution
semantics is not a main theme of the paper, but a feasible solution based
on semantic engines is sketched. A semantic engine is an interpreter that
interprets the structure (e.g., the description of a class) where it is attached;
attachment in this context correspond to a Java reference to executable Java
code. When the Java code is executed, it interprets the structure, and this
execution is giving the structure a meaning (e.g., the structure could be the
description of a class and the execution could be the creation of an object
of the class). By attaching different semantic engines, different interpreta-
tions will result. Instead of using the term “semantic engines”, the following
chapters are simply using the term “semantics”.

The framework presented has the following properties:

e It is loosely coupled to the instantiation found in its implementation
language, this allows a model to have several type models offering
different and useful information about the model.

e [t is extremely generic, which makes it adaptable to many different
modeling needs, e.g., it may allow separate existence of properties.

e [t is possible to have incomplete architectures, e.g., XML documents
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may be loaded for analysis, and then a model may be produced auto-
matically (Appendix E). This is typically not possible in other frame-
works due to their strong coupling to instantiation in the selected
implementation language.

The paper proposes a model for representing multi-model architectures, and
by this it satisfies Req. 3. A model, in such a multi-model architecture,
appears like an “ordinary object” with defined borders (interfaces) to other
objects (models), e.g., there will be a border between a model and one
that describes it in a type-like fashion (in Chapter 4, which describes the
solution, this type of border is called a descriptor border). Semantics may
be attached to model elements and to borders. Attaching instantiation
semantics to a border may, when executed, create a complete new model and
place it in a multi-model architecture relating it to several other models. The
paper proposes a way of integrating the algorithm (i.e., the algorithm for
automatic generation of consistency data) into the multi-model architecture;
it proposes to attach it as a semantic engine to a border and by this the
paper satisfies Req. 2. The details of this approach are explained in Chapter
4.

A Generic Model for Connecting Models in a
multilevel modelling framework:

authors = Jan Pettersen Nytun
year = 2006
type = conference ICSOFT

Figure 1.9: Paper found in Appendix G

(Certain “philosophical aspects” of the approach have been discussed in
the paper Metalevel Representation and Philosophical Ontology [NP04].)

Chapter 4 presents a coherent and a slightly updated description of the
solution. After being awarded a series of working titles, the name of the
framework (the conceptual model) has now been set to Integrating Border
environment (IBe).
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1.2.2 Research Method

IT research deals with artificial phenomenon like organizations and informa-
tion systems. An essential property of artificial phenomenon is that it may
be both created and studied [MS95]. The hypothetic-deductive method is well
suited in natural science which aims at describing and explaining the reality.
This method can also be used in some areas of computer science, e.g., devel-
opment of web crawling technologies to detect updates of web pages, which
may be done by stating some algorithm together with a hypothesis about
its efficiency compared to existing algorithms, followed by real world exper-
iments on the Internet for verification. In other cases traditional scientific
methods are difficult to apply, Juris Hartmanis states [Har93]:

...an inspection of the experimental work and systems building
in computer science reveals different pattern than in physical
sciences. Such work deals with...testing feasibility by building
systems to do what has never been done before...demos can play
the role of experiments. Furthermore, the science and engineer-
ing aspects are deeply interwoven in computer science, where the
distance from concepts to practical implementation is far shorter
than in other disciplines...

...we can see that computer science is concerned with the ab-
stract subject of information, which gains reality only when it
has a physical representation... The goal of computer science
is to endow these information processing devices with as much
intelligent behavior as possible.

Alan R. Hevner et al. see behavioral science and design science as paradi-
gms fundamental to research in the Information Systems discipline [HMPRO4];
in this context the behavioral science paradigm is understood to be focused
on development and verification of theories that explain or predict human
or organizational behavior [HMPRO04]. This dissertation is not part of be-
havioral science — it belongs to design science. Design-science is rooted in
engineering, and its purpose is to extend the boundaries of human and orga-
nizational capabilities by creating new and innovative artifacts [HMPRO4].
The products (i.e., the artifacts) of design science are of four types [MS95,
HMPRO4]:

Constructs A language for addressing the phenomena, i.e., vocabulary and
symbols representing basic concepts.

Models The constructs may be combined to form higher order constructs
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called models, used to describe tasks, situations, or artifacts (abstrac-
tions and representations).

Methods Ways to perform goal-directed activities, i.e., algorithms and
practices.

Implementations (Instantiations) The already mentioned artifacts may
be instantiated into specific products, i.e., implemented and prototype
systems.

Peter J. Denninger et al. recognize three types of work processes in
the discipline of computing: Theory (building conceptual frameworks and
notations for understanding relationships among objects in a domain and the
logical consequences of axioms and laws), experimentation (exploring models
of systems and architectures within given application domains and testing
whether those models can predict new behaviors accurately) and design
(constructing computer systems that support work in given organizations
or application domains) [DCG'89,Den99]. Further, they consider the three
processes so intricately intertwined that it is irrational to say that any one
is fundamental [DCG™89).

Alan R. Hevner et al. relate the processes to design science and consider
there to be two basic activities: Build and evaluate [MS95]. Build is the
process of constructing the artifact and evaluate is the process of determin-
ing how well the artifact performs.

Several artifacts are presented in this dissertation, e.g., conceptualiza-
tions or constructs like consistency class and consistency association which
are parts of the vocabulary used when the solution is described. The most
important artifact is a new unique method to do consistency modeling at a
high level of abstraction (Appendix A); this method is considered to have
value or utility to people that wishes to do consistency modeling. The follow-
ing statement given by Salvatore T. March and Gerald F. Smith is claimed
to be applicable: The research contribution lies in the novelty of the artifact
and in the persuasiveness of the claims that it is effective [MS95].

Different variations of the method have been presented, and based on a
selected set of criteria, one were chosen (Appendix A.4). The method has
also been compared to existing methods that may be extended to solve the
problem of doing consistency modeling (e.g., Section 3.2.4, 3.2.2, 3.2.1 and
Subsection 5.1.1).

Some additional applications of the method (or more correctly adapta-
tions of the method) have been researched, i.e., modeling of accessibility
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constraints (Appendix D and E). These studies have further strengthened
the claim that the method is effective.

The proposed method is being partly described by a metamodel (Sec-
tion 4.3.3) defining the language to use when doing consistency modeling,
the metamodel is expressed in UML, and it is by this gaining some rigor.

The concrete syntax of the language, proposed in Appendix A, is a subset
of UML class diagrams with OCL. The concrete syntax is by itself supported
by common UML diagram tools. However, the interpretation of the language
is special and not supported by any existing tool. Consequently, there is no
tool that “fully” supports the consistency modeler, e.g., automatic genera-
tion of consistency data is missing. Hence, several of the papers addresses
the design of a tool to realize the method (Appendix A, B, C, F and G) —
this is in conformance with design science, which is characterized by its en-
gineering roots, in which progress is primarily achieved by posing problems
and systematically following a design process to specify/construct systems
that solve them. The design proposed relates to MDE and is partly given
in the form of a model (called IBe) for handling models. The dissertation
reports on parts of the work that has been conducted when defining the tool,
e.g., instantiation is an important feature that needs to be supported by the
tool, a solution to this is described in Chapter 4 and some related work is
presented in Chapter 3. One role of the proposed design is to confirm the
feasibility of the tool. However, a well functioning tool is needed to evaluate
the methods full potential.

The model for handling models, corresponds to an ontology describ-
ing model handling — to find the “right concepts” theoretical/philosophical
works have been studied (e.g., [Kiith06] [Lud03] [Sei03b] [Béz05] [JB06] [Fav04b]
[Fav04c] [Fav04a] [Fav05]).

1.3 Dissertation Outline

The remainder of the dissertation is structured as follows: Chapter 2 gives
an introduction to the object-oriented way of modeling and metamodeling.
It also introduces some concepts used later.

The first part of Chapter 3 explores related work in regard to instantia-
tion semantics and metamodel stacks. The attention towards instantiation
and attachment of semantics reflects the current phase of the work. The
last part of Chapter 3 presents alternative approaches in regard to revealing
consistency among data sources.

Chapter 4 presents the solution, summing up essential points made in

17



CHAPTER 1. INTRODUCTION

the papers and giving the reader easy access to the work constituting the
dissertation.

Chapter 5 discusses the results and offers a few concluding remarks to-
gether with some considerations in regard to further work.

Appendixes A-G contain the papers included in this dissertation (pre-
sented above).

Appendix H gives an informal introduction to the object-oriented way
of thinking and the basis of modeling, it may be omitted by readers familiar
with these topics.
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Chapter 2

Introduction to Modeling
and Metamodeling

Object-oriented metamodeling is rooted in the object-oriented world view,
which again aims at mimicking the way a human perceives reality and con-
struct descriptions of “abstract things”. Appendix H gives an informal in-
troduction to the object-oriented way of thinking and the basis of modeling.
Appendix H fits in before this chapter, but it may be omitted by readers
familiar with the object-oriented paradigm and basic language theory. This
chapter gives an introduction to modeling and metamodeling; these issues
are discussed so that the context of the solution and the vocabulary used to
describe the solution is made clear.

2.1 Modeling

The models of MDE are language-based in nature as opposed to physical
scale models; the following definition of a model is given by E.D. Falkenberg
et al. [FHL198]:

A model is a purposely abstracted, clear, precise and unambigu-
ous conception... a model denotation is a precise and unambigu-
ous representation of a model, in some appropriate formal or
semi-formal language.

A model is seen as something abstract (conception), communicated by a

description (denotation) given in some (modeling) language. Often the dis-
tinction between model and model denotation is ignored — the term model
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METAMODELING

is used when model denotation is meant (this imprecision may also be found
in this work).
Thomas Kiihne presents the following definition of what a model is [Kith06]:

A model is an abstraction of a (real or language based) system
allowing predictions or inferences to be made.

Jean Bézivin and Olivier Gerbé present another but quite similar defini-
tion [BGO1]:

A model is a simplification of a system built with an intended
goal in mind. The model should be able to answer questions in
place of the actual system.

Both the previous definitions indicate that some characteristics of the sys-
tem (subject) are in some way represented by the model — there is a homo-
morphic relation between model and system. The definitions also indicate
that it is possible to use the model to derive information about the system
(demonstrate properties). To know that the derived information is valid, it
must be possible to map (interpret) the result onto the system. Ed Seide-
witz [Sei03a, Sei03b] defines an interpretation of a model as being:

..mapping of elements of the model to elements of the system
under study such that the truth-value of statements in the model
can be determined from the system under study, to some level
of accuracy.

In this way a model is given meaning — an example of what it means is
explicitly shown.

Herbert Stachowiak [Sta73] is a bit more explicit when it comes to the
features of a model and presents the following list (collected from [Kiih06]):

Mapping feature A model is based on an original (there is a subject).

Reduction feature A model only reflects a (relevant) selection of an orig-
inal’s properties.

Pragmatic feature A model needs to be usable in place of an original with
respect to some purpose.

The model plays a role in relation to what it models and can therefore
be understood as a relative concept. Also, Kithne [Kith06] does not accept
a copy being a model of what it copies.
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Seidewitz outlines two different ways to consider a model [Sei03a,Sei03b]:
As a description or as a specification. Given a model and a system that are
not consistent with each other in regard to some aspect, which one of them is
considered bearing the truth? Natural scientists have nature as their system
under study; nature is typically seen as a given system (Fig.2.1(a)); the
mission is to come up with a description (model) that is so good that it can
be used to predict and explain natural phenomena. A model can also be a
set of statements that specify a system that is to be constructed (Fig.2.1(b))
and in this case the implemented system is wrong if it does not follow the
specification.

Model Model

describedBy specifiedBy

given specifies

System System

(a) (b)
Figure 2.1: To ways to view a model

If you have a system that is fulfilling a specification, then the specification
is also a description of the system. Most models found in software engineer-
ing are specification models [Sei03b] (aka, “prescriptive models” [Lud03])
and typically the “original” does not exist when the model is created. How-
ever, not all software models come about as specification models, e.g., an-
alyzing data may be seen as an attempt to make a model when the data
being analyzed are given.

2.2 Object-oriented Modeling

Nigel P. Capper describes the object-oriented world view as [Cap94]:

Conceptually, object-oriented world view is that of a collection
of interacting objects, each with a time-varying status expressed
in terms of data attributes and each with behavior expressed
as responses to interactions with other objects. Each object is
an instance of a particular class (for example, bank account)
whose behavior is expressed in terms of methods (that is, func-
tion), each triggered by a message (for example, debit account).
Classes can inherit data attributes and methods from other, more
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general, classes (for example, savings account inherits from bank
account).

The great success of object-oriented languages is due to the possibility to
map the problem domain more or less directly to a program solution [Ber97];
object-oriented technology minimizes accidental complexity [Fre87] other-
wise introduced by none object-oriented technology that is used to solve
the problem. Of course essential complexity, which relates directly to the
complexity of the problem itself, is inherent and unavoidable. Essential com-
plexity relates to content and accidental complexity relates to form; form
correspond to "manifestation” or the result of a reification — in other words
object-oriented technology makes the reification process more ”straight for-
ward”.

The objects of the computer appears as the top of a language stack where
one language is defined by the help of the one beneath it; these language
levels hide the physical and software particularities of the computer and
offer an “advanced medium”.

UML [OMGO03c] is a general purpose visual modeling language for speci-
fying and visualizing object-oriented systems. UML includes class diagrams
showing classes. Object diagrams are a special case of class diagrams that
can show classes and objects that exist at a specific point in time. Fig.2.2(a)

:ownership
ownership :Person H Car
Person —-Car

1 * name=“Bob”

name

:ownership :Car

(a) (b)
Figure 2.2: A model (a) and a model instance (b) of this model

shows class Person associated with class Car by the ownership association;
the Person has the property (attribute) name. Fig.2.2(b) shows an object
that is described by class Person and two objects of class Car, also two
instances (links) of the ownership association are shown. To summarize:

e An object (or more generally, an instance) is instantiated from a class.
e A link is instantiated from an association.

e A slot, which can keep a value, is instantiated from a property de-
fined by the class (e.g., name=“Bob” shown inside the Person-object
in Fig.2.2(b)).
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There are several other diagram types in UML, e.g., sequence diagrams
showing the interaction between objects.

We have seen that objects are instances of classes, but what about
classes: Are they instances of something? We return to this question later
when discussing metamodeling.

2.3 Instantiation

In [RJBO5] instantiation is described as the creation of new instances of
model elements. The instances are considered to be created at run time;
they can be modeled by using InstanceSpecification [OMGO03g] which is
a description in a model of an instance or group of instances [RJB05]. The
instances are the result of primitive create action(s) or creation operation(s).
The creation process can be seen as composed of several stages: First an
identity is given to the instance; then its data structure is allocated as
prescribed by the descriptor; and then its property values are initialized as
prescribed by the descriptor and the creation operator. James Rumbaugh
et al. also state [RJBO5]:

Usually, each concrete class has one or more class-scope (static)
constructor operations, the purpose of which is to create new
objects of the class. Underlying all the constructor operations is
an implicit primitive operation that creates a new raw instance
that is then initialized by the constructor operation... The exact
mechanisms of creating instances are the responsibility of the
runtime environment.

A creation operation seems to be the same as a constructor. The role
of the creation operator is not clearly stated (this may have been done
deliberately to have the definition fit several implementations) — is there
one creation operator for each class or is there one for all classes? We return
to such questions in the next chapter.

2.4 Token and Type Model Roles

Being a model is not an intrinsic property but a role played in relation to
what is being modeled. Two basic roles are defined by Thomas Kiihne [Kiith05]:
token and type. A token model captures the singular aspects, while a type
model captures the universal aspects of what it models. A class Building
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may capture the universal property that buildings have owners. An object
that models one specific building is a token model for this building, e.g., it
may capture the name of the owner.

Wolfgang Hesse [Hes06] gives the following description of token and type
model roles:

Roughly spoken, the two kinds of projection mentioned above
are responsible for the two kinds of models: Feature projection
for token models and placeholder! projection for type models.
Feature projection means that single elements of the original
remain distinguishable elements in the model - the “tokens” of a
token model. On the other hand, placeholder projection always
implies a (non-trivial) classification where class members on the
original side are contracted to single classes on the model side
to form the “types” of a type model.

token model

;‘% =N Miller Hill 2 \
; v Miller Hill 2:House

token model | Living:Room | | Enterance:Room |
_—

token model |
i

| Living_Enterance:Door | South:Door

Figure 2.3: Token model examples, “real house” (Miller Hill 2) to the left.

A token model is seen as a projection of the subject expressed in some
modeling language, while a type model involves classification in addition to
projection and translation. In effect the elements of a token model designates
the corresponding elements of the reduced system that appears after the
projection. Fig. 2.3 shows an example; the model to the right is token model
for both the “real house” and the model in the middle. It is not necessary
to indicate explicitly that the model to the right is a token model for the
real house, since token model relations are transitive, i.e., since the model
in the middle is a token model for the real house and the model to the right

'Encyclopedia Britannica defines placeholder as a symbol in a mathematical or logical
expression that may be replaced by the name of any element of a set.
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is a token model for the model in the middle, then the model to the right
must be a token model also for the real house. The model in the middle is
not a token model for the model to the right because in this relation there
are no reduction feature.

A type model describes the elements of a subject by assigning types to
the properties of interest. Since a typed property typically indicates a set of
possible values (except for “singleton types”), several elements of the subject
may be described by the same type.

The notion of token model and type model gives the understanding that
there are at least to relations between models — one may chose to see the
type role as a “up/down type of” relation, while the token role may be seen
as a “sidewise type of” relation.

2.5 Metalinguistics and Metamodeling

Metamodeling is about using models to define other models, this is closely
related to generative linguistics [Chob7] where languages are used to define
other languages. Generative linguistics has been around for a long time;
Ashtadhyayi dates back to the 4th century BC and is the earliest known
grammar of Sanskrit, and the earliest example of generative linguistics; the
letters of the Sanskrit are called small mothers.

John Backus and Peter Naur were the first to introduce a formal notation
to describe the syntax of a programming language; their notation got the
name Backus Naur Form (BNF). BNF is a generative approach to linguistics,
a specification is given by a set of production rules that can be used to
derive grammatically correct expressions. The production rules may be
recursive. Applying the production rules can be seen as building a directed
three structure, while doing metamodeling is like building a graph — in other
words you have more flexibility when doing metamodeling.

BNF is powerful enough to express BNF itself. We may view BNF as
defining a layered architecture (see Fig. 2.4(a)); the top level? would be BNF
defined in BNF (an instance of BNF); in this case; the next level would be
the definition of a language done in BNF (an instance of BNF); the next
level would be statements in the language defined by the level above; the
lowest level would be runtime instances existing under execution!

In a metamodel architecture one level can be seen as a description where
the concepts used to make the description are again described on the level
above. In relation to object-oriented programming the lowest level contains

20f historical reasons (“OMG history”) this is called the top and not the lowest level!
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the objects of a running system.® In relation to a running metamodeling tool
all elements of the defined architecture would have corresponding run-time
instances!

An often used metamodeling example is the legend found on a map, the
legend can be seen as a model for the map since it describes the elements
of the map (e.g., it describes how a road should be visualized) and again
the map is a model for the terrain. Another example: Personality type
playing the role of being a metamodel — some would call this an ontological
metamodel and the example above a linguistic metamodel — the instances
of personality type are specific personality types like the melancholic type,
which again have persons being melancholic as instances.

The notion of modeling and metamodeling have been discussed in many
papers; the work of Thomas Kiihne together with Colin Atkinson has al-
ready been referenced; and, there are others [Lud03,Sei03b, Fav04b, Fav04c].
[Fav04a, Fav05, Béz05, JB06]. The mentioned papers makes it clear that
there are not full agreement on all concepts, and a “stand” will not be taken
in this work; however, the term metamodel is used in an “old fashion way”
as can be seen in Fig. 1.1.

The UML metamodel architecture is an example of the four-layer meta-
model architecture of OMG, Fig. 2.4(b) shows this architecture.

2.6 The UML Metamodel Architecture

Fig. 2.5 depicts a simplified example of the UML metamodel architecture;
the “ordinary” modeler operates on what is called level M1, and this is where
class Person is placed. The UML metamodel is found on level M2; class
Class is part of the UML metamodel and defines what is meant by a class;
class Person is instantiated from class Class.

Ivan Kurtev et al. [KBJV06] describes the relation between metamodel
(M2), model (M1) and what is being modeled (called system in the citation):

The extraction of elements from system S to build model M is
guided by the metamodel MM and the purpose of the model.
In other words, the metamodel MM acts as a filter that states
which elements of the system can be selected to constitute the
model M.

3This seems to be a common understanding, but what about for example Java class
objects, where are they residing? Questions like that may raise some dispute, however,
this is outside the scope of this dissertation.
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<syntax> = {rule}
<rZIe> ;= identifier "::=" expression M3| MOF (meta-metamodel) |
A
<program>::= “Program” <identifier> | .
<declaration_sequence> | «instanceOf
“begin” I
<statements sequence> M2 | UML metamodel |
“end;” A
<declaration_sequence> ::= ... .
:
Program DoSomethingWeLike(...) ,
: «instanceOf»
begin
....... M1 | User model |
end; /:\
1
1 «instanceOf»
running program !
MO | User object |
(a) (b)

Figure 2.4: BNF example (a) and the UML metamodel architecture (b)
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Figure 2.5: Simplified example of the UML metamodel architecture
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In isolation each levels of Fig. 2.5 corresponds to proper UML, but UML
does not support level borders and it does not support indication of the
instance of relations that crosses the level borders between metamodel and
model — so Fig. 2.5 is a sort of “pseudo UML”.

Fig. 2.5 also shows a part of MOF which resides on top of the UML meta-
model architecture (level M3). The core of UML defines the object-oriented
concepts (e.g., class, association, etc.) and it is structurally equivalent to
MOF. MOF is used to define itself — it is reflezive (self referencing) — in
other words the concepts used at the level are the same concepts that are
being defined, e.g., class Association is an instance of Class; this “self
referencing” ends up with class Class which is an instance of itself as shown
in Fig. 2.5. The top level of a metamodel stack is also typically minimal
reflezive with regard to what it defines, this means that a minimum num-
ber of elements are used — if some elements are removed then some relevant
information would be lost (and it may not be self-described any more).

MOF is designed to make metamodels, while UML is a complete software
modeling language, e.g., a description of sequence diagrams is also part of the
UML metamodel. However, MOF is important when it comes to integration
of languages and is meant as a common source for a family of languages.

The four-layer metamodel architecture of OMG is inspired by the CASE
Data Interchange Format (CDIF) [Com94] which is a standard (actually
several standards) defining a metamodeling architecture for exchanging in-
formation between modeling tools. It describes the different modeling lan-
guages in terms of a fixed core model, in effect the core model function
as a meta-metamodel. A tool that understands the core model can read
the description of a specific modeling language, and understand any models
written in that language.

The syntax of UML has been described in a notation independent way;
this abstract syntax defines the elements of UML and how they relate to
each other. The abstract syntax is an important part of the UML meta-
model, it is typically described with UML class diagrams as can be seen in
Fig. 2.5 (M2). There is also an agreement on a visual concrete syntaz (nota-
tion) [OMGO7b,OMGO7c] and a textual concrete syntax [OMGO04] for UML.
The visual concrete syntax of a simple class is a rectangle with the class
name inside the top compartment, optional compartments for attributes
and operations, etc. Also an XML schema and DTD is defined so that XML
can be used as concrete syntax; the serial nature of XML makes this an ex-
ample of a serialization syntaxr. This mapping to XML is named the XML
Metadata Interchange (XMI) [OMGO07a].

The static semantics, also called well-formedness rules, of a language
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defines how an instance of a construct should be constrained and connected
to other instances to be meaningful. The abstract syntax is a model for an
infinite set of graph structures and the well-formedness rules limits this set.
Thus, abstract syntax and the static semantics defines the (logical) structure
of all possible models. The well-formedness rules of the UML metamodel is
given as OCL [OMGO3d] constraints related to the abstract syntax. OCL
is a language for specifying first order predicate logical statements on graph
structures. David Frankel consider the well-formedness rules as being a part
of the abstract syntax [Fra03]:

I, however, consider OCL that specifies constraints on a meta-
model’s elements to be part of the abstract syntax because it is
expressed formally and thus can be used by a generator.

A more powerful visual language (having more “logical power”) may reduce
or remove the need for using OCL.

Dynamic semantics defines the meaning of a well-formed construct in
relation to behavior; when it comes to the UML metamodel the dynamic
semantics is given in natural language (English), e.g., some of the semantics

for classes ( [OMGO7b]):

The purpose of a class is to specify a classification of objects
and to specify the features that characterize the structure and
behavior of those objects. Objects of a class must contain values
for each attribute that is a member of that class, in accordance
with the characteristics of the attribute, for example its type and
multiplicity.

...Operations of a class can be invoked on an object, given a par-
ticular set of substitutions for the parameters of the operation.
An operation invocation may cause changes to the values of the
attributes of that object....

The imperative statements of an object-oriented programming language may
be dividend into three categories: The ones concerning creation of new ob-
jects which is called instantiation semantics, the ones concerning deletion of
objects and the ones concerning changes of already existing objects without
creating new objects (e.g., change the value of an integer variable). How-
ever, no matter what kinds of semantics being involved, when “the structure
worked on” is at rest it must conform to the abstract syntax.

The semantics given for UML is “object-oriented semantics”, this se-
mantics is not given by MOF but it is attached to the UML metamodel.
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Class Property Association OCL

the class the property association (;Sr%c:; ta

concept concept concept (metamodel)

a specific a specific a spgmﬁc OCL Formulas
class property assoclation

an object of a a slot with a link between a formula

class value objects instantiated

Figure 2.6: Instantiation of central UML modeling elements

One may make a MOF metamodel for relational databases and add another
semantics that is adequate in this situation. Instantiation of central UML
concepts are shown in Fig. 2.6. The class concept (metaclass Class) is in-
stantiated to a specific class, which again can be instantiated to an object.
The property concept (metaclass Property) can be seen as part of the class
concept since a specific property will be attached to a specific class and also
a specific property get instantiated to a slot that is attached to an object
of the class. The association concept (metaclass Association) is also in-
terweaved with the class concept; classes of objects gets associated and a
specific association can be instantiated to a link between objects.

The UML metamodel approach is “centralized” around the abstract syn-
tax which defines the logical structure of models. Abstract syntax (or more
correctly instances of the abstract syntax, also called abstract graphs) can be
presented (represented) in many ways using different concrete syntaxes. In
a modeling framework abstract syntax is in some “concrete way” described
— the description is found in the state of the hardware of the machine. Con-
crete syntax can be understood as abstract syntax plus a mapping to a
medium. It is also often the case that a modeler can exploit the medium
and add extra information, e.g., one important class may be shown as bigger
than the others if a visual medium is used.

The visual concrete syntaxes of UML can be used to describe all ab-
stract syntax. But a typical UML modeling tool does not insists on having
all user defined model elements displayed on UML diagrams — typically the
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tool offers a tree view/browser of all elements of the model, this is then yet
another concrete syntax.

Tony Clark et al. claims [CESWO04] that all elements described above
— visual concrete syntax, dynamic semantics, well-formedness rules and ab-
stract syntax — are parts of a (linguistic) metamodel. Also James Rumbaugh
et seems to adhere to this view in their definition of a metamodel [RJBO05]:

A model that defines the language for expressing other models;
an instance of a metametamodel. The UML metamodel defines
the structure of UML models. Metamodels usually contain meta-
classes.

Others use the term metamodel in a more limited way and consider only
abstract syntax together with well-formedness rules as being the metamodel.

The most common way of doing metamodeling is called strict metamod-
eling which means that all elements on one level are instantiated from the
level directly above, and also each element of the lower level is an instance
of exactly one element of the level above.

Loose meta-modeling allows the instance of relations to be used more
freely when it comes to the levels, e.g., an instance on one level may have
been instantiated from an element that resides not on the level above but
from some level further up. Atkinson states [Atk97]:

Although loose meta-modeling is appealing ... the boundaries
between the levels rapidly break down and one ends up with a
single “super” model with all elements logically combined at the
same level... In a loose meta-modeling framework, therefore, the
model levels essentially end up being nothing more than packages
grouping logically related model elements.

The OMG approach for UML 2.x is based on strict metamodeling.
David Frankel asks “How meaningful are metalevels?”* and states [Fra03]:

From a certain point of view, the metalevels are arbitrary...However,
despite the fact that this is true in some theoretical sense, there
are practical issues that make the designation of absolute met-
alevels helpful in certain contexts.

4The term metalevel is used in a “liberal way”, the new level in question may not be
a metamodel, it may only be an ordinary class model, e.g., one describing the concept
Person.
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An example, in regard to the mentioned practical issues, may be to use the
same language when defining several DSLs and in this way allow some of
the same tools to be applied to the different DSLs.

In the MOF specification [OMGO3b] the number of metalevels is dis-
cussed:

One of the sources of confusion in the OMG suite of standards is
the perceived rigidness of a “Four layered metamodel architec-
ture” which is referred to in various OMG specifications. Note
that key modeling concepts are Classifier and Instance or Class
and Object, and the ability to navigate from an instance to
its metaobject (its classifier). This fundamental concept can
be used to handle any number of layers (sometimes referred to
as metalevels). The MOF 1.4 Reflection interfaces allow traver-
sal across any number of metalayers recursively....(The minimum
number of layers is two so we can represent and navigate from a
class to its instance and vice versa). Suffice it to say MOF 2.0
with its reflection model can be used with as few as 2 levels and
as many levels as users define.

2.7 Representing Metamodel Levels

MOFss originally purpose was to provide a standard way of accessing run-
time meta-information about objects within a system (CORBA-compliant
distributed systems [OMGO08]) via standardized interfaces (reflection inter-
faces) [AK02], and hence there are a number of tools that can automatically
produce metadata management software for MOF (meta-)models.

A metadata repository based on MOF is often just called a MOF reposi-
tory. Given a MOF metamodel, then an XML format for models conforming
to it can automatically be produced. It is the OMG standard XMI that
specifies how the generation should be performed; the process is applica-
ble for any metadata whose metamodel can be expressed in MOF. Since
MOF is an instance of itself this process applies also to MOF metamodels
themselves, and even MOF itself! This implies that a MOF repository can
export/import — in the form of XML documents — any UML models, the
UML metamodel and MOF itself.

A Java interface is defined in the same way as the XML interface; the
Java Metadata Interface (JMI) [Jav02] defines the creation, access, lookup
and exchange of metadata in the Java programming language for MOF
repositories.
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MOF is also supporting a generic reflective interface called the MOF
Reflective Interface that gives the possibilities to access a MOF repository
in a generic way, e.g., by using operation getMetaClass() :Class to access
an objects class (all objects will have this operation). An essential issue when
defining a modeling framework is how to represent the modeling elements.
However, MOF does not specify the internal representation of metadata, but
MOF and also UML defines an instance model that can be used for storing
model elements in a model repository.

Class InstanceSpecification is the core class of the instance model
and it is used when showing objects on diagrams (e.g., :Person in Fig. 2.5).
Fig. 2.7(a) shows a part of the instance model; Fig. 2.7(b) shows a class
and a snapshot of an object of the class, the object is shown in the concrete
syntax defined for objects. Since also classes are instances (instances of class
Class) they can also be visualized as objects as shown in Fig. 2.7(c); the
same figure is also showing how the object is instantiated from the abstract
syntax.

As understood from Fig. 2.7, an instance of the UML metamodel can be
shown as an object diagram or as a class diagram; the class diagram being a
visual interpretation (i.e., concrete syntax) of the underlying object-graph.
In a sense the class diagram notation is using “syntactic sugar”, e.g., an at-
tribute is shown inside a compartment and not as an instance of Property.
When “seeing the level from below” then a class diagram is a natural choice
for a human knowing the object-oriented paradigm; the concrete syntax of
class is indicating that it is a class and being a class implies instantiation
semantics, in other words a class diagram makes it clear what can be in-
stantiated. An object diagram on the other hand shows how a level has
been instantiated from the level above. If an object diagram is used when
displaying classes then the instantiation semantics is not explicit — we may
“find it” by checking the type names, that is if we know the semantics of
the types, e.g., if the type is Class we may understand that the object is
representing a class. Instantiation semantics is in practise some kind of func-
tionality that in some way has to be defined and attached to the structure
— neither a class diagram or an object diagram are showing the “details” of
this.

We may see from this discussion that the instantiation semantics of meta-
class Class is different from that of an ordinary class — the instantiation
semantics of Class gives two levels beneath while an ordinary class gives
one. However, structurally it is all about classifier and instance when looking
at two neighboring levels, but in the case of metaclass Class the objects on
the next level get the instantiation semantics of classes — in some way this is
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Figure 2.8: Representing levels with class (a) and object notation (b)

attached to these (class) objects (other metaclasses have other instantiation
semantics).

A part of MOF (abstract syntax) is shown in Fig. 2.8(a) on level M3, it
deals with the structure of classes and states that a class can own attributes
(properties). The figure shows how abstract syntax (MOF) has been instan-
tiated to form the (meta-)class Class of the UML metamodel, i.e., Class
on level M2 is an instance of class Class of level M3 and the attributes are
instances of class Property. Similarly, the class Person on level M1 is an
instance of Class on level M2.

Fig. 2.8(b) is using the object notation to show the same as Fig. 2.8(a);
all attributes are shown as separate Property objects being linked to the
class they belong to. Fig. 2.8(b) is not complete — to make it complete
we would have to insert a definition of the association between Class and
Property on level M3°.

Atkinson and Kiihne calls an entity with class and object nature a clab-
ject [AKO02, AKOOb], in fact all classes are clabjects. Fig. 2.9 shows the
same as Fig. 2.8 with clabjects. The clabject-notation allows you to see the
attributes and the slots of a class, these can be shown in separate compart-

®The definition would be like: Class:Class (already on M3) linked to :Property linked
to :Association linked to :Property linked to Property:Class (already on M3). Both
the links on M2 could now have an instance of relation to :Association on level M3.
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ments as done in the figure. This approach [AK02, AK0Ob, AK00a, AK05]
is implying a level-independent model representation which is also proposed

in Appendix C.

M3
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owned-

isAbstract:Boolean
A name : String

= | Attribute

Property:Class
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ame =“Class”

5 =

isAbstract =false
name="Property”
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Class:Class

name =“Class”
isAbstract =false

--1>> name : String @
<> isAbstract:Boolean e-

A

M1

Person:Class

-@ isAbstract =false
-e name =“Person”

Figure 2.9: Same as Fig. 2.8 in clabject notation.

From the presentation given above we understand that any level can
structurally be represented as objects; if there are no instantiation semantics
attached, then the objects are terminal objects; if instantiation semantics
that only gives one more level is attached, then (some of) the objects are
classifiers; if instantiation semantics that gives two more levels is attached,

then (some of) the objects are “metaclassifiers”.

2.8 Linguistic and Ontological Instantiation

Kiihne [Kiih06] identifies two types of instantiation: Linguistic and ontolog-
ical, the two types of instantiation can correspondingly raise two different
types of metamodel stacks. Hesse [Hes06] approaches the question of onto-
logical versus linguistic classification® by using quotation marks to signify if
one is talking about the word in itself or its referent. In the example ’Lassie’

5The distinction in question is in metalogic named the use-mention distinction.
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L0 L1

N linguistic
~“ypemodei | Class

type

has long hair
has bushy tail
can herd sheep

__ontological
type model

i instance

) linguistic )
Lasis }-380a- 5] obiet

meaningl
meaning of Lassie is X N . lang-
element in the extension a "\, _ extension uage
of the meaning of Collie ! ;
\

intension

“Lassie” is element in has name
the extension of the Eas S}Oll(s
meaning of Object (as as links

a model element)

Figure 2.10: Ontological versus linguistic instantiation (partly from [Kiih06])

is a name — the word Lassie is linguistically classified as a name; in the next
example Lassie is an animal — Lassie, the dog, is ontologically described as
an animal.

Linguistical models are about the language that is being used, e.g., in
Fig. 2.10 Class and Object, given to the right, define the language (a por-
tion of UML) used to define the token model (Lassie:) and the type model
(Collie). Kiihne presents [Kiih06] a figure that resembles Fig. 2.10 (a spe-
cial notation is used [Kiih06] by Kiihne, this notion is omitted in Fig. 2.10
and instead English is used). Ontological instantiation is demonstrated in
Fig. 2.10 where Lassie is seen as an ontological instance of Collie.

The meaning of Lassie: is a particular dog called Lassie; the meaning
of Collie, is the concept of Collie (which refers to various breeds of herding
dogs). Lassie: and Collie relates in the following way: The meaning of
Lassie: is an element in the extension of the meaning of Collie; alter-
natively this can be expressed as: The intention of the meaning of Collie
applies to the meaning of Lassie:.

Ontological instantiation relates to the meaning (content) of the involved
elements; in general it is not possible to decide automatically what the
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meaning of an element is, e.g., to know the meaning of the word Lassie one
has to know the dog Lassie and do an interpretation of the word.

Linguistic instantiation is about form and not the content, i.e., it is about
how to use the medium (the language) to represent what the modeler wants
to model. The language is however representing a world view and one may
say that a language possesses an “ontological bias”, e.g., in Fig. 2.10 the
language foresees that there are classes and objects. In Fig. 2.10 Lassie:
is seen as an linguistic instance of model element Object or alternatively
Lassie: is seen as an example of what is meant by model element Object
(entities with name, slots and links).

As we can see from Fig. 2.10, none of the linguistic types are referencing
the concepts of the domain and in general (one exception is if the domain is
the language used) a linguistic model is not a model of its subject model’s
subject, e.g., model element Object is a model for Lassie: but not for
Lassie the dog (Object is in this context a model element for “object mod-
els” and it does not completely correspond to the “general” concept of an
object). Relating this to media, Object is about how to form the medium
(linguistics), while Lassie: is about the dog Lassie (content/ontology).

2.9 Linear and Non-Linear Metamodel Hierarchies

With respect to linguistic instantiation two levels are shown in Fig. 2.10:
LO and L1 (indications shown at the top). Class and Object reside at
the same linguistic level (L1) and both are (linguistically) instantiated to
establish the next linguistic level (L0O). At linguistic level LO two ontological
levels are presented namely O0 and O1; we understand from this that at
one and the same linguistic level there may be many ontological levels; a
third level would be established if Breed was introduced as an ontological
metaclass playing the role as ontological type model for Collie; however,
linguistic level L1 does not support this, i.e., Breed should be a metaclass
and L1 only support classes and objects.

The linguistic instance of is considered to be an inter-level relation, while
the ontological instance of is seen as an intra-level relation. This is some-
what different from the view that UML 1.x advocates, where a typical pre-
sentation of the metamodel architecture (stack) includes: An object at MO
(e.g., object bl:Building representing a specific building), a class at M1
which the object is an ontological instance of (e.g., class Building), class
Class at M2 (from the UML metamodel) which the just mentioned class is
a linguistic instance of, and may be on top (M3), class Class from MOF.
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Such a stack mixes the linguistic and ontological instance of relations and
ignores the differences between the two types of instantiation. In UML 1.x
a metaclass called Instance (with subclass Object) was defined and meant
to be used as a descriptor of runtime instances, but this was problematic in
relation to the strict metamodeling constrain. The introduction of Inst-
anceSpecification in UML 2.x marks a change in the way one sees level
MO — an interpretation of this change is that MO is not considered to be part
of the model stack any more [BG01, Kiih06].

Smalltalk Smalltalk Smalltalk
Class Concept InstanceOf Concept Instance Concept
A /N )
1 T
linguistic ! linguistic linguistic |
1 1
1 1

instance of instance of instance of

Person

The real Smalltalk object, represented by
installed on a given computer at
a given address. This concrete
object is itself a representation
of Mary, the real person, unique
in time and space.

Mary:
ontological instance of L=

Figure 2.11: Smalltalk example [BGO1]

An example demonstrating the new view is given by Jean Bézivin and
Olivier Gerbé [BGO1], the example is quite similar to what is shown in
Fig. 2.11. The figure depicts a metamodel level describing the Smalltalk
language, only class, instance and instance of are included in the figure.
The next level is the model level showing a model of Smalltalk class Person
together with a model of a Smalltalk object called Mary. The bottom level
(MO) contains “real” Smalltalk objects installed on a given computer at a
given address. The StkInstOf (Smalltalk instance Of) relation is analogous
to the relation between an instance of InstanceSpecification and “its
classifier” in UML 2.x, and it correspond to the ontological instance of
relation. The ontological instance of has been given many different names,
e.g., it has been called logical instance of [AKO05]. The linguistic instance
of is usually just called instance of when used in relation to UML, but also
conformant to [Béz04] (or comforms to) has been used to name this relation.
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The two types of metamodel hierarchies being discussed are called linear
hierarchy and non-linear hierarchy. Ralf Gitzel et al. states [GOS07]:

In a naive approach, the elements in the highest layers of a model
hierarchy would connect to their instances via physical relation-
ships, defining a modeling language, whereas the lower layers de-
fine the logical relationships within the domain. This approach
is in effect a linear hierarchy [AK02]...

As we have seen, in a non-linear metamodel hierarchy there will be two
linguistic levels; one level (L2) defining a language (L) and a second level (L1)
is built by instantiating this language. The language may contain an explicit
definition of an instance of relation which may be used to build a complete
metamodel hierarchy inside L1. Levels nested inside L1 are considered to be
ontological. The following statement is also given by Gitzel et al. [GOS07]:

One important difference to the linear approach is that the physi-
cal instance of between L1 and L2 and the logical InstanceOf re-
lationship between O2 and O1 (authors comment: O1 and O2 are
nested inside L1) now differ significantly in nature. The physical
instance of relation is still implicit... Its instantiation semantics
is that of the metamodeling language used (most likely MOF).
The logical InstanceOf relationship, however, is established by
an explicit Association... The instantiation semantics associ-
ated with InstanceOf can be defined suitably by constraints in
L2.

The notion of being a linear hierarchy implies strict metamodeling; also a
none-linear hierarchy may be based on strict metamodeling in regard to the
ontological levels, but if seeing the linguistic level (L2) together with several
ontological levels then strict metamodeling is not honored as it is in a linear
hierarchy. Another difference between the two approaches, as stated above,
is the explicit instantiation semantics for the non-linear approach as opposed
to the implicit instantiation semantics for the linear approaches, e.g., in
Fig. 2.12(a) the instance of relation between Building and :Building has
not been explicitly modeled in the modeling language.

Instantiation semantics (the code for creating instances), if assuming a
joined model and runtime environment, may be attached in different ways;
Fig. 2.13 shows how instantiation semantics may be attached in a none-
linear hierarchy, and Fig. 2.12(a) and Fig. 2.12(b) shows how instantiation
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Figure 2.12: Attaching instantiation semantics in a linear hierarchy
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semantics may be attached in a linear hierarchy. The instantiation seman-
tics attached to Building in Fig. 2.12(b) may have been attached by the
modeling framework when class Building was created; alternatively the
createClass() (i.e., the code for creating a class) may have attached it
when it was called, i.e., createClass() may have createObject() avail-
able as depicted in Fig. 2.12(a)).

Fig. 2.14, which is a slightly modified version of a figure found in the dis-
sertation of Kurtev [Kur05], gives a general model for linguistic/ontological
instantiation. The metamodel is seen as consisting of two models; the first
model describes intentions (Intention Model in Fig. 2.14), e.g., the general
structure of classes; the second model (Extension Model in Fig. 2.14) de-
scribes elements of extensions of intents that conforms to the first model,
e.g., the structure of an instance of a class. The model level consists of
two parts constituting two ontological levels: The intentional part describes
intent (e.g., a class Person) and the other part describes elements of the
extension of the intent (e.g., instances of class Person). Fig. 2.14 shows
how the different parts fit together, e.g., how the intentional part plays the
ontological type role for the extensional part and how the metamodel as a
whole is an intention with the whole model as an element of the extension.

The dissertation [Kur05] of Kurtev is also containing a figure quite sim-
ilar to Fig. 2.15 and Kurtev states the following about the figure:

It should be stated that the outlined meta-modeling architecture
in Fig. 2.15 (authors comment: Fig. 2.15 is an adapted version of
the original figure) is somehow idealized. First, there is no com-
monly agreed approach for defining modeling languages. Second,
not all the models shown in the figures are explicitly presented
in the modeling stack. In many cases only models of intentional
parts (e.g. abstract syntax definition) are defined. Third, some
models may be reused across levels.

An interesting observation in Fig. 2.15 is relation linguistic instantiation of*
which identifies a structure that defines the basic structure of all elements
of all levels. This model, the Extension Model of the meta-metamodel, is
hardwired and allows tools to manage models in a uniform way, e.g., a MOF
tool would store model elements as linked objects with slots according to
the instance model of MOF. The model being discussed is often called the
representational model (or embedding language) and in effect it function as
a link to some underlying medium (language) which allows the models to
be represented physically.
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Atkinson and Kiihne presents [AKO05] Fig. 2.16(a), this figure corre-
sponds to Fig. 2.15 and shows how the full UML metamodel stack is em-
bedded in MOF, i.e., MOF is the common representation format of all other

levels (all elements are represented as instances of the instance model of
MOF).

The ontological instantiation relationship from M1i to M1t is defined
within M2. Atkinson et al. state [AKO5] that M2 spans both levels M1t and
M1i, all elements from both levels must be well-formed with respect to the
rules expressed in M2. Fig. 2.16(b) is also given by Atkinson et al. [AK05]
and is meant to give a more complete interpretation of the OMG’s four-layer
architecture. As in Fig. 2.16(a), MOF is a repository format for all the levels
and in this way all the levels are embedded by MOF. In Fig. 2.16(b) MOF
is also stacked on top of the UML metamodel, this captures MOF’s role as
a logical language definition for the UML metamodel and it shows explicitly
MOF’s ability to represent itself.

In the next chapter we will see that some programming and modeling
languages support not only two ontological levels but many.

7]
@
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=
I}
-
7]
=
—

Instances

() (b)

Figure 2.16: Embedding and spanning the UML metamodel stack
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2.10 Multi-model Architecture

Gitzel and Hildenbrand defined in [GHO5] a metamodel hierarchy to be:

A metamodel hierarchy is a tree of models connected by instance
of relations. The term model layer or model level describes all
(meta)models with the same distance to the root metamodel in
a metamodel hierarchy. Each level is given a unique name, often
containing a number.

The term metamodel stack has been used in this dissertation, e.g., a
legacy database metamodel stack which is composed of three models stacked
on top of each other (data set, schema and metamodel). If assuming strict
metamodeling, then a metamodel stack is defined by:

A metamodel stack is a set of models that are connected in a
linear way by instance of relations, there is exactly one model at
each level and there are at least two models involved.

The term multi-model architecture, used in the title of this dissertation,
is meant to denote two or more metamodel stacks that have at least one
model containing “references” to elements of a model which is placed in one
of the other metamodel stacks. The references in question are not given by
the instance of relation. One may argue that if one model contains references
into another model then the models are merged and have become one united
model. There is a lot to this argument, but in this work the kind of references
are not “into the structure” of the other model, instead identifiers (Ids) are
used to achieve the referencing; one may say that the model containing
the references does not “assume” anything about the structure of the other
model, it only “assumes” that there are elements with so and so names;
keeping the models apart works well when it comes to structure, but some
behavior may involve knowledge about the structure of models residing in
different metamodel stacks (generation of consistency data is an example of
this). Chapter 4 will describe how several metamodel stacks are integrated.
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Chapter 3

Related Work

Looking back on the list of requirements specified in Section 1.1, Req. 1
states the need for a language for consistency modeling — related work con-
cerning this requirement seems limited, there are not many modeling lan-
guages specifically designed to do consistency modeling, but some potential
approaches are presented in Section 3.2 and some background material is
also included in the papers found in the appendixes (e.g., Section A.3.4,
Section B.1 and Section G.3).

Section 3.1 addresses Req. 3, which concerns the need for representing a
multi-model architecture. Section 3.1 is also addressing the second part of
Req. 2, which states the need for a way to establish the different models in
the multi-model architecture.

Req. 4 is more indirectly related to existing solutions, e.g., when a
UML virtual machine [RFBLOO01] is presented in Section 3.1.3. Req. 5 is
considered to be out of scope of this dissertation.

3.1 Instantiation in Some Metamodel Architectures

Several metamodeling frameworks have been described in the papers of this
thesis — especially the paper found in Appendix F which presents and com-
pares several approaches. This section is also presenting selected metamod-
eling approaches, however, these presentations are more focused and detailed
on instantiation and on how to organize and represent levels in a metamodel
stack. The first part of this section presents how metadata is organized in
some programming languages and the following subsections does the same
for some modeling approaches. The final subsection discuss how these ap-
proaches relates to the solution (IBe) presented in this work.
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3.1.1 Metalevels in Programming Languages

The runtime system of Java [LY99] and of similar languages, maintains type
identification on all its objects. Three levels are recognized in the Java
runtime system (there may be other ways of seing the organization and
it is not explicitly stated in the documentation of Java), where the most
prominent metaclass of the top level is called Class. The object representing
this class is called a class object and it is seen as an instance of itself (this
is established through some bootstrap process). Metaclasses like Field and
Method are also found on the top level. All user defined classes and interfaces
will be instances of class Class and appear as class objects (usually just
called classes) constituting the next level. The top level is frozen, only the
two lowest levels can be managed by the user. It is not class Class that
(solely) creates the class objects — it does not have a public constructor —
class objects are created by the Java Virtual Machine when they are loaded.
The lowest level is composed of objects instantiated from user classes, e.g.,
by a call to the newInstance () method of the class object representing the
right class. All objects on the two upper levels are instances of Class and
all elements on all levels will be instances of class Object (the root of all
classes in Java) and consequently the Object.getClass() method can be
invoked to get metadata on all objects. Fig. 3.1 (a) shows a Java example in
the form of a UML class diagram; metaclass Class is a Java generic class.

The Java virtual machine knows only ordinary classes and there are
no objects of generic types; Fig. 3.1 (b) shows runtime objects involved in
representing the metadata described in Fig. 3.1 (a) and how they are linked;
a specific Building object is represented at the bottom, a getClass-call
on this object returns class object Building:Class, a getClass-call on
Building:Class returns Class:Class which is an instance of itself.

Fig. 3.1 (c) applies the notion of linguistic and ontological instantiation;
the top level defines what is meant by a Java class as it contains class
Class; this metaclass is seen as an linguistic instance of itself. The top
linguistic level spans the next level which contains two ontological levels:
User defined classes and instances of these. Class Object can be understood
as an extension model — the Java concept of being an object — instantiated
to create all elements on all levels. The fact that class Object is used on
both levels (it is the same class shown twice in the figure) may be confusing,
but this is how the same extension model applies to all levels.

The Java virtual machine uses the type information when selecting which
method to execute on an object. This is so because the instance methods
are connected to the class objects and in this way shared among the objects
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Figure 3.1: Metadata structure for Java objects

of the same class. The metadata of an object can be accessed at runtime
through a reflective API (e.g., getClass() mentioned above) supplied by
the Java language; the API can be used to reflect the structure of classes,
dynamically create new objects of a reflected class, access and change the
states of objects. It is not possible to dynamically change the structure of old
classes, and making new classes dynamically is typically cumbersome (this is
more easy in other “more interpretative” languages, e.g., Scheme [ASS96]).

An interesting observation concerns the static declared field number0f-
Buildings, as all class variables in Java, it is described and instantiated at
the same level. If we look at the UML 2.1 metamodel [OMGO7c| we see a sim-
ilar approach: Class Feature is associated to classifiers, superclass to both
Property and Operation, it contains a Boolean attribute called isStatic
(this variable is not found in the infrastructure specification [OMGO7b] only
in the superstructure specification [OMGO7c]) which specifies whether the

49



CHAPTER 3. RELATED WORK

feature characterizes individual instances classified by the classifier (false)
or the classifier itself (true).

While the first programming language with classes was SIMULA 67
[DMNT0], the first language having classes as objects was Smalltalk-76 [Ing78],
here a class was considered an object of a metaclass. The idea of having:
metaclasses, classes and objects has been named the Golden Braid after
being discussed in [Hof80]; it has been used in some Lisp systems like Obj-
VLisp [BC87] and CLOS [Kic91]. Fig. 3.2 shows an example of a metamodel

L
Class I _ListMetaClass

’ Building }—D{ Object }<]—{ House

N
.

Figure 3.2: Metadata structure for Loops (dotted line is instance of)

architecture in Loops [BC87]. MetaClass holds the New method which is
used to instantiate all metaclasses (logically this includes itself). Class is
the default metaclass for all classes, its New method is used to instantiate
classes. Class Object is superclass of all types of classes (i.e., all elements in
the architecture are objects) and class Class is superclass to all metaclasses.
The metaclass ListMetaClass is user made, e.g., it may contain the descrip-
tion of a property numberOfInstances which will be instantiated to a slot
in class House and used to count number of House-instances. A user defined
metaclass must be a subclass of Class, inheriting the New method allowing
it to be instantiated to new classes but not to metaclasses — consequently
the number of levels is fixed.

Fig. 3.3 shows an example of metadata in Smalltalk-80 [GR83, Ree02],
here all classes exists as objects and — unlike Java — each class has a metaclass
containing the definitions of its class variables, e.g., numberOfBuildings is
defined in Building class and is instantiated to a slot in Building (the
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slot is not shown). We notice that metaclass Building class can not exist
without its, one and only, object Building.

The approaches described above allows only a fixed number of levels;
another solution is proposed in [BC87, Coi87] which allows an unlimited
number of levels. The model presented in [BC87, Coi87] is implemented in
ObjVLisp, here classes and metaclasses are unified giving the user uniform
access and control to all the levels of the language. A metamodel architecture
in ObjVLisp is built by combining instantiation and inheritance, Object
defines all elements as objects and Class makes it possible to erect a multi-
level architecture. Both Object and Class are available for subclassing on
several levels.

Fig. 3.4 shows a possible metadata architecture in ObjVLisp; in such
an architecture all elements are objects, instantiated from some subclass of
Object (Object is the universal supertype); the number of levels is up to
the programmer. Metaclass Class has the new()-method and is the root of
the instantiation hierarchy. The new()-method is different from “ordinary”
methods since it involves three levels; an ordinary method is defined at
one level and executed at the next lower level where also the effect of the
execution appears; the new ()-method is defined at one level, executed on the
next lower level and the result — which is a new instance — appears at the level
below the level where new() is executed (it is the same in Java where the
newInstance ()-method is defined in metaclass Class). Fig. 3.4 shows class
Building which is an instance of Class; since Class is an instance of itself
the instance of relation going from Class (at the very top of Fig. 3.4) can be
imagined as going up one level to a copy of Class and it is the definition of
new() found in this “copy” of Class that is used when Building is made.
Object bl:Building is created by using the definition of new() found in
class Class; Building do not have a definition of new() so bl:Building is
a terminal instance (it can not be instantiated). Breed is created in the same
way as Building, but Breed is a subclass of Class inheriting the definition
of new() which makes it a metaclass and as a metaclass two or more levels
may be spanned beneath it (two levels are shown in the figure). Class
Object can be seen as the extension model defining what is meant by being
an object; the instance of relation to class Class is linguistic instantiation,
while the others are ontological instantiations.
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3.1.2 The Type Object Pattern

The previous section described metamodeling architectures as they come
forth through the intrinsic instantiation mechanism of some selected pro-
gramming languages. This section describes how metadata can be repre-
sented on top of the intrinsic instantiation mechanism of the programming
language in use by having the application implement its own type system.

The Type Object Pattern is described in [JW97,MO95]. The purpose of
the pattern is to: Decouple instances from their classes so that those classes
can be implemented as instances of a class. Type Object allows new “classes”
to be created dynamically at runtime.

The Type Object Pattern is also called the Item Description Pattern [Coa92]

1.% Ject”ype type * Jee 1.%

name : String

properties | properties

*

PropertyType Property

name : String

Attribute

value

AssociationType Association .
*® * E

type

Figure 3.5: Extended version of the Type Object Pattern [HH]

where an item description plays the role as type for some items.

Fig. 3.5 shows an extended version of the Type Object Pattern [HH,
YJO7]; the pattern is extended to handle properties and associations.
From Fig. 3.5 we understand that a type is represented as an instance of
ObjectType and the attributes of the type are described by instances of
AttributeType. An object is represented as an instance of class Object
and the ontological instance of is represented as a link to the instance of
ObjectType that represents its type. The Type Object Pattern is also used
in UML when the UML instance model is defined [OMGO03g].
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3.1.3 A UML Virtual Machine

Dirk Riehle et al. presented in paper [RFBLOO01] the architecture of a UML
virtual machine. The virtual machine interprets UML models while pre-
serving the causal connection between model and model instances. Causal
connection is defined as:

A modeling level is causally connected with the next higher mod-
eling level, if the lower level conforms to the higher level and if
changes in the higher level lead to according changes in the lower
level.

The approach [RFBLOO01] integrates modeling and runtime environment,
allowing users to incrementally define and explore models through model
execution. Modeling of object behavior is done with UML state charts. The
solution can be seen as an implementation of an extended version of the
UML 1.X four-level metamodel architecture.

The architecture of the virtual machine is made up of two parts a logical
and a physical architecture. The logical architecture describes how objects
logically relate, e.g., the Type Object Pattern is used to connect two adjacent
levels. The physical architecture is used to realize the logical architecture.
Dirk Riehle et al. state in [RFBLOO1]:

The logical architecture defines how to achieve the causal con-
nection property, and the physical architecture implements how
to achieve this property. There can be different physical imple-
mentation architectures, driven by different needs.

Logical Objects and Classes

«logical-instance-of»

! Vi «logical-instance-of» «logical-instance-of» «logical-instance-of»

'

'--| metaClass:MetaClass [<------- ‘I class:MetaClass |< """"" ‘I building:Clas: |< """" ‘I bl:Element
! H s s
! «physical- e T, 3 el 3

| instance-of»

r v
H «physical-instance-of>» «physical-instance-of>»

' '
! 1
' '
' '

MetaClass [<------- - Class |[€------- 2 Element |[<------- )

Physical Classes

Figure 3.6: Logical and physical instance of relations as found in [RFBLOO01]
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Fig. 3.6 [RFBLOO01] depicts the different types of instance of relations in-
volved: The relation logical-instance-of between building:Class and
bl:Element is in this case corresponding to ontological instance of; log-
ical-instance-of corresponds to linguistic instance of the other places
where it is used in Fig. 3.6. The physical-instance-of is given by the
representational (implementation) language.

The implementation language for the virtual machine is Java and the
classes Element, Class and MetaClass of Fig. 3.6 are Java class objects;
these classes are called physical classes; the physical-instance-of is the
Java intrinsic referencing of metadata, it is this relation that is used by the
method getClass () defined by Java class Object. As can be seen in Fig. 3.6
all objects of the logical architecture (see top section of figure) have both
a physical and a logical class, e.g., bl which is a physical-instance-of
Element is also a logical-instance-of building.

M3+ Category M2+ Category M1+ Category

| ModelElement l——(>| Element
A\

instance *

MetaClass l——(>| Class

I type

Figure 3.7: Key Java classes from physical architecture 3.6

Being a UML virtual machine, all the classes of the UML 1.X metamodel
are found as part of the logical architecture and most of the classes are also
found as Java classes being parts of the physical architecture. When a physi-
cal class exists, then its instances are used as instances of the corresponding
logical class, e.g., logical class building is physical-instance-of class
Class and a logical-instance-of class.

Fig. 3.7 shows some of the important classes of the physical architecture,
other important classes would for instance be Attribute and Association.
Class Element is the root of the hierarchy shown in Fig. 3.7 and it specifies
the capabilities needed to be an object with slots and links. Class Class
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adds capabilities needed to be a class, e.g., method addFeature() to add
an attribute. Class MetaClass adds capabilities that are convenient for a
metaclass to possess.

The UML Virtual Machine approach is using an extended version of
the Type Object Pattern and all the four levels of the UML metamodel
architecture are supported.

3.1.4 The Eclipse Modeling Framework (EMF)

The Eclipse platform [Dri01] is offering some basic components that al-
low additional software plug-ins to be configured into software solutions.
Eclipse has with success been used to develop Integrated Development En-
vironments (IDEs); the Java Development Toolkit is a prominent example of
this. Eclipse is open source and its plug-in architecture has allowed several
interesting plug-ins to be integrated.

«interface»
EObject

eClassifiers EClassifier

name : string

*

eClass() : EClass
eGet(feature : EStructuralFeature) : Object
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Figure 3.8: Part of the ECore metamodel (a) and generated implementation
class (b)

An important part of this rich software ecosystem [Fra05b] is the Eclipse
Modeling Framework (EMF) [BSM ™04, Ecl04, BHJT05] which is a metadata
management framework that makes it possible to integrate disparate tools
within the ecosystem. EMF is one of the most important platforms when
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it comes to MDD and there is a large community of people involved. EMF
is based on a metamodel called ECore which is compatible with Essential
MOF (EMOF) [OMGO03h]; an XMI file with a MOF model can be read and
represented.

EMEF lets you define a model as an instance of ECore; this can be done in
different ways, e.g., XML Schema, annotated Java, UML model. When you
have an ECore instance, then EMF can support you in different ways; below
is a non-exhaustive list describing what can be produced automatically:

e Java interfaces for the classes defined by your model, Java implemen-
tation classes and a factory.
The code produced supports change notification which allows integra-
tion with other EMF-based tools. The code also supports a reflective
API for accessing metadata.

e XMI serialization and support for object persistence.

e Adapter classes that can be used for viewing and command-based edit-
ing of data of the ECore instance; based on the adapter classes, a
working editor that allows you to create and manipulate data of an
ECore instance.

There are many components that in some way works together with EMF,
e.g., the Eclipse Graphical Modeling Framework (GMF) [GMF] allows you
to define visual syntax for your EMF model and then automatically generate
a visual environment with toolbar options and the possibility to draw models
composed of graphical shapes. There is also an EMF-based implementation
of the UML 2.1 [Ecl07] metamodel for the Eclipse platform meant to support
the development of modeling tools.

Fig. 3.8(a) shows a part of the ECore metamodel; EClass is used to
model a class, EAttribute is used to model class attributes and EReference
instances are used to model associations. All generated classes will imple-
ment the EObject interface (Fig. 3.8(b)), which provides the reflective API.

An example will demonstrate how EMF can be used to represent mod-
els. Assume an ECore instance (a model) containing class Building; the
automatic code generation produces a Java implementation class called
BuildingImpl which implements the generated interface Building and the
interface EObject (Fig. 3.8(b)).

Fig. 3.9 describes the situation where a Building object with name
bl has been created. The object, Class:Class, at the upper right cor-
ner is the Java metaclass Class which is an instance of itself. Object
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eClass class class class
| EClass:EClass, EClassImpl | | EClassImpl:Class | | Class:Class |
eClass class class
| Building:EClass. EClassImpl | | BuildingImpl:Class |
eClass class

| b1:Building, BuildingImpl |

Figure 3.9: UML object diagram describing the building example

BuildingImpl:Class is the automatically generated Java implementation
class which in Fig. 3.9 is represented as a Java class object. Building-
Impl:Class can be instantiated to get an object that will represent a spe-
cific building, e.g., bl1:Building,BuildingImpl. Object bl contains a link
to object Building:EClass,EClassImpl which represent the EMF meta-
information about class Building; this is why Building is included as clas-
sifier for b1 (additionally object bl have the automatically produced inter-
face Building as classifier since class BuildingImpl implements this inter-
face). Fig. 3.9 is a simplification, e.g., the eClass-link from b1:Building,-
BuildingImpl is actually represented once for all Building objects by the
package that contains the model, logically this could be approximated as a
link from BuildingImpl:Class to Building:EClass,EClassImpl.

EMF is embedded in Java since Java is the platform that EMF is built
on. One may be confused investigating EMF since two languages are used
simultaneously, e.g., there are two objects both representing a building class.
The “basic representation format” (extension model) is Java — on top of this,
ECore defines EObject which can be seen as yet another extension model.
The Java metadata is on Fig. 3.9 found by following the class-Links; by
repeatedly following the class-Links the Java metaclass Class will be found
on top of the stack. The EMF metadata is found by following the eClass-
Links and here EClass is found on top of the stack.

Object bl:Building,BuildingImpl is an ontological instance of class
Building:EClass,EClassImpl and of class BuildingImpl:Class.
b1l:Building,BuildingImpl is a linguistic instance of EObject and of the
“Java instance concept”.
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Class Building:EClass,EClassImpl is not an ontological instance of any
class. However, linguistically it can be seen as an instance of EClass,
EClassImpl and of the “Java instance concept”.

Class EClassImpl:Class is not an ontological instance of any class; linguis-
tically it can be seen as an instance of Class (the “Java class concept”).
Class EClass:EClass,EClassImpl is a linguistic instance of the “Java in-
stance concept”.

The example we have seen in this section involves two (ontological) user
defined levels: a model level consisting of class Building and a model in-
stance level consisting of a specific Building. We could define a model level
which represents a metamodel (e.g., the UML metamodel), the model in-
stance level would then be a model conforming to the metamodel (e.g., a
UML model); still only two user defined levels are supported. We under-
stand from this discussion that EMF is an example of what [AKO05] calls a
two-level approach. First an instance of ECore is defined (ECore and the
ECore instance constitutes the first level pair); then Java code is generated
(Java source code corresponding to the ECore instance) and this code can
then be instantiated (Java generated classes and their instances constitute
the next level pair). The model may in some way be “uplifted” so that it
becomes an ECore instance and hence, a model instance may be instantiated
and in this way a new level is manifested (this would in effect give three user
levels).

3.1.5 Java Metadata Interface (JMI)

JMI is a specification [Jav02] resulting from a Java Community Process; it
defines how to manage MOF 1.4 metadata in the Java programming lan-
guage; management includes creation, access, storage, lookup and exchange
of metadata.

There are several metamodeling repositories based on JMI, including a
reference implementation from Unisys [JMI] and Sun’s open-source imple-
mentation called Metadata Repository (MDR) [Mat].

JMI builds on the same principles as EMF — it represent an alternative
Java language based approach to metadata management based on MOF 1.4.
The reflective programming capability of JMI is an implementation of the
MOF 1.4, while EMF has its own.

A tool like MDR can import a model represented in XMI and automati-
cally produce JMI interfaces for accessing the metadata and also automati-
cally provide implementations of the JMI interfaces (the generated interfaces
are implemented automatically as needed during the MDR runtime).
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There is support for transforming a UML model to a MOF model, which
again can be used as basis for code generation.

JMI does also have a generic reflection mechanism that enables brows-
ing and discovery of metadata without specific knowledge of the generated
interfaces and implementations.

3.1.6 Metamodel for Multiple Metalevels, MoMM

Deep instantiation is described by Atkinson and Kiithne [AKO1] as an alter-
native to the old two-levels only modeling philosophy which is classified as
shallow instantiation. Colin Atkinson et al. state [AK01]:

...the traditional instantiation model is “shallow” precisely be-
cause the class facet of a model element always has to be ex-
plicitly documented for each model element that represents a
type. In other words, a class can never receive attributes and
associations from its classifier, only slots and links.

The approach [AKO01] does not avoid explicit descriptions of class facets,
on the contrary: The approach formalizes a way of attaching instantiation
information at one level, such that this information can potentially dictate
instantiation of lower levels.

Atkinson and Kiihne introduce [AKO01] the concept of model element
potency; the potency is an integer which is attached to each model element
at every level in a modeling framework and it defines the depth to which a
model element can be instantiated. Potency 0 corresponds to a concept that
is not intended for further instantiation, e.g., an object, a slot or an abstract
class. Potency 1 corresponds to instantiation one time, e.g., class Person
would have potency 1. Potency 2 corresponds to instantiation twice, e.g.,
a metaclass or a metaassociation. Potency 3 corresponds to instantiation
three times and so on. Colin Atkinson and Kiihne state [AKO1]:

Finally, the semantics of shallow instantiation could be captured
by the constraint that the potency of elements cannot be greater
than one.

UML defines three levels and two instantiation semantics; one instanti-
ation semantics gives user models from the UML metamodel; and one gives
model instances from a user model. This understanding is given by the
UML specification [OMG10]: An instance of metaclass Class is a class, and
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a class is a type that has objects as its instances... The instances of a class
are objects. In this interpretation of the UML specification the potency of
class Class is two.

Element 2

DualField 1. <someValue>

2
SimpleField

Figure 3.10: From [AKO1], notation for potency, simple and dual field

Atkinson and Kiihne also introduce [AKO1] the notion of simple field
and of dual field. A simple field with potency 0 has a value and corresponds
to what traditionally is called a slot; a simple field with potency 1 is an
attribute (description of a slot) and consequently it does not have a value.
Instantiating a simple field with higher potency than 0 makes it a simple
field with potency one less.

2
Component
P Node 2
1
M2 author residesOn 2 o2 .
description = NodeKind
status
A A
| «instanceOf» «instanceOf» |
1 i
1 ‘ :
C 7: Component 1
N " : Node
M1 author 0 Bill residesOn | 1
1 description = NodeType
status x
A !
! «instanceOf» «instanceOf» 1
| i
h L
al:c NN
MO 0 residesOn 0 0
status ~ = active description” = aNode

Figure 3.11: From [AKO1], components and nodes with deep instantiation
Dual fields are special and not found in ordinary modeling since they
have a value even when the potency is higher than one, Atkinson and Kiihne

state [AKO1]:

61



CHAPTER 3. RELATED WORK

Basically, a dual field of potency n corresponds to a set of n
simple fields, all identical except that they all have different po-
tencies (n, n-1,..., 0), and the field of potency 0 has a value.

Fig. 3.10 shows the notation introduced (Fig. 3.10 is a bit simplified, level
indication is not shown); potency of a model element is given as a super-
script; a simple field of potency 0 has a value and is then underlined’; a dual
field is always underlined since it always has a value.

* target
ModelEl t

class

level
name
potency

source

*
*

’ Attribute ‘ ’ Relationship
attributes i &

’ Generalization ‘ Association
maxSource
maxTarget
minSource
minTarget

Figure 3.12: From [AKO01], the MoMM

Fig. 3.11, which is found in [AKO1], gives a demonstration of the con-
cepts. Component and Node are defined at M2, all properties associated with
Component and Node instances are defined at this level. The author field of
Component has potency 1 and is instantiated on level M1 where it keeps the
name of the person that has defined component type C, in the example this
is Bill. Field description, belonging to Node, is a dual field with potency
2, it is instantiated on the next two levels and it keeps a value on all three
levels. It describes Node on level M2, N on level M1 and NI on level MO.

The residesOn at M2 is a “meta-association” since it has potency 2, it is
an association at M1 stating that components of type C can reside on nodes
of type N; at MO residesOn is a link that states that component CI is placed
at node NI.

'This notation is in conflict with static attributes of classes which also are underlined
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[AKO1] presents a preliminary meta-metamodel which is shown in Fig. 3.12,
since this is meant as a meta-metamodel then maximum potency of 2 is the
only one being meaningful.

The approach presented in this section has been further elaborated by
Thomas Kiihne and Daniel Schreiber: A prototype implementation called
DeepJava has been presented [KS07]; DeepJava is extending Java and it
allows true multi-level modeling.

Since object-oriented approaches typically only support two levels (class
and object) they will inevitably introduce accidental complexity, and some
sort of workaround, when several levels are needed to do domain classifica-
tion. Several workarounds have been identified [KAOS]:

Consequently, if one needs to create a model of a domain in-
volving more than two levels using a two-level language like the
UML, one is forced to use artificial workaround mechanisms or
modeling patterns that allow the properties of multi-level sce-
narios to be mimicked using only two levels. Typical exam-
ples addressing this need include static variables, tagged val-
ues, stereotypes, powertypes, reflection, and a number of varia-
tions of the “Item Description” pattern. The problem with such
workarounds is that they complicate and obscure the meaning of
a domain model.

One of the mentioned workaround mechanism, powertypes, is defined by
Odell [Ode94]: A powertype is an object type whose instances are subtypes
of another object type.
Also UML has the notion of powertype, this is demonstrated in Fig. 3.13(a)
where PersonalityType is the powertype. Often a class can be specialized
into different sets of subclasses; such a set (called a generalization set in
UML 2.X and discriminator in UML1.x) is given by a powertype. Looking
more into the example of Fig. 3.13(a) we realize that PersonalityType
may have several subtypes; one subtype could be called The four humors
which is the one presented in Fig. 3.13(a) under the more general term
PersonalityType — another subtype would be Keirsey Temperament Sorter.
Both the personality types mentioned gives a different set of subclasses of
Personality.

Fig. 3.13(b) shows the same as Fig. 3.13(a) but in a layered fashion; in
UML1.x one may have a dependency relation stereotyped powertype from
Personality to PersonalityType. We understand from Fig. 3.13(b) that
this is a kind of metamodeling, but since class Personality plays a role
in this setup it seems not possible to use powertypes in a strait forward
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Figure 3.13: Examples of powertypes and use of potencys;

from [KAO08]
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way in all metamodeling situations; however, powertypes have been used to
do advanced metamodeling [GPHS06]. Fig. 3.13(c) uses powertypes while
Fig. 3.13(d) uses potency, and we notice that use of potency makes it possible
to omit class Computer (or class Personality in our first example).

3.1.7 Comparing and Relating to Solution (IBe)

Subsection 3.1.1 shows that programming languages organizes their meta-
model stacks differently and allow different numbers of levels; the most flex-
ible ones allow an arbitrary number of levels. We have also seen that in-
stantiation semantics are attached and “executed at different levels”, so the
programming languages are in this respect exhibiting a lack of uniformity.

Subsection 3.1.2 presented the Type Object Pattern. This pattern is
limited since it only allows two ontological levels, i.e., it is not possible to
assign a type to an instance of type ObjectType. The same limitation is
also seen when it comes to the InstanceSpecification of UML. However,
the Type Object Pattern can easily be extended to more levels as is done
in the UML virtual machine approach presented in Subsection 3.1.3. The
UML virtual machine approach is strongly coupled to one specific language,
i.e., the UML 1.x.

The representation of metalevels in JMI implementations, presented in
Subsection 3.1.5, is in principle the same as for EMF. EMF, presented
in Subsection 3.1.4, is typically used with a metamodel stack of depth 3.
There are ways to come around this — the partial prototype implementa-
tion [PNCWO6] of IBe demonstrates this. The prototype can be seen as an
instance of ECore that defines a modeling language that supports non-linear
metamodel hierarchies (as described in Section 2.9). However, IBe is an “in-
dependent” language and EMF is only used as an implementation language
when making the prototype. Similar prototypes can be defined by help of
the other modeling frameworks being presented. The choice of EMF, when
making the prototype, was based on the widespread use of EMF (Eclipse is
probably the most used environment today when it comes to MDD) and on
its maturity.

The MoMM approach, presented in Subsection 3.1.6 allows an unlimited
number of levels and this makes it interesting. The principle of potency is
interesting since it allows information to be attached high up in the meta-
model stack so that its applicability is at its optimum — in a sense this
resembles attaching general information as high up in a class-subclass hier-
archy as possible. IBe allows semantics to be attached to model elements;
the semantics attached are Java code that are meant to be executed. When
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execution is performed new model elements may be created on lower levels,
and some semantics may be attached to the new elements in this process.
The MoMM approach may be supported by IBe by attaching the right se-
mantics, i.e., IBe offers some basic constructs for representing levels and for
connecting levels, and these may be used, while the dynamic part is defined
to support the MoMM approach.

If seeing the following solution chapter as a feasibility study, then ease of
understanding becomes an argument. IBe used for consistency modeling
only demands three levels and implementing the MoMM approach seems
like adding unnecessary complexity (assuming the reader is familiar with
three level metamodel stacks not based on MoMM).

The lack of uniformity seen for programming languages, when it comes
to organization of levels and instantiation semantics, can also be seen for
the modeling frameworks. A framework that could easily be tailored for
different handling of instantiation semantics would be beneficial when do-
ing further research on this topic. Such a framework would not have “fixed
instantiation semantics” as the approaches just presented, but would allow
different instantiation schemes to be (easily) defined. IBe is meant to func-
tion as such a framework. This requirement is, however, not significant in
the context of this thesis, but nevertheless it explains some of the rationales
behind the later presented solution.

The approaches presented in this section do not fully support multi-
model architectures and in this respect they run short in relation to Req. 3.
Also Req. 2 is not fully meet since none of the approaches offer an algorithm
as specified by this requirement. The next section presents approaches that
are more complete when it comes to supporting modeling of consistency
requirements.

3.2 Some Consistency Modeling Alternatives

The approaches presented in this section offer different ways of revealing
consistency among data sources.

3.2.1 A Multiple Representation Schema Language

The same entity may be represented more than once in either identical or
different databases, which often results in the occurrence of inconsistencies
among the different representations of the same entity. For data sources
with semantically related models, one simple consistency rule may be the
following: Two objects (entities) with the same identity must have the same
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values stored for corresponding attributes; otherwise, they are not consis-
tent with each other (e.g., one data source claims that the floorage of an
apartment is 125 square meters and another lists 100). This problem was
the target of paper A Conceptual Schema Language for Managing Multiply
Represented Geographic Entities [FCINS05]. In this paper Anders Friis-
Christensen, Christian S. Jensen, Jan P. Nytun? and David Skogan describes
a declarative language that can be used to specify rules that match objects
representing the same entity, maintaining consistency among these repre-
sentations, and restoring consistency if necessary. The following is a quote
from [FCJNS05]:

We propose an approach to the modeling of multiple represented
entities, which is based on the relationships among the entities
and their representations. Central to our approach is the Mul-
tiple Representation Schema Language that, by intuitive and
declarative means, is used to specify rules that match objects
representing the same entity, maintain consistency among these
representations, and restore consistency if necessary. The rules
configure a Multiple Representation Management System, the
aim of which is to manage multiple representations over a num-
ber of autonomous federated databases.

The paper Modeling and Testing Legacy Data Consistency Requirements
(Appendix A) is like [FCINSO05] focused on the consistency problems that
occur when previously uncoordinated, yet semantically overlapping, data
sources are being integrated. The language presented in Appendix A is not
limited to testing of consistency among multiply represented entities — it is
a more powerful (visual/logical) language for deriving data, were derivation
of consistency data is merely one application. However, it does not propose
any way of handling inconsistencies. If ignoring syntactical differences, then
the approach presented in this section corresponds to a subset of the MOF
2.0 Query, View, and Transformation (QVT) specification [OMGO09).

3.2.2 Constraint Satisfaction and Constraint Programming

Vipin Kumar focus on those constraint-satisfaction problems (CSP) that can
be stated as follows [Kum92]:

2The paper was published in 2005, but the work started some years earlier as an
important part of the Ph.D. work of Anders Friis-Christensen. Among other things, I
contributed to the development of a metamodel for the defined language and a formal
description of the UML stereotypes that were introduced.
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We are given a set of variables, a finite and discrete domain for
each variable, and a set of constraints. Each constraint is defined
over some subset of the original set of variables and limits the
combinations of values that the variables in this subset can take.
The goal is to find one assignment to the variables such that the
assignment satisfies all the constraints. In some problems, the
goal is to find all such assignments.

Kumar gives [Kum92] an example based on the map-coloring problem de-
picted in Fig. 3.14; the regions that are to be colored are given in Fig. 3.14(a)
and Fig. 3.14(b) shows a corresponding constraint graph where each node
is a variable, and each arc represents a constraint between variables; in
Fig. 3.14(b) the variables represent regions and a constraint between two
variables disallows identical color assignments to these two variables (i.e.,
the two variables represent adjacent regions).

(a) (b)

Figure 3.14: Map-coloring problem and equivalent constraint-satisfaction
problem [Kum92|

The constraint-satisfaction approach can be seen as a part of constraint
programming [Bar07]; Roman Bartdk defines constraint programming [Bar99]:

Constraint programming is the study of computational systems
based on constraints. The idea of constraint programming is to
solve problems by stating constraints(requirements) about the
problem area and, consequently, finding solution satisfying all
the constraints.

The solution to the consistency modeling and the automatic generation
of consistency data presented in Chapter 4 can be classified as a form of
constraint programming; Boolean variables are constrained by OCL con-
straints, and model elements like links and objects are generated automati-
cally if specified OCL constraints are fulfilled. One way of solving a CSP is
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to systematically generate all possible combination of the variables and test
each to see if all constraints are satisfied, this is called the generate-and-test
paradigm; a variation of this technique is also proposed in this work.

Some work has been done when it comes to UML and constraint pro-
gramming, e.g., in [CCRO8] Jordi Cabot et al. describe how to translate both
class diagrams and OCL constraints into a CSP, the CSP is then giving the
possibility for checking compliance of the diagram with respect to several
correctness properties. However, no work has been found that corresponds
to the way UML and OCL are utilized in IBe.

3.2.3 Triple Graph Grammars (TGG) and QVT

Andy Schiirr introduced [Sch94] Triple Graph Grammars (TGG) as a new
formalism for the specification of complex interdependencies between sepa-
rate and, in general, quite different graph-like data structures. TGG can
be seen as a declarative formalism that allows specification of bidirectional
translations between graph structures. The correspondences are modeled ex-
plicitly and are not restricted to the case of one-to-one relationships [Sch94].
Schiirr presents translation between a programs syntax tree and its corre-
sponding control flow diagram as an example [Sch94]; the syntax tree plays
the role of being the left graph (LG) and the control flow diagram is playing
the role of being the right graph (RG); additionally there is a correspon-
dence graph (CG) with correspondence rules which links and defines the
“intergraph” relationships between LG and RG. Given a syntax tree, then
a corresponding control flow diagram may be automatically generated; in
this case the syntax tree function as a source graph and the control flow
diagram function as a target graph, the translation is bidirectional so it is
also possible to translate from the control flow diagram to a corresponding
syntax tree.

Metamodeling and also model transformations are central to MDD, and
the ideas of TGGs have been adopted by the OMG in their MOF 2.0 Query,
View, and Transformation (QVT) specification [OMG09]. QVT requires
that source and target models conform to MOF metamodels. Fig. 3.15(a)
and (b) shows an example that is often used when presenting TGG and
QVT (see [Kn05] or [GGLO5] for more details). Fig. 3.15(a) shows a triple
graph grammar schema relating Class and Table; Fig. 3.15(b) shows an
accompanying triple graph grammar rule that may be used to make a corre-
sponding table when a class is given. Fig. 3.15(b) is demonstrating the use
of constraints (written in the comment symbol); the constraints states that
the name of the class must match the name of the table, and additionally
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name name
isPersistent ]
Attribute AC Column
(@
{new}
{new} ct:ClassToTabel {new}
{new} {new}
c:Class Iﬁ c:Class
—Iﬂ

c.isPersistent = true
c.name = t.name

(b)
{new}
{new} {new} bh:BuildingToHouse
b:Building

b.name = h.name

(©)

{new}

{new}
h:House

Figure 3.15: Relating UML Class to Relational Table (a) and (b), Building-

House grammar rule (c)
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the class must be persistent (i.e., attribute isPersistent must be true for
the class).

MOF supports the principal object-oriented concepts (in the same way
as UML), and this allows class models in general to appear as MOF instances
(e.g., amodel containing “non-metaclasses” like Building and House). Gram-
mar schemas can consequently be attach to such models and transformations
can be defined for instances of the class model. Fig. 3.15(c) demonstrates
this by defining a grammar rule on instances of two classes found in different
models.

IBe has several similarities with TGG/QVT, e.g., in both approaches
there is a left graph, a right graph and a graph in the middle relating the
other two graphs. The Multi-model architecture shown in Fig. 1.1 is close
to the architecture pattern seen for QVT. QVT constrains the architecture
by requiring that:

e The two metamodels of the legacy systems are MOF.
e The consistency metamodel is the QVT metamodel.

In TGG/QVT correspondence links are parts of the correspondence graph
and they link nodes from the left and the right graph. The same concept
is found in IBe where it is called consistency association. It is possible
to attach constraints to both correspondence links (e.g., Fig. 3.15(c)) and
consistency associations (e.g., Fig. 4.1).

Despite the similarities there are some important differences between the
two approaches and we return to these in the discussion chapter (Chapter 5).

3.2.4 ATLAS Model Weaver (AMW)

Marcos Didonet Del Fabro et al. describe [FBJV05,FBJ*05] how two models
are woven together with yet another model; such a model is called a weaving
model and it is used when transformations are performed.

Rondo [MRBO03] is a programming platform for generic model manage-
ment and it includes high-level operators used to manipulate models and
mappings between models. AMW [FBJT05] goes further and allows exten-
sible mappings (AMW is related to QVT, but different). AMW is a generic
model weaver that allows the specification of correspondences between model
elements from different models — models are in this way connected. For ex-
ample, if two models have model elements that models the same entities and
uses the same "namespace” for the Ids, then the two models can be weaved
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together based on this information, i.e., entities that have same IDs will be
linked. AMW is based on a metamodel called KM3 [JB06] that allows a
total of four levels. This approach seems applicable to our problem since
it do target multi-model architectures and it allows up to four metalevels.
However, the type of consistency requirements we need to specify can be
complex and a combination of visual modeling and logic is more appealing
then specification of complex mappings as is needed in AMW. Section 5.1.1
is further investigating AMW in relation to IBe.
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Solution

The paper in Appendix A introduced an approach for testing consistency
between data residing in different legacy databases. The approach included
a metamodel describing the language to use when defining a consistency
model, and the approach required a metamodeling framework that allowed
different types of instantiation. The definition of and also the application
of such a framework is discussed in the appendixes. This chapter sums up
the parts of the papers that are essential to this thesis. This chapter gives
a coherent and slightly updated presentation of the work; it is updated in
the sense that some names have been changed and a few more details are
supplied (especially when it comes to instantiation). Different working ti-
tles have been used for the framework — the name is now Integrating Border
environment (IBe). The purpose of this chapter is to present the proposed
consistency modeling and explain how IBe may be used to realize this type
of modeling. A multi-model architecture is meant to be defined by instan-
tiating IBe (IBe seen as a model).

When fully developed, IBe is meant to support the definition of static
structure and also of behavior (e.g., execution of state machines). A static
structure is what appears when the running system is at rest and the dy-
namics (behavior) is about change. IBe is composed of two interwoven parts
(two models); one part is called STAND and it defines the static aspect; the
second part is called ACT and it gives the dynamics. STAND is the most
developed part, while ACT is not that mature and rests heavily on the em-
bedding language, which is Java. Attaching semantics amounts to attaching
interpreters to a structure given by STAND; an interpreter is capable of inter-
preting the structure it is attached to. At the current state the interpreters
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are written in Java and there is no additional language defined for behavior.
STAND structures may of course be used to define behavior; in this thesis
the STAND structures presented are more like declarations than prescriptions
(imperatives) since they do not state how to “do something” — this is left to
the interpreters.

In the following, the term “metamodel” [Kiih06] is meant to mean a

model that is a model (in a “type-like-fashion”) of another model which
again is a model (in a “type-like-fashion”) of a third model [Kih06].
The term “instance” is in the following being used in a general sense: It
is used to denote the model elements of a model (since they have been
instantiated from some model element from the level above) and it is also
used on “complete” models, i.e., a model is playing the role of being a model
instance in relation to another model — if the last model describes, in a
“type-like” fashion, the former model (this corresponds to two levels in a
metamodel stack).

James Rumbaugh et al. defines instantiation as [RJB05]: The creation
of new instances of model elements. Attaching instantiation semantics is
then to attach interpreters that create new instances based on the STAND
structures where they are attached.

The proposed approach to consistency testing is declarative: The user
defines a consistency model which functions as a declaration in the sense
that an instance (i.e., the consistency data) of the consistency model is
automatically produced — the consistency data connects the data of the two
involved databases and contains consistency data. Once the consistency
model instance (i.e., the consistency data) is produced it does not change,
and there is only one possible consistency model instance that is possible
given two databases and the consistency model.

In the following discussion the databases are considered to be snapshots
of databases as opposed to operational databases.

Section 4.1 describes the proposed consistency modeling approach. Sec-
tion 4.2 presents the basics of IBe. Section 4.3 describes a solution to the
problem of consistency modeling in the form of an IBe application.

4.1 The Consistency Modeling

We start this section with an example; the same example that can be found
in Appendix A. Fig. 4.1 shows an integration of two legacy models, where
one is a description of apartments (class Apartment found in model MDB1)
and the other a description of buildings (class Building found in model
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MDB2). The consistency requirements are as follows:

1. The number of apartments that is given as a property in class Building
should be equal to the number of apartments (i.e., instances of class
Apartment) with the same building id (attribute bId).

2. A building should have at least one apartment, and an apartment
should belong to exactly one building.

................................... |\

| { cApartmentCount = REEN
| (cPRolel.apartment=>size() = cPRolel. apartmentCount)} I

1 /I\ cCRolel
cClassAssoc::MCD :
1 v cPRolel
Apartment::MDB1 Building::MDB2
1.* cAssoc:MCD 1
ald < m e >| bld
bld apartment I building | apartmentCount
|
T i
I T2y

Figure 4.1: Consistency between Apartment from model of DB1 and
Building from model of DB2; other elements are from the consistency model

The elements with dash-dotted line style in Fig. 4.1 constitute a consis-
tency model; this model is (manually) made by the user. When the consis-
tency model is made, consistency testing of legacy data may be performed
automatically. In our case there is one legacy data source with information
about apartments (DB1) and one about buildings (DB2). Consistency test-
ing results in a report revealing legacy data that do not fulfill the consistency
requirements.

The association (Fig. 4.1) between Apartment and Building, including
the attached invariant expressed in OCL, models consistency requirement
2. When testing is performed on the legacy data, a link is created between
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an Apartment and a Building instance if the invariant is fulfilled; if the
multiplicity on the association is broken, this is reported in a consistency
report which is information in addition to the consistency data.

Consistency requirement number 1 is specified with the help of class Con-
sistencyApartmentBuilding, property cApartmentCount and its attached
invariant. During testing, instances of type ConsistencyApartmentBuild-
ing are created and linked to Building instances; slot cApartmentCount
will be set to the value that fulfils the invariant; if the value is false then a
consistency violation has occurred. Note that links between Building and
Apartment instances are traversed when the values of cApartmentCount
slots are set. We see from this example that standard OCL-statements are
used to decide what instances to produce when the consistency model is
being automatically instantiated.

Fig. 4.2 gives an overview of the kind of models involved in doing the pro-
posed consistency modeling and testing: There are two databases involved,
data of the first database is represented by DB1 and the data of the second
database is represented by DB2; the arrows with dotted line (Fig. 4.2) repre-
sent the instance of relation; MDB1 and MDB2 represent the models (schemas)
of the two databases while MMDB1 and MMDB2 represent the metamodels of
the two databases. If we relate this to the example above, then DB1 is the
database describing apartments and DB2 is the database describing build-
ings. The models (including DB1 and DB2) constituting the two metamodel
stacks of the databases are just read, and they are not changed during the
consistency modeling and the automatic generation of the consistency data.

| MMDBI1 | |MMCD| | MMDB2 |

N\

'
'
'

Figure 4.2: Some of the models involved when doing consistency modeling
and testing

MMCD represents the metamodel of the consistency model MCD. The auto-
matically produced consistency data is represented by CD. If we relate this to
the example above then the elements with dash-dotted line style in Fig. 4.1
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belong to MCD.

Several of the figures in Section 4.3 will present the different elements of
Fig. 4.2 in more details and Fig. 4.2 is then added to indicate which part of
the multi-model architecture that is being described.

4.2 Integrating Border environment (IBe)

The parts of IBe that have been implemented have been implemented in
Java, and as such Java functions as an embedding language (depicted in
Fig. 4.3(a)). STAND consists of a set of Java classes described in Fig. 4.4.
At runtime the STAND classes are represented as Java class objects which
are instantiated to form model structures. Hence, instantiation in IBe is
achieved with the help of instantiation in Java.

Java classes for Java
Java instances, border
,/ sides, etc. Level n
Stand Level n-1

Stand Instances

pueys

\ Level n-2

Instances of Stand o
(Java instances)

(a) (b)
Figure 4.3: STAND embedded in Java (a) and spanning several metalevels (b)

STAND defines a (mega-)model for defining multi-model architectures and
ACT defines where semantics may be attached. The actual definition of dy-
namic semantics is done by programming Java classes that may be connected
at certain places to structures defined by STAND.

The consistency modeling and automatically production of consistency
data (introduced in the previous section) are to be handled in the same tool,
and consequently modeling environment and runtime environment are meant
to be the same environment; and further, there will be run-time instances
behind every model element that appears.

In this view the data sets (the data in a database) are considered to be
models, they are considered to be terminal models since they can not be
instantiated further into model instances in the multi-model architecture.
The approach presented in this work is not a generative one (however, IBe
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may be adapted so that it supports compilation, etc.) — the modeling en-
vironment “is the software system” and this makes it natural to see a data
set as a separate model.

In the following sections STAND and ACT will be presented in more detail.

0..1 \[/ connectedInstanceBorderSide m

0..1
InstanceBorderSide Instanceld
0..1 * connectedInstanceld
connectedInstanceBorderSide | 0..1 connectedInstanceld | 0-1
connectedDescriptorBorderSide | 0..1 0..1 | connectedDescriptorld
1 s
DescriptorBorderSide |0—| Descriptorld
(b)
MultiModel- | Structure | Descriptorld
Architecture - -
owner * name:String
1
% P property \|, * * 1.%
Model | Slot |
1 b1 1.%'| target 1]\ ident-
* {ordered} ified
Instance
. Instanceld Instance
:Stri
BorderSide fame:>trng
name:String {ordered} (|, « %7
| Value
% . o
Descriptor- Instance- 1
BorderSide BorderSide Link DataValue
val:Strin;
@ © £

Figure 4.4: Main part of STAND

4.2.1 STAND

STAND is an extended instance model where the instance model is, if ignoring
name differences, not very different from what is described by the Instances
package of UML and MOF (this part of STAND is found in Fig. 4.4(c)).

In STAND the instance model is extended to include representation of mod-
els which may be connected to form model and metamodel architectures;
Fig. 4.3(b) shows how STAND may span several metalevels (only one meta-
model stack is shown). To be more precise STAND gives two linguistic levels,
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STAND itself and an instance of STAND, the instance of STAND can contain
several ontological levels (and when STAND is used to define a language, then
also linguistic levels!).

A model is built up of instances of subclasses of Instance. The term in-
stance is used instead of model element to indicate that in this environment,
where the model and the runtime environments are joined, the elements are
all instances. The instances (instances of Instance) are identified with
instances of InstanceId and descriptions of the instances are referenced
by descriptor identifiers which are instances of DescriptorId. Instance
identifiers refer to instances inside the model. Descriptor identifiers refer
(indirectly through a connected instance identifier) instances typically re-
siding inside another model, a model that describes in a “type like” fashion
the instances of the model in question. A descriptor identifier function as a
name for an instance that again function as a description; the description is
placed at the metalevel above what is being described. Such a description
corresponds to what James Rumbaugh et al. calls a descriptor [RJB05].

An instance identifier is an id or a key as you find it in a relational
database (or like ID attributes in XML documents); a descriptor identifier
is somewhat similar to a foreign key referencing metadata (or like element
names in XML documents). Several instances may share the same descriptor
identifier, while an instance identifier identifies only one instance in the
model.

All instances have at least one instance descriptor. Instances of Data-
Value represent values of primitive types. For simplicity all data values
may be thought to be of type String; the supplied figures do not show
the descriptor identifiers for instances of DataValue (how to treat primitive
types and values is discussed in Appendix D).

There are two ways to relate models: One correspond to the instance
of relation (e.g., an object is an instance of its class) and the other is a
way of relating models where none of the models plays the instance-of-role.
The last mentioned relation may be used to connect models residing at any
metamodel level, e.g., the consistency model is connected to each one of the
legacy models through such relations.

A model is related to another model by connecting one border side from
each model; two connected border sides establish a border. There are two
types of border sides, one called instance border side (called Instance-
BorderSide in STAND, see Fig. 4.4(a) and (b)) meant to reference the in-

!Ontological or linguistic levels? From the “IBe framework perspective” there is no
difference when looking at the levels found in the instance of STAND.
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stances in a model and one called descriptor border side (called Descrip-
torBorderSide in STAND) meant for establishing the instance of relation.
An instance border side is composed of instance identifiers and a descriptor
border side is composed of descriptor identifiers. Two instance border sides
may be connected to establish the model relation which is not the instance
of relation; with respect to consistency modeling this relation is simply used
to reference elements of database models (e.g., MDB1) from the consistency
model.

:Descriptorld
name="Class:name”

eee :Descriptor-
N BorderSide
i :Descriptorld
i name="Class”
i

:Slot :Structure
N
i :Instanceld — :Instance-
i name="Building” —BorlderSide
i
i :Descriptorld |—{ :Descriptor-
i name="Building” BorderSide
i
i

(2) (b)

Figure 4.5: Model instance connected to model

A model is set to be a description of another model by connecting a
descriptor border side to an instance border side; the descriptor border side
is part of the model instance, while the instance border side is part of the
describing model. The descriptor identifiers of the descriptor border side
are connected to the instance identifiers of the instance border side. Fig. 4.5
presents a simple example: A class called Building and an object of this
class. Fig. 4.5(b) shows, in the form of an UML object diagram, how this
can be represented using STAND: The object is found at the bottom; it is
connected to a descriptor identifier with name Building which is part of
a descriptor border side; the descriptor identifier is also linked to an in-
stance identifier with same name; the instance identifier is connected to an
instance border side which is connected to the mentioned descriptor border
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side; the descriptor and instance border sides constitute the border (called
a descriptor border) between the model and the model instance; the class
is represented as a structure that has a slot with the mentioned instance
identifier (Building); both the structure and the slot have descriptor iden-
tifiers found at the top — these two descriptor identifiers are connected to
yet another descriptor border side at the top.

There are some constraints on how to instantiate STAND, these are given
as OCL constraints in Table 4.1.

5 q
:DescriptorBorderSide
:Descriptorld
name="Property:multiplicity”

:Descriptorld
name="Class:isAbstract”

:Descriptorld :Descriptorld | |:Descriptorld :Descriptorld :Descriptorld
name="Class:name” name="Class” name="c_p” name="Property” name="Property:name”

:DataValue é' :Slot | :Slot |9 :DataValue
val="false” val="1"

:Structure H :Slot H :Link I I :Structure I ,:lo
:Instanceld :Instanceld

name="Building” :InstanceBorderSide name="Building:bld”

(@)

N\

Building
bld

(b)

Figure 4.6: Example of STAND representing a class

Fig. 4.6(a) shows one way to represent the class shown in Fig. 4.6(b)
with STAND. The objects in Fig. 4.6(a) with gray fill color are parts of bor-
der sides. (The link between slot and containing structure is actually two
links instantiated from the property and the owner association; the same
goes for the link between instances and descriptor identifiers.) Several rep-
resentations are possible, e.g., linking of a property to its “class structure”
could have been done so that it also would be possible to navigate from the
property to the “class structure”. When building tool support (e.g., a visual
editor) it seems natural to select one way of doing it and then stick to it —
but STAND is flexible.
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Context InstanceBorderSide inv:
— — A border side can only be connected to one other border side.
connectedInstanceBorderSide.size()=1 implies
connectedDescriptorBorderSide.size()=0

Context InstanceBorderSide inv:
— — A instance border side can not be connected to it self.
connectedInstanceBorderSide <> self

Context Instanceld inv:
— — An instance Id can be connect to either an instance Id or a
— — descriptor Id.
connectedDescriptorId.size()=1 implies
connectedInstanceld.size()=0

Context Instanceld inv:
— — An instance Id can not be connected to another Id unless it is
— — connected to an instance border side.
instanceBorderSide.size()=0 implies
connectedInstanceld.size()=0 and
connectedDescriptorId.size()=0

Context InstanceBorderSide inv:
— — If an instance border side is connected to another instance
— — border side, then its instance Ids can only be connected to
— — instance Ids belonging to the other instance border side.
connectedInstanceBorderSide.size()=1 implies
instanceId.forAl11(id | id.connectedDescriptorId.size()=0
and (id.connectedInstanceld.size()=1 implies
id.connectedInstanceld.instanceBorderSide=
connectedInstanceBorderSide))

Context DescriptorBorderSide inv:
— — If a descriptor border side is connected to an instance border
— — side, then its descriptor Ids can only be connected to
— — instance Ids belonging to the instance border side.
connectedInstanceBorderSide.size()=1 implies
descriptorId.forAl1(id | id.connectedInstanceld.size()=1
implies id.connectedInstanceld.instanceBorderSide=
connectedInstanceBorderSide))

Table 4.1: Constraining STAND
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The Metamodel of the example can be seen in Fig. 4.7, e.g., descriptor
c_p is the association between class Class and class Property of the meta-
model (property isId of metaclass Property is ignored in Fig. 4.6(a), but
it may be used to find instance identifiers). An IBe model (Fig. 4.4) may

. *
Constraint 1 ModelElement

text
Relationship

Association

Generalization

0.1 |a
2 s gl g )
.M | member-
specific ¢ 1 2 |End
Class general Property ——
name name
isAbstract 1 cp . !sld )
isComposite
c p | multiplicity

Figure 4.7: Metamodel defining classes, etc.

be treated as a pluggable module that may be connected to other models
through border sides as described above; in this view a descriptor border
side is like a special type of required interface — it is an interface to a model
that is meant as a description of it. However, even if two models may be
connected with a descriptor border (i.e., the descriptor identifiers and the
instance identifiers match) it may not be the case that the “model instance”
actually is a model instance of the other — some “checking” functionality is
needed to verify that the instances of one model could have been instanti-
ated from the instances of the other.

As a basis, STAND can give rise to many different types of applications,
e.g., it may be used as a basis for an analytical tool as described in Appendix
E and F. Often the following procedure is used when doing MDD: First a
metamodel is created, then models are built according to this metamodel
and then model instances. However, in an analytical application a model
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instance may appear first and then the problem is to find its model, e.g., is
the model instance a standard XHTML document or is it a “none standard
XHTML” document? (More about this in Section 4.4.)

The use of borders allows models to be connected without having them
merged into one model. But what is meant with merge in this context?
With a “coarse-grained view” a model may be seen as composed of identi-
fiers and “structure tieing” the identifiers together; if another model have
a reference into the structure of another model, then at the level above
(where the type models of the two models are placed) this reference must
have been specified by help of elements from both type models (e.g., by
an association); this implies that at least on type model “knows about the
other” and the type models are then considered to be merge, i.e., they are
seen as one and the same model, consequently the models on the lower level
are also together defining one model. One may differentiate between a full
merge (references from “each model” into the other) and one-way merge
(reference from only “one model” into the other). The situation is different
if the identifers are used to connect the models, the identifiers may appear
in both models and knowledge about the structure of the other model is
not needed. On the other hand, just using the identifiers when connecting
models may lead to a situation where the models are not "really” fitting
together (e.g., that a type model is not really a type model for the con-
nected model). In some cases it is also necessary to code into the identifier
names some structural information for the process of connecting the models
to succussed, e.g., the name “name” is often appearing many places, but
“Class:name” and “Property:name” may be unique. The use of identifiers
to connect models is a encapsulation technique.

One an the same model might play different roles in relation to other
models and this is made explicit with the use of borders. A border might
“look different from its two border sides” and this is captured by having two
border sides represent one border, e.g., when two models are to be connected
by the instance of relation (i.e., an instance border side is to be connected to
a descriptor border side) the instance border side may contain more instance
ids than what is found on the descriptor border side (in this case it may be
that the model that plays the model instance role can be connected to a less
comprehensive model than the one playing the model role in this case). The
use of border sides allows the use of different names in two models that are
connected, e.g., an instance border side may contain the instance id Class
and still be connected to a descriptor border side containing descriptor id
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Klasse (the Norwegian word for class), for this to work there must be some
special scheme for matching ids with different names.

It is also possible to attach semantics to border sides, semantics that
may generate a model instance (comprised of a huge number of objects of
different types) — an example of this is explained later.

Typically a class will not contain references to all its instances, but
an object will typically “know” its class. However, in STAND (Fig. 4.4)
DescriptorId has an association with navigation towards Instance and
this may be used to go from an instantiated element to its instances (if
the association is “used/mantained” by the application). The solution to
the consistency modeling presented below queries descriptor identifiers to
get the instances (i.e., finding the instances of a given class) and it seems
practical, at least in that application, to use the association (even if the
instances may be found by using the links given by the association that goes
from Model to Instance).

It should also be noted that the finer granularity given by using the
term “border side” contra just “border” is often not necessary and the term
“border” is therefore often used. When the term “descriptor border” is used,
a descriptor border side and an instance border side are connected to form
the border; the term “instance border” has the obvious meaning.

IBe STAND does not have any limits on the number of levels, and it
supplies — based on the instance of relation — a generic way of stacking
models on top of each other to form metamodel stacks; IBe is in this respect
a non-linear approach since it offers an explicit way of handling the instance
of relation; the instantiation semantics is however not fixed, i.e., there are
no class, or metaclass concept defined in STAND; the instantiation semantics
is given by what is chosen and attached as instantiation semantics.

4.2.2 ACT

ACT is the part of IBe that is meant to give the dynamic semantics and as
Fig. 4.8 shows, semantics may be connected to instances and also to border
sides. Allowing semantics to be attached to instances opens up for an “or-
dinary object-oriented approach”, e.g., defining a method may be done by
defining some STAND structure describing the class and the method, and then
attach semantics to that structure. Border side semantics gives several pos-
sibilities, one example would be to define semantics that implements SQL,
attaching this semantics to a descriptor border side would allow querying
the instances found in the model by using the descriptor identifiers (also
OCL querying could be supported in this way).
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Figure 4.8: Part of ACT

Fig. 4.8 shows that semantics is defined in the form of Java classes that
either extends BorderSideSemantics or InstanceSemantics; the seman-
tics will be executed by calling the eval() method with an appropriate
argument. [Be provides means to attach such Java classes and ways to trig-
ger their execution. This approach opens up for changing the semantics as
needed since the semantics are explicitly attached.

The IBe demonstrator [PNCWO06]? that has been developed is based on
EMF, this means that STAND is implemented as an ECore model and in-
stances of this ECore model represent multi-model architectures; this may
look like a trick since we end up with having all the STAND model levels at
one EMF level. However, it has merely given a jump-start by supplying a
lot of useful code; EMF provides setter and getter methods for the classes
of STAND; these methods may be seen as parts of the dynamic semantics.
EMF also provides an editor so that STAND structures may be built.

Attaching semantics corresponds to attaching interpreters; an interpreter
is capable of interpreting the structure it is attached to. In a computer
system the interpreter will ultimately be a computer processor (we have
discussed some of these aspects in another work [MNPW10]), but in our
object-oriented context the interpreter is considered to be a software object
composed of data and executable code. Most of the interpreters involved
in the consistency application are concerned with instantiation, which in
our context is the same as instantiating STAND (this means instantiating the
Java classes that constitute STAND). The term instantiator is introduced to

It was Andreas Prinz that first proposed to do the implementation in EMF.
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denote interpreters concerned with instantiation. Instantiation of a complex
model element typically leads to a cascade of “smaller” instantiations and
creating a complete model instance may involve a huge number of smaller
instantiations.

There are many ways to organize instantiation, e.g., creating a model
instance may be done by one single interpreter or it may be done by an
interpreter that triggers the execution of several other interpreters. Instan-
tiation may also be organized differently with regard to levels; one possible
conceptual mapping (somewhat simplified) to IBe of the solution seen in
Java, is to consider there to be three levels:

Metaclass Level This level contains metaclass Class, metaclass Property,
etc. These elements are instances (class objects) of elements found
on this same level. Metaclass Class contains the description of the
newInstance ()-method which may be used to create new objects.

Class Level This level contains user classes and classes from supplied pack-
ages. These elements are instances (class objects) of the elements
found on the metaclass level. All classes are instances of metaclass
Class and this allows method newInstance() to be invoked on all
concrete classes.

Instance Level This level contains the objects of the user classes which
are created with help of the mentioned newInstance ()-method.

As we understand from the text above, metaclass Class defines the method
newInstance() which is general enough to create instances of all classes;
newInstance() uses the description of the class (e.g., the description of the
fields) when creating an object of that class; the object created is placed at
the lowest level. The same way of organizing instantiation may be done in
IBe, assume the following metamodel stack:

Metamodel This model contains structure corresponding to metaclass Cla-
ss, metaclass Property, metaclass Association, etc.
This model is seen as an instance of it self, i.e., its descriptor bor-
der side is connected to an instance border side supplied by the same
model.

Model This model contains user classes. These elements are instances
(class objects) of the elements found in the metamodel. All classes
are instances of metaclass Class, properties are instances of metaclass
Property, associations are instances of Association, etc.
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Terminal model This model contains the objects of the user classes. A
user class is instantiated to an object of that class, a property is in-
stantiated to a slot, an association is instantiated to a slot, etc.

The kind of instantiation described above coincides with instantiation as
described in UML, but in UML the terminal model is considered to be
composed of runtime instances and it is not seen as a model. Often the
UML models (user models) are used as the source for code generation and
consequently the runtime instances may be the runtime instances of a pro-
gramming language like Java or C++.

Returning to the description of the terminal model above, this model
does not contain classes or entities that can be further instantiated — it is
composed of terminal entities like slots, objects of user classes, etc. The
model level is composed of: Entities (e.g., user classes) that may be instan-
tiated to instances that can not be further instantiated and also of terminal
entities (e.g., name of user classes are given as values stored in slots). The
metamodel is composed of: Terminal entities (e.g., the name “Property” of
the Property metaclass is stored in a slot), entities that may be instanti-
ated to instances that may not be further instantiated (e.g., an instance of
metaclass Property representing the name property of metaclass Class) and
finally of metaclasses like Class and Property which may be instantiated to
instances that again can be instantiated. One may say that the metamodel
in question is a metamodel and also a model for itself.

The metamodel is considered to be an instance of itself; and further, if we
consider an “instance of”-relation chain to stop at class Class when going
up the chain, then some elements have an instance of relation chain of length
one and others of length two, e.g., metaclass Property has length one since
it is a direct instance of metaclass Class, while a slot containing the name
of a metaclass has length two since it is an instance of metaclass Property
which again is an instance of metaclass Class. For every entity in all the
three models the following is true: The number of entities in the “instance
of’-relation chain going up added to the number of repeated instantiations
that are possible downwards is always two in this setup.

“Metaclass Property” above is categorized as a metaclass, but when
instantiated twice down the metamodel stack, then slots appear; a slot is
not normally considered to be an object so the term metaentity may be
more appropriate than metaclass, however, in the following text the term
metaclass is still used.

The kind of instantiation just described is “the ordinary one”, but it
does not answer where the instantiators should be attached — only what
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their results should be. One possibility (which is extreme in respect to how
much the instantiator must “know”) is to have one main instantiator that
is attached to metaclass Class, this is possible since all entities have an
“instance of”-relation chain that ends here; every other entity that may be
instantiated has a very basic instantiator that simply delegates the instanti-
ation job one level up the chain by sending an “do-instantiation” message to
its descriptor (together with relevant parameters) — finally it ends up at the
main instantiator which checks what kind of entity that is to be instantiated
and then performs the instantiation accordingly, e.g., the main instantiator
will create a slot if an instance of Property is instantiated and a class if
metaclass Class is instantiated. The basic instantiators are attached to the
entities by the main instantiator when it creates the entities — in this way
instantiation semantics is propagated down the “instance of”-relation chain.

As already mentioned, it is also possible to attach semantics to border
sides; when executing this type of instantiation a complete model instance
may be created in one operation. This type of instantiation may be per-
formed in a context where complete models with borders are included and
play roles. An instantiator attached to a border side may do the job alone or
it may utilize other instantiators like the one described above. We return to
an example of this kind of instantiator when describing how the consistency
data is automatically produced.

4.3 The Solution to Consistency Modeling

This section presents a solution to the consistency problem using the con-
cepts of IBe. The different parts of Fig. 4.9(a) are addressed and discussed
(Fig. 4.9(a) is a detailed version of Fig. 4.2). The two legacy database model
stacks are treated in a similar way and conceptually the complexity is not
reduced by only showing one of them (adding one more legacy database is
done in the same way as the first one), and hence, Fig. 4.9(a) is only show-
ing one legacy database model stack (when needed, a number is attached to
indicate which legacy database being considered). Fig. 4.9(b) and (c) gives
an overview picture of what Fig. 4.9(a) shows, i.e., it shows either database
stack 1 or 2. Fig. 4.9(a) exposes where semantics may be attached, e.g., se-
mantics may be attached to the “internal instances” of MCD (this semantics
is named SMCD) and at the descriptor border side of MCD (this semantics is
named SDMCD).
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Figure 4.9: Naming the border sides and the semantics of the consistency
application (a)

4.3.1 User Roles

It is possible to identify at least three types of roles when working with IBe:
IBe framework developer, metamodeler (kind of user) and modeler (kind of
user). A framework developer is one that develops the framework itself, i.e.,
designing and implementing the very basics of the framework. A metamod-
eler is one that establishes metamodels needed when doing modeling and
organizes them into premade multi-model architectures (model configura-
tions) — in our case these metamodels are the ones that must be in place
when doing the consistency modeling and testing (i.e., automatic production
of consistency data).

For IBe the difference between the role of being a framework developer
and a metamodeler is not so distinct since also a metamodeler typically
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needs to do some programming when defining semantics using Java. At
time of writing, IBe is at an experimental and very early stage and it is by
far not ready for an “ordinary modeler”.

As already mentioned IBe is meant to be applicable to several different
types of problems, and hence, one may envision IBe as a general tool —
not tailored specifically for doing consistency modeling, but being general
enough to cater for consistency modeling. The version of IBe presented
below is however meant for doing consistency modeling — it should be seen
as a setup meant for consistency modeling and testing.

While the task of the metamodeler is to offer a model configuration, the
main tasks of a (consistency) modeler are:

e Select the two legacy data model files (MDB1 and MDB2); the tool
will then load the two data models and make them available to the
modeler.

e Do the consistency modeling.

e Start the automatic production of the consistency data after having
selected the two legacy data sets (DB1 and DB2).

e Query the automatically produced consistency data to check for in-
consistencies.

Actually, the number of legacy databases may be one or more; if only
one, then the consistency checking is applied to data residing in the same
database.

4.3.2 The Legacy Database Model Stack

If we assume that the legacy database is a relational database, then the
schema, MDB (correspond to MDB1 or MDB2 in Fig. 4.2), defines the tables, the
fields in each table, and the relationships between fields and tables. If some
object-relational mapping is used, then we may see MDB as an instance of
the UML metamodel and instead of tables one sees classes etc. Accordingly
MMDB is understood as corresponding to the kernel of the UML metamodel
or MOF.

We further assume that MDB appears in the form of an XMI-file; what is
needed to load MDB is then a special type of XMI-reader. One type of readers
may use an explicit representation of MMDB when interpreting the XMI-file;
the instantiation semantics may have been distributed to the instances of
MMDB (SMMDB) and trigged when creating the instances of MDB (as described
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in Section 4.2.2). A reader that does not use an explicitly represented MMDB,
will in some way have an implicit representation of MMDB since MDB when
loaded will conform to MMDB — a reader of this kind may be seen as an
“implementation of MMDB”.

A descriptor border side (DMDB in Fig. 4.9(a)) may be produced by the
reader since the XMI-file contains type information (e.g., the type of an
XML element may be metaclass Class), a type name is then added to the
descriptor border side when read. An instance border side may also be
produced by extracting the names/ids given in the XMI-file and then add
them to the instance border side. The XMI-file will reflect the namespace
information defined by the UML metamodel and this may be used to avoid
name conflicts on the border sides.

Looking at Fig. 4.2 we see that MMDB is not connected to other models,
and hence by using a reader for MDB that does not use an explicit represen-
tation of MMDB the need for having MMDB represented in the stack is elevated.

Loading DB may be done in much the same way as MDB, we may again
assume that the data appears in the form of an XML-file containing the
data structured in an “XMI kind of way”. The reader may be made so that
MDB is not explicitly needed when the data are loaded into 1Be, even so,
MDB is explicitly needed since it is connected to MCD and accessed when the
consistency model is made.

The reader used to establish MDB may be attached to a premade de-
scriptor border side as semantics (premade by the metamodeler); when the
semantics is triggered it lets the user select an XMI-file of the correct type
and then it establish MDB; the same is also possible when it comes to DB.

4.3.3 The Consistency Model Stack

Fig. 4.10(a) shows MMCD which is the same consistency metamodel as pre-
sented in Appendix H [Nyt06] except for a few name changes. Fig. 4.10(c)
shows how to instantiate the consistency model example given in Fig. 4.1
(McD). Fig. 4.10(b) and Fig. 4.10(d) shows the position of MMCD and MCD
in the multi-model architecture. The marking around MCD (Fig. 4.10(d))
is including the instance of relation to MMCD since this is supplied as type
information, e.g., Building is of type CProxyClass. (The place of OCL in
this architecture is discussed in Section 5.1.3.)

Fig. 4.10(c) shows that legacy class Apartment is represented in the con-
sistency model by a prozy class (Apartment:CProxyClass), the same goes
for class Building. Using proxy classes makes it possible to avoid having ref-
erences into the legacy models and instead have the border sides integrating
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Figure 4.10: Consistency metamodel (MMCD) (a), and an instance of it
(McD) (c)

the models. Fig. 4.1 shows Building from MDB2 and the corresponding proxy
class in MCD as one class; bId is represented in MDB2 and also in MCD where it
is represented as an instance of CPNameProperty; property apartmentCount
is not part of MCD only MDB2. A similar approach is used for Apartment.

Class ConsistencyApartmentBuilding is a consistency class (an in-
stance of CClass), its consistency property cApartmentCount is an instance
of CProperty which also stores the accompanying constraint.

CClassAssociation is instantiated when defining an association be-
tween a consistency class and a proxy class. CAssociation is instantiated
when a consistency association is defined between two legacy classes, i.e., it
goes between two proxy classes that represent the two legacy classes.

Fig. 4.11(a) shows the two lowest levels of the legacy database model
stack example. We can see from the figure that DB1 has two apartments
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Figure 4.11: Legacy model and data (a), result of consistency testing (b)

with building id bl and this is consistent with DB2 which has a build-
ing with building id bl and apartment count with value two; DB1 has an
apartment with building id b2 which is not consistent with DB2 which
has a building with building id b2 and apartment count with value zero.
Fig. 4.11(c) shows the automatically produced consistency data, e.g., prop-
erty cApartmentCount is false for the instance of the consistency class
ConsistencyApartmentBuilding which is connected to the Building in-
stance with id equal b2.

Fig. 4.10 together with parts of Fig. 4.11 show the consistency model

stack for an example, they represent an interpretation of the underlying
STAND structure.
Fig. 4.12(a) presents the border sides of MCD as they are represented in
STAND. Fig. 4.13(a) depicts the structure and borders sides of CD; the object
with gray fill color constitutes the border sides, while the objects in the mid-
dle shows the structure; the stippled lines represent the instance of relation;
only the consistency structure that relates a3:Apartment and b2:Building
is shown.
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Figure 4.12: The border sides of MCD

So far the different levels of the consistency modeling stack have been de-
scribed, but how these levels have been established has not been explained.
The solution proposed in Appendix H [Nyt06] is to have an instantiator
attached to DMCD which allows “MMCD” to be instantiated into MCD — this
semantics is called SDMCD in Fig. 4.9(a) (Appendix H [Nyt06] uses the term
border engines for attached semantics); SDMCD is preprogrammed by the
metamodeler and is part of the model configuration needed when the mod-
eler makes MCD.

The kind of instantiation performed when MCD is created is actually sim-
ilar to the ordinary one (e.g., instantiating CClass resembles instantiating
metaclass Class), and it may be solved by attaching instantiators to the
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Figure 4.13: The structure and borders sides of CD

entities of MMCD. The consistency modeling should in some way be done vi-
sually by the modeler, and the instantiation will then be integrated into this
visual support — however, how to give this support is not explained in this
work.

IMCD; (seen as instance border side towards MDB; ) contains instance iden-
tifiers corresponding to the names of all classes in MDB1 that have a corre-
sponding proxy class in MCD - in our example this is only Apartment. IMCD;
is connected to IMDB; which contains the instance identifiers of all classes
that may have proxy classes in MCD (the identifiers of IMCD; is equal to the
set of identifiers of IMDB; or a subset of it); IMDB; may be automatically
produced by querying the descriptor border of MDB1 when it is loaded.

The most complex instantiation is performed when the consistency data
(CD) is automatically produced. CD is a model instance of MCD and the
instantiation requires knowledge about not only MCD but also about DBy and
DBs. In Appendix D I propose to have an instantiator attached to IMCDo;
this instantiator is implementing the algorithm presented in Appendix A; a
slightly modified version is presented below.

If the consistency modeler does not pay attention he may introduce cyclic
dependencies among the elements of CD that are meant to be made — if this
is the case then it is not possible to make CD. Cyclic dependencies can be
exposed by inspecting the constraints specified in MCD. The inspection is
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done by building a dependency graph where there are three kinds of nodes:

CAssociation Nodes One node of this kind will represent the set of links
found in CD that have been instantiated from one particular CAssoc—
iation (Fig. 4.10(a) shows the consistency metamodel). cAssoc in
Fig. 4.1 is an example of a particular CAssociation.

CClass Nodes One node of this kind will represent the set of objects that
have been instantiated from one particular CClass. Consistency-
ApartmentBuilding in Fig. 4.1 is an example of a particular CClass.

CProperty Nodes One node of this kind will represent the set of slots that
have been instantiated from one particular CProperty. cApartment-
Count in Fig. 4.1 is an example of a particular CProperty.

There is a constraint attached to each node: The constraint attached to a
CAssociation node is the one attached to the corresponding CAssociation,
the constraint attached to a CClass node is the one that is attached to
the CClassAssociation going to the corresponding CClass and finally the
constraint connected to a CProperty node is the one attached to the cor-
responding CProperty. If no constraint is specified then true is assumed.
The edges (i.e., the dependencies) of the dependency graph are found in the
following way: There is an edge from each CProperty node to the CClass
node which represents the CClass containing the CProperty; if the con-
straint of a node has a reference to another node (i.e., a reference to the
corresponding consistency model element of the node) then there is an edge
to this node.

- _7| ConsistencyApartmentBuilding:CClassNode

| cApartmentCount:CPropertyNode |‘ g

~>\‘| cAssoc: cAssociationNode

Figure 4.14: Dependency graph for example shown in Fig. 4.1

Fig. 4.14 shows the dependency graph for the example shown in Fig. 4.1.
The graph is also showing the possible orders that the elements of CD may
be produced in: The instances of ConsistencyApartmentBuilding and
cAssoc must be created before the instances of cApartmentCount.

How to automatically produce CD will now be described, but first a list
of needed assumptions:
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e DB; and DB, are loaded; DDB; and DDBy have been extracted and are

available for querying.

e MCD is loaded and is available.

e The instantiator is attached to the descriptor border (i.e., to IMCDy or

DCD) between MCD and CD.

e There are no cycles in the dependency graph for the elements of CD.

The consistency data may be created by following the steps below:

1.

Extract IDB; and IDBsy. IDB; is to contain all the instance identifiers
of the objects that are instances of the classes in MDB; that have proxy
classes in MCD; the proxy classes are given by MCD and the instance
identifiers are found by querying DDBy; given the situation shown in
Fig. 4.11(a) then the only proxy class is Apartment and al, a2 and a3
will be placed at IDB1; IDBy is extracted in the same way.

. Create ICD; and ICDy. The instance identifiers of ICDy will be the

same as the ones constituting IDB; and the instance identifiers of ICDg
will be the same as the ones constituting IDBs.

. Connect ICD; with IDBy and connect ICDy with IDBs.

. For every instance identifier of ICD; and ICDs create and connect prozy

objects, e.g., create a proxy object of proxy class Apartment and con-
nect it to the identifier instance al that is part of ICD;; the proxy
objects are parts of CD and should of course also be connected to the
correct descriptor identifiers.

. Create all possible instances of MCD that fulfil the specified constraints;

the order of creation is given by the dependency graph for the elements
of CD, e.g., cAssoc instances (Fig. 4.1) will be tried created for each
possible pair made by one instance from proxy class Apartment and
one instance from Building; if the constraint attached to cAssoc is
satisfied then the instance is kept.

An OCL interpreter, not described in this work, is needed to see if the
constraints are satisfied.

The CD made can be examined by the consistency modeler to see how
DBy and DBj relate.
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4.4 Applications in Addition to Consistency Mod-
eling

The applications presented in Appendix D and E are based on an early
version of IBe, and they are highly related to the consistency modeling
already described. While the basic principals of these papers were briefly
presented in the introduction the main purpose of this section is to make it
more clear how they relate to IBe and to the consistency modeling presented
above.

Web pages (in our case XHTML documents) should be accessible to all
users, independent of disabilities or choice of web browser; the aim of the
projects presented in Appendix D and E is to measure the accessibility of
web pages by relating them to modeled accessibility requirements.

The multi-model architecture in question is a metamodel stack contain-
ing 3 models:

Metamodel The top level is a metamodel that describes concepts needed
to define the XHTML-standard as a model. A metamodel defining a
subset of the UML metamodel has been chosen (the subset corresponds
to the metamodel presented in Fig. 4.7); this choice makes it possible
to use OCL to specify accessibility requirements.

Model A subset of the XHTML-standard is represented as an instance of
the metamodel found at the top level.
This level is where the accessibility modeling is performed; accessibil-
ity requirements are specified in OCL and attached to the modeling
elements.

Model Instance An XHTML-document represented as an instance of the
model level above. The evaluation of the accessibility requirements
(i.e., the OCL constraints) are performed on this model instance; a
report is generated that states to which extent the web document
fulfils the accessibility requirements.

If we extend the metamodel with a selected part of the consistency meta-
model, then we can model the accessibility requirements in the same way
as done when modeling the consistency requirements (i.e., visual modeling
together with OCL). The situation is less complex when implementing the
modeling of the accessibility requirements: Only 1 model is involved as op-
posed to 3 when implementing the consistency modeling (the same is also
the case at the model instance level).
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Appendix E is a continuation of Appendix D; it investigates how to
use “incomplete models” — this fits well with 1Be, e.g., not all descriptor
Ids referenced in a “model instance” might be described in the attached
“incomplete model”.

Appendix E is also demonstrating the usefulness of allowing models to
be treated as pluggable modules by having a “model instance” first created
and then attached to a possible model — again this fits well with 1Be.
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Chapter 5

Discussion, Conclusions and
Further Work

In this chapter the different findings are discussed, some conclusions are
made and some further work proposed. The first section concerns some
relevant issues and some alternative solutions. The last section compares
the solution to the requirements stated in the introduction.

5.1 Alternative Solutions and Relevant Issues

Many conceptual issues have come up through this work and a few of them
are discussed in the following, but first a comparison of the solution to some
consistency modeling alternatives.

5.1.1 Comparing to Consistency Modeling Alternatives

TGG and QVT, introduced in Subsection 3.2.3, are based on an architectural
pattern that resembles the one described in the solution chapter (Chapter 4).
The main concern to these approaches are synchronization of models (e.g.,
synchronization of two legacy data sets where one is source model and one
is a target model that is updated) and the generation of new models based
on some structure-preserving mappings from source models. The focus of
these approaches are not the generation of the consistency model instance
as it is for the IBe solution — this model will therefore typically not be a
part of the architecture.

QVT contains an imperative language that might be used to define an
interpreter of consistency models (as they are described in the solution chap-
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ter); the interpreter could in some way be attached to the correspondence
graph; this interpreter could then generate the consistency data. However,
this would require some programming and it would be a new application
of QVT. Again, the focus of TGG and QVT are transformations, while de-
riving data is the focus of the solution — in this respect the solution seems
closer to constraint programming' (presented in Subsection 3.2.2).

In regard to consistency modeling, the presented solution is simpler and
will typically be easier to learn than QVT. The solution requires knowledge
of UML and OCL; in addition the user must understand the special use
of “invariants”; the concrete syntax is UML and some way of indicating
which model the elements belong to (e.g., by using dash-dotted line style as
demonstrated in Fig. 4.1). QVT on the other hand, includes: UML, OCL,
some new concrete syntax and a new language to describe correspondences.

A user of the solution needs to understand that there must be no circular
dependencies between the data to generate (a tool may assist the user in
this regard) — otherwise the consistency modeling is very much like ordinary
UML modeling as opposed to using QVT which would imply more than
ordinary UML modeling.

The strengths of QVT and the proposed solution are different, and QVT
can not easily replace the proposed solution in regard to the proposed con-
sistency modeling.

An approach that have several similarities with the proposed one is the
Atlas Model Weaver (AMW) [FBJT05,FV09] (see Section 3.2.4).
In AMW a metamodel for model weaving is proposed. The metamodel
includes elements that resemble the proxy class (see Fig. 4.10(a)) and the
association between proxy classes. Consistency classes are not defined.
Marcos Didonet Del Fabro et al. state [FBJ*05]:

...model weaving...Its primary objective is to handle fine-grained
relationships between elements of distinct models, establishing
links between them. These links are captured by a weaving
model. It conforms to a metamodel that specifies the link seman-
tics. Typical application domains of model weaving are database
metadata integration...Obviously more abstract constraints in-
formation, for example expressed in OCL, may be attached to a
link...we conclude that there is no standard weaving metamodel

'Tf not already done, a formal comparison of TGG to constraint programming seems
interesting; these approaches seems to be closely related!
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WMM capable of capturing all weaving semantics...Each appli-
cation domain has different needs that must be considered by
the developers. The design of a base metamodel of which most
weaving metamodels may be seen as extension is a delicate com-
promise between expression power and minimality.

As stated above, different types of semantics are handled by extending the
base WMM, one extension may be equality between elements so that equal
elements may be linked (e.g., class House in one model may be linked through
an equality link to class Building in another model). A weaving model
(WM) may be used to automatically generate transformations, e.g., one
that takes elements from one model and map them to elements in another
(the two models in question are instances of the two models that have been
weaved by the WM).

The metamodel presented in Fig. 4.10(a) (with the consistency class
excluded) is like a basic weaving metamodel and it can be used to relate
elements from different models. Also the metamodel may be extended with
different semantics. However, the semantics attached to the consistency
model is unique. The purpose of the consistency metamodel is to facilitate
definition of models that can be used to derive (consistency) data given two
data sets; the consistency class together with properties are essential when
deriving the data — anything similar has not been found for AMW. When it
comes to the consistency modeling, only one mapping is considered and this
is the one that takes two data sets and a consistency model and generates
the consistency data. The conclusion is: Despite similarities the approaches
are different in an essential way.

5.1.2 Axiomatic or Recursive Top Level

The topmost lever can be describe recursively by a self-describing model
as demonstrated by MOF or it can be described axiomatically by another
language which is not part of the metamodel stack [GOS07]. The presented
multi-model architecture (see Fig. 4.2) has a recursive top level for the legacy
database metamodel stacks (also MOF could have been used as a top level);
the practical value of this top model may vary, e.g., a reader may load
a model (i.e., the model corresponding to the database schema) into the
architecture by utilizing this top level model or not. However, at least
conceptually there is a value to this model since it explicitly describes the
loaded model.

The practical value of having the top model recursively defined is also
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questionable, however, conceptually it is satisfying to have a situation where
as much as possible is explicitly described; using an axiomatic approach is
in a sense hiding more than a recursive approach since a description of the
top model is not explicitly given for the axiomatic approach. In Fig. 4.2
the consistency metamodel is forming an axiomatic top level, and again
MOF may be added on top giving a recursive top level; for this to function
instantiation semantics must be handled in some way that allows all the
levels beneath MOF to be established.
The following statement is given by Ralf Gitzel et al. [GOS07]:

... The core aspect of these arguments is that a recursive meta-
model allows those who already understand the language to look
up details of its syntax without needing to be proficient in an-
other language at the same level, whereas an axiomatic top-level
model requires less overhead in the hierarchy.

This statement indicates that there are arguments for or against each of the
two approaches; IBe STAND is open for both of them, and thus allowing the
most appropriate approach to be selected in a given situation.

5.1.3 Extending the Multi-model Architecture

If we look closer at the consistency metamodel stack we see that OCL state-
ments are to be added as “pure text” and stored as property values. Another
approach is to define also OCL by a metamodel (e.g., as specified by the
OMG Editor [OMGO5b]); this metamodel is then to be placed at the level
above the consistency model. The consistency metamodel and the OCL
metamodel must in some way be integrated (i.e., making a bind to OCL)
otherwise it is not possible to connect an OCL statement to the consistency
model — one solution is then to connect the OCL metamodel to the consis-
tency metamodel at the same places as the textual OCL statements were
attached (or more correctly were they were specified as properties) in the
already presented solution.

Connecting the OCL metamodel and the consistency metamodel can be
done by a full merge of the two models into one coherent model. 1Be allows
also another approach: The models may be connected by an instance bor-
der which allows them to be kept as individual models. The possibility of
integrating models without doing a full merge is justifying the term multi-
model architecture (this principle is already demonstrated by having the
consistency model connected to the models of the legacy databases). The
arguments for using the term multi-model architecture is further strengthen
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by adding a metametamodel on top of the consistency metamodel (the con-
sistency metamodel is not self-describing), in this case we have metamodel
stacks that have different depths in one and the same architecture (the legacy
metamodel stacks are only three levels deep).

5.1.4 The Use of Border Sides

Modeling a border with two border sides comes at a price: The metadata for
an instance is reached by following three links as can be seen in Fig. 5.1(b).
If the identifiers of the instance border side have the exact same names as the
identifiers of the descriptor border side and the number of identifiers on each
border side is the same, then the number of links to follow may be reduced
to two; this optimization is demonstrated in Fig. 5.1(c) where one border (of
type DescriptorBorder) has replaced the two border sides and matching
identifiers have been replaced by objects of type Symbol. Fig. 5.1(d) shows
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name="Class:name”

:Descriptor-

N BorderSide
1 :Descriptorld :Symbol
i name="Class:name” - name="Class:name”
' :Descriptor-
L Border
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'
'
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i
| :Buildingl :Structure | :Structure
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Figure 5.1: Optimizing reference from model instance to model

yet another optimization where there is a direct link from an instance to its
describing instance — such an optimization may be temporarily established
or it may be permanent which means that the two models in question have
been merged. The same type of arguments in regard to optimalization may
also be valid for instance border sides.

The notion of being a model is extremely general (e.g., a Java source file is
a model), consequently the number of possible relationships between models
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are overwhelming. Kiihne discusses [Kiith05] two fundamentally different
model relations: The type model role and the token model role.

The functionality attached to the type model role can be instantiation
or functionality for checking if a model can be seen as an instance of another
model. A descriptor border side is like a special type of required interface —
it is meant to be an interface to a model whose instances (accessed through
an instance border side) can function as a description of it. In this respect
a type model can be seen as a component which offers a description.

The token model role fits well when defining a system by repeated re-
finements of models, e.g., a PIM is a token model for a PSM when they both
model the same system.

The solution to the consistency modeling problem includes instance bor-
der sides; this is a model-to-model relationship which does not relate to lev-
els; in Appendix G instance borders where presented as a way of connecting
models placed at same level, and it was meant to establish a token model
role; the constraint that the models must be on same level has later been
removed since it may be used between models placed in different metamodel
stacks (the number of levels may vary from metamodel stack to metamodel
stack). The instance border sides have been used to establish a “shallow”
token model role between the consistency model and the legacy models —
the role is limited to having proxy classes in the consistency model that
corresponds to classes in the legacy models. The consistency model is how-
ever containing other model elements that does not fit the token model role.
However, the notion of token and type model roles coincide with the notion
of descriptor and instance identifiers.

The notion of token model as described by Kiihne [Kiih05] is constrained:
Only one of the models plays the role of being a token model and this
model should in some way be “reduced” compared to the other due to the
reduction feature of models (i.e., a token model only reflects a selection of
an original’s properties). Often two models have overlapping information,
and at the same time both models may be more detailed than the other one
in different respects — these situations can not be captured by a token model
role.

The use of instance borders presented in this work is extremely generic:
Their main purpose is to reference elements in models without doing a merge,
and in this respect enforce encapsulation of the (inner) structure of a model;
it is left as further work to decide if InstanceBorderSide should have sub-
classes (e.g., TokenModelBorderSide), and what kind of semantics to attach
in those cases.

106



5.2. ARE THE REQUIREMENTS SATISFIED?

5.2 Are the Requirements Satisfied?

Chapter 1 outlined six requirements for a solution of the consistency mod-
eling problem, each of these requirements are addressed below.

Req. 1 A language (metamodel) is required for consistency modeling.

A unique language has been proposed and its syntax is defined by the
metamodel presented in Fig. 4.10(a). The combination of visual modeling
(UML) and logic (OCL) gives the language its strength. The language is
simple to understand if OCL and UML are known in advance. Both UML
and OCL are playing important roles in software modeling; OCL is con-
tinuously being reused in a growing number of areas and UML is the de
facto standard for doing software modeling, and consequently many poten-
tial users will quickly learn how to use the language.

The language proposed in this dissertation may be extended to allow
more complex visual modeling, e.g., by having associations between consis-
tency classes. This will work as long as it is possible to establish an order
of instantiation when it comes to generation of the consistency data (CD),
i.e., there must be no cyclic dependencies between type of elements being
automatically generated.

Req. 2 Consistency data is to be generated automatically (a suitable algo-
rithm is needed).

Section 4.3.3 describes an algorithm that will give automatically genera-
tion of consistency data. The main problem to solve is the order to use when
the consistency data is being produced and this is only possible if there are
no cyclic dependencies among the elements to create, and a helpful feature
in a tool offering consistency modeling would be to continuously indicate if
there are any cyclic dependencies or not (the dependencies are checked at
the consistency model level and consequently this seems to be manageable).

The previous chapter gives a solution — a solution that is flexible enough
to support instantiation in “the small” (e.g., ordinary class instantiation)
and in “the large” (creating the whole consistency model instance (i.e., the
consistency data) in one coherent instantiation process).

The current solution is based on programming in Java; the semantics of
Java code is assumed to be know and attaching semantics is then attaching
Java code to instances of IBe STAND; the Java code can be inspected by using
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the Eclipse Java editor, but from the “IBe perspective” the code appears
as a black box solution. Another solution is to develop ACT into a complete
language together with STAND for defining behavior; behavior in this context
would typically mean manipulation of instances of IBe STAND; since also be-
havior is described by structure, STAND may also play a major role in this
respect. Development of ACT into a more complete separate language is left
for future work, but such a solution would be more autonomous and more
controllable by the framework. However, the described solution with use of
Java confirms the feasibility of the approach.

Req. 3 The consistency and legacy models must be connected when making
a consistency model. Consequently simultaneous handling of models
in different metamodel stacks is required.

The consistency data is to be generated automatically and connected
to legacy data, so simultaneous handling of different terminal models
(data sets) is also required.

In short, the environment should support multi-model architectures
(e.g., as seen in Fig. 1.1) so that the user is not forced to merge ele-
ments from different metamodel stacks, but is allowed to manage the
individual models as pluggable modules (objects).

The previous chapter presented a model for representing multi-model
architectures (Fig. 4.4); the model can be seen as a megamodel or at least
as a part of a megamodel. However, the model is not “mega” in the sense
that all kinds of models can be directly placed in such an architecture;
a model must be converted into the defined representation language, i.e.,
it must be represented as specified in Fig. 4.4(c) which is a part of the
megamodel. Further work may add the possibility of actually integrating
models represented in a rich diversity of languages into the same multi-model
architecture (e.g., by introducing some sort of adapters).

The conversion of a model so that it fits into an IBe architecture is
based on extracting two sets of identifiers, these two sets are typically avail-
able: Instance identifiers are identifiers that identify singular instances in
the model, while descriptor identifiers are used to do classification, i.e., a
descriptor identifier may be used on several instances.

The identifiers of a border side belongs to a namespace, and STAND may
be extended to allow relations between the identifiers of a border side and
in this way support an explicit representation of a namespace. The rela-
tion needed seems to be composition as defined in UML; Subsection D.3.1
presents a first attempt to solve this.
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IBe as an ontology for MDE is obviously not complete, but still, as ex-
plained in the previous chapter, IBe fulfills Req. 3.

Req. 4 Modeling and generation of consistency data should be tightly in-
tegrated and it should not be necessary to leave the modeling environ-
ment to generate the consistency data (i.e., the modeling environment
is the runtime environment).

In the proposed solution, the modeling and the runtime environment will
be one and the same environment. As opposed to a generative approach
where the model is used to generate “the software system” — the modeling
environment “is the software system”.

There is however a limitation when it comes to implementing new seman-
tics in Java: Loading an updated class is not possible if the earlier version is
already loaded?. Currently, defining the semantics is done by writing Java
code in Eclipse, and a strict interpretations of what constitutes the IBe envi-
ronment may see this as an activity outside the environment, anyhow, this is
a weak point in the solution; defining a new language for dynamic semantics
that is managed by IBe will resolve this.

The generated consistency data does not change and consequently a
snapshot is “permanently true”. This is correct for one consistency model
given two legacy data sets (in a sense the data sets are like parameters when
generating the consistency data), but a user friendly solution may allow the
consistency modeler to change the consistency model and at the same time
see the change this inflicts on the consistency data (this is only possible
if the legacy data sets are manageable in size). One may even allow the
metamodel (or any model in the architecture) to be changed and handle the
consequences of this. We have discussed some of the challenges this would
raise [MNPW10]:

...due to the separation between modeling environment and run-
time environment, the impact of model changes on existing data
is difficult to support. However, these data are an essential part
of the system, especially in enterprise systems. This paper de-
scribes an integrated modeling-runtime environment that forms
the basis for enabling fine-grained evolution of large-scale en-
terprise systems using generative techniques. This integration

2This limitation may be removed in the future, e.g., JRebel is a plugin that enables
the Java Virtual Machine to reload changes made to Java class files on-the-fly [Kab07].
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means that the runtime system maintains its own models and
can, therefore, be locally adapted, without missing impact infor-
mation. The integration between modeling and runtime, more-
over, ensures that all dimensions of possible impacts of a change
can be traced: (1) between models and dependent models; (2)
between models and implementation; and (3) between models
and instances, the data...it does not explicitly support the re-
moval of model classes. However, it does allow for replacing
groups of model classes with corresponding new versions and, on
top of this, a mechanism may yet be offered to restructure the
data correspondingly. This will also be the subject of further
study.

Extending IBe with such features as described above will take IBe closer to
the vision of having a fully united runtime and modeling environment.

Req. 5 Visual modeling is considered beneficial and should be supported.

This work does not fully describe how to achieve visual support, it pro-
pose a visual syntax and a way of doing visual consistency modeling (see
Fig. 4.1 for an example of the visual syntax). The visual modeling involves
the two legacy models and the consistency model, the software giving the
visual modeling must therefore be aware of several parts of the multi-model
architecture — how to formalize this in a good way is a challenge that is left
as future work.

To conclude: A solution for doing MDE based consistency modeling has

been presented; Req. 1-4 have been meet; even if Req. 5 has not been fully
solved, it should be clear that it is solvable.
Treating models as modules combined with the possibility of attaching se-
mantics in various places introduces several interesting possibilities — one
of them being the proposed consistency modeling, others could be different
types of weaving and integration of models.

IBe as a platform is far from being fully researched; however, it seems to
be flexible and well suited for experimentation in regard to metamodeling.
The way of attaching semantics and “where” it is proposed to be attached
have in this work been chosen so that it is easy to understand, but it seems
feasible to have IBe “simulate” the approaches presented in Chapter 3 when
it comes to instantiation and handling of metalevels. The consistency meta-
model is placed in a linear hierarchy (even if IBe, at least partially, is a
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non-linear approach), but what about changing the consistency metamodel
so that it gives a non-linear approach? Such questions may be answered by
further work.
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This appendix presents the paper: Modeling and Testing Legacy Data
Consistency Requirements [NJ03], with coauthor Christian S. Jensen; the
paper was presented at UML 2003; the paper is important since it unveils
research issues targeted in following chapters. The theme of the paper is
consistency between legacy data - which includes modeling and testing of
consistency requirements. Appendix D and E presents papers that discuss
different types of applications, e.g. modeling of accessibility constraints;
other papers (Appendix B, C, G) discuss issues related to the design of
a tool for specifying and testing consistency requirements; especially Ap-
pendix G is important, the theme of that paper is the specification of a
generic model for connecting models in a multilevel modeling environment.

A slightly modified version of [NJ03] is presented in the following sec-
tions.

A.1 Problem Area

An increasing number of data sources are available on the Internet, many of
which offer semantically overlapping data, but based on different schemas,
or models. While it is often of interest to integrate such data sources, the
lack of consistency among them makes this integration difficult.

The same problem arise when an enterprize adopts a new software sys-
tem, that system must typically work in a setting with several existing legacy
systems. For example, public administrations, in their strive to create one
single, public IT infrastructure, may build a new system that integrates pre-
viously separate databases that concern different aspects of physical prop-
erties (land parcels, buildings, etc.). It is important to the new system that
the different representations of the same physical properties are consistent.
And the introduction of the new system provides an opportunity to improve
the quality of the existing databases.The paper focus on data integration,
or more specifically on the consistency problems that occur when previ-
ously uncoordinated, but semantically overlapping data sources are being
integrated.

A.2 Solution Overview

In our approach UML (e.g., class diagrams) and its accompanying Object
Constraint Language (OCL) are used to model and test for consistency.
The paper explores different possible modeling techniques and forms a rec-
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Figure 2: Consistency Modeling Overview

ommendation for how to accomplish consistency modeling and testing. The
notion of something being consistent with something else can be applied in
many contexts. For example, an implementation can be consistent with a
model, meaning it is a correct implementation of the model. Our specific
context are legacy systems: we consider how to model consistency among
data managed by different legacy systems.

Most of today’s legacy systems use relational technology for persistent
data storage. Having two databases with overlapping models (i.e., parts
of their schemas describe the same reality, or miniworld) one consistency
rule could be: two objects with the same identity, modeling the same real-
world entity, must have the same values stored for corresponding attributes;
otherwise, they are not consistent with each other. We investigate how to
exploit UML in this type of modeling situations and how to perform the
actual consistency testing.

Fig. 2 offers an overview of the approach. The models of the legacy
systems are UML models represented in the XMI [OMGO02] format (meta-
model level M1 [OMGO3c]). The output of the consistency modeling is an
integration model where the two legacy models have been integrated and
the desired consistency has been expressed explicitly. We assumed that the
modeling activity was manual.

The paper explores the use of various subsets of UML for the consistency
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modeling, and it recommends the use of a particular subset of UML notation
together with guidelines for this task. A tool or plug-in may be designed
based on this, to give extra support for this modeling approach. However,
an ordinary UML tool will do since the recommended notation is a subset of
UML. Next, consistency testing is done automatically. The paper describes
consistency testing tailored to one selected consistency modeling technique.
The consistency model and legacy data are inputs to the consistency test-
ing activity. The legacy data are instances of the legacy models that were
integrated in the integration model. The data are represented according
to the XMI format (metamodel level M0O) and can, e.g., be snapshots of
legacy databases. The output of the consistency testing activity is a report
describing the consistency violations that were revealed.

Our approach is related to constraint programming [Bar99]: the modeler
declares constraints, and the test environment will later find a solution that
is consistent with the constraints. We assign values to so-called consistency
attributes by evaluating declared constraints. Our proposal also involves
so-called consistency associations between legacy classes. For these, the test
environment will, in a sense, try to break multiplicity constraints; and if it
succeeds, a wrong cardinality consistency violation occurs.

Maintaining consistency among different representations of the same en-
tity stored in different databases has been studied before [CW93, FCJ03,
RSK91]. We consider a notion of consistency modeling that seems more
general than most related work. In comparison with the most related
work [FCJ03], we do not rely on an extension of UML (we stay within
UML), and our testing is quite different.

An extension to OCL has been proposed [CWDO00] with the objective of
describing quality-ensuring constraints on geographic data. We do not ex-
tend OCL, but instead propose to introduce special associations and classes
to support the specification of complex consistency constraints. We believe
that this aids in obtaining a very practical approach.

This paper is structured as follows. Sect. A.3 defines concepts, e.g., con-
sistency model and integration model, that are used throughout the paper;
a first example of consistency modeling is also introduced. In Sect. A.4,
different consistency modeling techniques are described. Sect. A.5 proceeds
to discuss the modeling techniques, and one technique is selected as the
most useful. This section also covers the automatic testing of such a model.
Finally, Sect. A.6 offers a short discussion, conclusions, and directions for
further work.
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A.3 The Consistency Model

We proceed to define what we mean by consistency model, how it relates
to Model-Driven Architecture (MDA) [OMGO03a], and the role of the test

environment.

A.3.1 The Test Environment

Consistency checking may be challenging in a highly dynamic context: OCL
operators such as forALL and alllnstances are hard to implement when
objects come and go. The operators will function well if the object structure
is static. In particular, a snapshot of a system is static and can easily be
used (see [TvS02] and [CL85] regarding the recording of distributed global
state).

On the other hand, the restriction to a static context may impose limi-
tations on the use of operation calls (query operations) in OCL expressions.
If the operations are completely described in the model (e.g., by the use of
action semantics) they may be interpreted at test time.

The test environment may offer some support for the consistency mod-
eling. For example, in relation to geographic information, spatial functions
may be part of the test environment. Such functions can then be used freely
in OCL expressions. At consistency modeling time, the classes supported
by the test environment can be seen as part of a special, dynamic legacy
model (thus query operations will work properly). Such support can greatly
strengthen the consistency testing.

A.3.2 An Initial Example

Consider a simple case that relates to object replication. The package IM
shown in Fig. 3 contains legacy-model elements and additional modeling
elements for describing consistency: IM is an example of an integration
model, and two legacy models are shown that are stored in package L1 and
L2, respectively. The package stereotyped ((consistencymodel )) is explained
in the next section.

The dashed-dotted line between class L1::C1 and L2::C2 indicate that
objects of type L1::C1 may be tested for consistency against objects of type
L2::C2. The package notation is cumbersome to read, so we omit it in the
remainder of the paper, even if this in a strict sense makes some expressions
syntactically incorrect.

We should be able to capture the following consistency requirement in
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L1 cM L2

C1 Cc2
idl |e=———1 b = — ’ ....... — == id2
al a2

Figure 3: Integration Model Encompassing Legacy Models and a Consis-
tency Model

the integration model: if attribute values :C1.id1 and :C2.id2 are equal, it
makes sense to talk about the consistency of objects :C1 and :C2; they are
consistent if and only if :Cl.al is equal to :C2.a2. Using OCL-syntax, we
may state this as follows.

Context C1 inv:

C2.allInstances->forAll(self.id1 = id2 implies self.al = a2)

While it seems possible to do consistency modeling with OCL alone(at
least with minor extensions [CWDO00], [GKR99]) this will not benefit from
the visual strengths of UML.

A.3.3 Consistency Model

We term the part of the integration model that is not part of any legacy
model the consistency model. The package containing the consistency model
is stereotyped ((consistencymodel)), as shown in Fig. 3.

With UML (XMI), we may put modeling elements into separate pack-
ages. It is for example possible to put the description of an association into a
package separate from the packages of the connected classes. It is up to the
modeler to store the consistency model in a separate, stereotyped package.

At consistency test time, an instance of the integration model is instan-
tiated. Instances of legacy models are prefabricated and will be inserted as
parts of the integration model instance. The test environment then auto-
matically instantiates the consistency model. The consistency model can be
seen as a declaration: instances of consistency model elements are in a sense
derived from the legacy instances and the declaration.

Let us take a closer look at the OCL expression from the previous section,
the core of which can be written as:

el.idl = e2.id2 implies el.al = e2.a2
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where el is of type C1 and e2 is of type C2. Conceptually, if el and e2
have the same id value, they must have the same attribute value to be
consistent; and if their id values are different, consistency is not questioned.
This expression is an instance of a more general pattern:

<match> implies <consistency test>

The first part of the expression defines what to test for consistency, and the
last part defines what is required for consistency to hold. This separation
seems sensible even if the specification of what to test may not be trivial:
which attributes are fundamental (Aristotle’s Law of Identity)? And what
if the values of the identifying attributes are inconsistent? The full power
of OCL can be used when defining the matching. Since OCL expressions
can include operation-calls (query operations), advanced functional libraries
can be applied if they are available in the test environment, e.g., spatial
operations in a geographical system.

A.3.4 MDA and the Consistency Model

The notions of Platform-Independent Model (PIM) and Platform-Specific
Model (PSM) are central to OMG’s MDA initiative; a PIM is a model
where (some) technical details have been abstracted away. A PIM may be
mapped to a PSM, which is closer to implementation. In short, MDA advo-
cates a software development approach where abstract models are mapped
(manually or automatically) to less abstract ones until implementation is
achieved. If a legacy system has been developed in accordance with MDA,
there will be several models that are candidates for consistency modeling.
In this case, a decision of which abstraction level to use for the consistency
model has to be made.

For the consistency testing to be correct, the user data must be at the
same level as the integration model. Both user data and the integration
model may be subject to mapping to achieve this “compatibility.” This
type of mapping may not be trivial: assume for instance that the inte-
gration model consists of two PIM legacy models and a consistency model
that contains at least one OCL constraint that references elements in both
PIMs; further, assume that the two legacy systems has been implemented
on different platforms. If the consistency testing is to be performed at the
“implementation level,” the mentioned constraint will contain parts that
must be mapped to one platform and other parts that must be mapped to
another platform.
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As a full discussion of this type of mapping is beyond the scope of this
paper, we simply assume that the legacy models in question are implementa-
tion models [FKO02] and that the consistency testing is applied to instances
of implementation models.

A.4 Modeling Consistency

In a consistency expression, <match> determines whether there is a relation
between objects; and if so, <consistency test> decides the state of this rela-
tion: consistent or not consistent. All the presented techniques separate the
determination of which objects to test and the actual consistency test. The
matching is modeled with binary UML associations, which we term consis-
tency associations (c-assoc). To separate consistency associations from other
associations, the stereotype ((c-assoc)) is introduced—if allowed by the UML
tool at hand, a dash-dotted line can be used as demonstrated in this paper.
A class that is part of the consistency model is called a consistency class
(c-class, stereotype ((c-class))). We have selected the following techniques as
a starting point for our research:

e use of c-assoc between legacy classes (arbitrary multiplicity)

e use of c-assoc between legacy classes (arbitrary multiplicity), and an
association class connected to the c-assoc

e use of c-classes that can be associated with several legacy classes
through the use of c-assoc (arbitrary multiplicity on the legacy class
end, only 0..1 or 1 on the c-class end)

e use of c-assoc between legacy classes (arbitrary multiplicity) and use
of c-classes that can only be connected to one legacy class with an
c-assoc (multiplicity is limited to 1 on the legacy class end, 0..1 or 1
on the c-class end)

For all techniques, the c-assoc and the constraint connected to the c-assoc (a
missing constraint is the same as having a constraint that is always true) play
a key role when the consistency model is being instantiated. Logically, all
possible instances of a c-assoc are considered when the consistency model
is being instantiated. If the constraints on the c-assoc are met, the link
is kept (if the c-assoc goes to a c-class, object of this class is created as
needed). Note that this instantiation policy yields the consistency model
with the maximum number of links. We have one important limitation
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Figure 4: Connection of Constraint to Class (a) and Association (b)

on the constraints: circular references between constraints must not occur.
Without this restriction several consistency model instances may be possible.

The different modeling techniques we consider will be tested on two
examples. The first was given in Sect. A.3.2. The second concerns a situation
were one legacy system contains descriptions of apartments and another
contains descriptions of buildings—see Fig. 5. The size of the floor space of
a building should be the same as the total floor space of its apartments; the
number of apartments that is given as an attribute in class Building should
be equal to the number of apartments with the same building id (attribute
bld). One building should have at least one apartment, and an apartment
should belong to exactly one building. This simple example is sufficiently
illustrative for our purposes. The following sections gives more details on
the selected techniques.

A.4.1 Only Association and Constraints

The UML standard [OMGO3c] states: “A constraint is a semantic condi-
tion or restriction expressed in text. In the metamodel, a Constraint is a
BooleanExpression on an associated ModelElement(s), which must be true
for the model to be well formed.” It is thus correct to attach a constraint
to an association; OCL is not mentioned, and later on, OCL-invariants are
only mentioned for classes, types, and stereotypes. But we assume that it
is legal to connect a constraint to an association.

‘ {floorSpace = apartment.ﬂoorSpace-)sum()ﬁ

Apartment Building
ald A A bld

bid : floorSpace
floorSpace | |{ald = building.bld} apartmentCount

‘(apanmentCount = apanment—)size())\ﬁ

Figure 5: Building with Apartments
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Fig. 4(b) shows an example where it is not possible to separate the
matching from the actual consistency test. This observation reveals that
this technique is not suited. In Fig. 4(a), the matching is connected to the
c-assoc, and the consistency test is connected to one of the classes. The
multiplicity is also of significance—in this example, an object of type C2
must be attached to an object of type C1 (with matching id); otherwise,
there is an inconsistency. The next case is shown in Fig. 5.

As already mentioned the “matching part” is not just an invariant, it is
also a production rule. When consistency is to be tested, the consistency
associations will be instantiated, the instantiation policy will be to create all
links that satisfy the match. If the specified multiplicity is broken (wrong
number of links), it represents a consistency violation, which will be re-
ported. Ideally, the matching should discriminate all links that are logically
wrong, and it should include all the right ones. This would be the perfect
match. A matching that is not discriminating enough may not be a problem:
the links may not be used, or consistency tests that use them may always
evaluate to true.

A.4.2 Consistency Modeled with Association Class

This technique extends the technique demonstrated in Fig. 4(b). An associ-
ation class has been introduced to describe the consistency; Fig. 6 gives an
example.

The constraint placed on the
association corresponds to the

<<cclass>>

‘ {(ichnsislenl= (c1.a1=c2 azﬁ

isConsistent:boolean matchlng
c1 c2 . .
R & —5 The consistency test is for-
al a2
mulated as an OCL expressed

invariant on the association
class; the attribute isConsis-
tent, termed a consistency at-
tribute, must be true if the con-
sidered objects are to be re-
garded as consistent. In a more
complex situation, the consistency check can be structured into several in-
variants, distributed over several consistency attributes. A consistency at-
tribute can be used in the reporting process, and it can also be referenced
in other constraints.

Figure 6: Constraints Connected to An
Association Class

Fig. 7 offers a solution for the second example. One weakness of this
solution is that the consistency attributes will be calculated once for each
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<<c-class>>

ConsistencyApartmentBluilding

building.apartment.floorSpace—>sum(

{cFloorSpace= (building.floorSpace = ﬁ
N}

cFloorSpace:boolean
cApartmentCount:boolean

Apartment Building

ald s N 1| bid

bld floorSpace
floorSpace apartmentCount

{cApartmentCount = (building.apartmentCount =
building.apartment->size())}

{apartment.bld = building.bld}

Figure 7: The Apartment / Building Problem Solved with An Association
Class

(c1.id1= c.c2.id2) )
<<cclass>> \ e
c - iat
isConsistent:boolean [¥~._ al
0.1~

- S 4lC2
{isConsistent = (c1.a1=c2.a2)} T 'd22
a

Figure 8: Use of An Ordinary Class Instead of An Association Class

apartment of a building when once for each building would suffice.

A.4.3 Ordinary Class as Consistency Class

In Fig. 8, a c-class connects legacy classes. This technique has many similar-
ities with the one presented by Friis-Christensen and Jensen [FCJ03], where
the aim is to integrate multiple representations of the same entity. But
there are also differences. Whereas they place matching rules in a separate
compartment of the c-class, we express the matching as constraints on the
C-assoc.

Fig. 9 concerns the second example. The multiplicity on the apartment
side in Fig. 9 demonstrates that several apartments are involved; the weak-
ness found when association classes were used has been eliminated.

Yet another technique is demonstrated in Fig. 10. For each c-class, there
is now exactly one c-assoc to a legacy class, and there can also be c-assoc’s
between legacy classes. It is also possible to put a constraint on the c-assoc
from c-class to legacy class. This modeling technique seems to be simple
and compact.
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{cFloorSpace = . <<cclass>> ) Apartment
(apartment.floorSpace->sum() = ConsistencyApartmentBuilding | 4 1.7
building.floorSpace)  }| | GFioorSpacesboolean DR nae
CADp: ount:boolean e N floorSpace
~
N
> ~. Building
{cApartmentCount = \'\k bld
(apartment->size() = {building bld = floorSpace
building apartmentCount) } consistencyApartmentBuilding.apartment.bld} apartmentCount

Figure 9: Use of Ordinary Class: The Building / Apartment Example

<<c-class>>

{cApartmentCount =

<<c-class>>
ConsistencyApartmentBuilding

(building.apartment->size() =
building.apartmentCount) )‘

cFloorSpace:boolean
cApartmentCount:boolean

isConsistent:boolean

A1

|
{isConsistent=(c2.a1=c2.c1.a2)} i

(a)

Figure 10: Consistency Classes with Only One Association to Legacy Class

(b)
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A.5 Selected Solution

Next, we consider which modeling technique to choose and how to consis-
tency check user data.

A.5.1 Which Technique to Choose

Having introduced several modeling techniques, we proceed to compare these
in order to understand their relative merits. A more exhaustive study, in-
cluding a study of combinations of the techniques, is left for future research.
The following evaluation criteria are important.

1. How easy is it to apply the technique and comprehend the resulting
models?

2. Is it possible to make an interpreter (or compiler) for the models pro-
duced?

3. Is it possible to interpret the models efficiently?

4. Can good reports be made?

Criterion 1 We feel that all techniques are simple and rather intuitive;
much of the required skill comes down to understanding OCL. But it seems
that inserting c-assoc’s directly between legacy classes is quite natural. It
is not possible to avoid complex dependencies. Rather, the best one can do
is to express them so that they are easily understood. The use of consis-
tency attributes and c-assocs makes it possible to partition complex OCL
constraints into manageable pieces.

Criterion 2 Fulfillment of this point rests upon the possibility of instan-
tiating the consistency model. This instantiation is later demonstrates for
one technique; the other modeling techniques do not introduce any new com-
plexity that cannot be solved by some extra mechanism for keeping track of
intermediate results.

Criterion 3 A complex consistency model together with large amounts
of user data can result in a combinatorial explosion, making the testing
impossible in practice. Even if the presented techniques introduce only a
limited number of new modeling elements, there will be practical limitations
when it comes to the amount of user data to process. The technique that uses
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{cNotExposed = not stay.obs->exist(oneObservation |
PictureSupport.recognized(stay.suspect.person.picture,
)}

oneObservation.picture)

L2 L3

1 1
1 1

Person <<oclass> - ObservationPost
SSN ObservedAtOtherlLocation Observation * 1| oName
time iti
name cNotExposed:boolean 1 oPost| Position
Lname |
1~ X, +,obs
N \ ;
N N\
N, N /
N N N\ 7 |{ TimeSupport.inside(obs.time,
N N\ K stay.timelnterval)
. N\ ! and
N N \»\ K AreaSupport.outside(obs.oPost.Position,
AN N /v/ stay.location.area) }
N N E
N N
< o
Investigation Suspect Stay Location
1 * *
name SSN ! timelnterval |1 1 area

Figure 11: Has the Suspect Been Elsewhere?

association classes seems to produce models that lead to much redundant
testing. The last modeling technique allows the c-assoc links to be reused.

Criterion 4 Reporting is not elaborated upon in this paper. However,
we note that the consistency attributes may play an important role in the
reporting process.

The last modeling technique presented seems to be the best, and it is
our choice. But we see the need for gaining more experience with the tech-
niques, and a longer-term goal is to establish a framework that allows us to
investigate the merits of the techniques.

A more complex example is given in Fig. 11. Here, legacy system L2
contains pictures of persons. Legacy system L3 records observations done
at different observation posts. Legacy system L1 contains information about
police investigations. Instantiation and checking of the consistency model
will expose a person who claims to have been one place, but has been ob-
served in another place at the same time.

Classes TimeSupport, AreaSupport, and PictureSupport are part of the
test environment; the operations of these classes that are used are all class
scoped.
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Figure 12: Metamodel

(from Core)

A.5.2 Consistency Testing Using the Chosen Technique

Fig. 12 presents a metamodel that illustrates which modeling elements to
use and the constraints on them. In practice, the modeler must conform to
the metamodel if the test is to be executed correctly. The metamodel also
gives meaning to the stereotypes c-assoc and c-class.

We note that the c-assoc constraint is not shown in the metamodel, but
it is important and will be described shortly. We proceed to explore the two
main uses of the c-assoc:

1. It associates two legacy classes.

2. It associates a c-class and a legacy class.

Use of c-assoc’s with legacy classes Legacy classes may belong to
the same or different legacy systems. The c-assoc is similar to an ordinary
association. Similarities include that role names can be inserted and that
multiplicities can be selected freely. The only difference compared with an
ordinary association is the c-assoc constraint: this constraint is a bit “more”
than an ordinary association constraint. Like an ordinary constraint, it
must be true for all links instantiated from the corresponding c-assoc; but,
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in addition, the c-assoc constraint is essential when instantiation of the
c-assoc takes place. All possible links between objects of the two legacy
classes are considered: the links that do not meet the c-assoc constraint are
rejected; the rest are kept. If the number of links for an object do not meet
the specified multiplicity, the cardinality is erroneous, and a consistency
violation is reported. If a c-assoc constraint is absent, it will be the same as
a c-assoc that is always true.

Use of c-assoc’s with legacy and c-classes When a c-assoc associates
a c-class and a legacy class, the multiplicity is “1” on the legacy class side
and “1” or “0..1” on the c-class side.

The consistency checks are connected to a c-class through the consis-
tency attributes. There can be many consistency attributes for each c-class.
The value of a consistency attribute is given by the corresponding attribute
constraint, which is of the form:

<c-Attribute.name> = <OCL constraint>

The <c-Attribute.name> is the name of the corresponding consistency at-
tribute. The attribute constraint will always be true (as an invariant should).
In addition, it is used when the attribute obtains its value. The value of
the <OCL constraint> will be calculated, true or false, and the consistency
attribute is given this value.

The association constraint connected to this c-assoc plays a role when
instantiating the c-assoc and the c-class. Given an object of the legacy
class, an object of the c-class will be created if the association constraint
is met. If the multiplicity is “1” on the c-class side and no c-class object
can be created because the constraint on the c-assoc cannot be meet, the
cardinality is wrong, and a consistency violation is reported.

Cyclic References A c-assoc may be referenced in attribute constraints
and other c-assoc constraints. A constraint attribute may be referenced
in attribute constraints that are attached to other c-classes (this is actu-
ally slightly too strict) and in c-assoc constraints. However, there is one
limitation: the mentioned references must not be circular.

Consistency Model Instantiation While most of the logic has already
been described, one question remains, namely that of instantiation order.
Since there can be references between the elements of the consistency model,
this order cannot be arbitrary. The order can be decided by building a
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dependency graph (which will typically permit several orders). The nodes
of the graph are obtained as follows.

1. A c-assoc that associates two legacy classes together with its constraint
defines one node (node type 1).

2. An attribute constraint together with the c-assoc that associates its
c-class and a legacy class defines a node (node type 2). If there are
several attribute constraint for a class, there will be several nodes
concerning the same class.

The edges arise from the navigations through c-assoc’s and the references to
the consistency attributes. If a node has a navigation that uses the c-assoc
of another node, then there will be an edge from the first node to the second.
Also, if one node has references to a constraint attribute (node of type 2)
then there will be an edge from the first node to the second.

Since there are no cyclic references, the graph will be an acyclic directed
graph. The instantiation can be done by selecting a node that fulfills the
following: it has no edges pointing to nodes that have not already been
instantiated. All instances of the selected node are created (e.g., if the node
represents a c-assoc, all links with fulfilled constraints will be created).

The whole consistency model has been instantiated when there are no
more nodes to instantiate. Use of the dependency graph ensures that all
elements referenced in a constraint are present at instantiation time.

Instantiation of the first kind of nodes has already been explained. When
instantiation of a node of type 2 is carried out, all legacy objects of the
“right” kind are considered. The instantiation will occur in two ways:

e The c-class and corresponding c-assoc have not yet been instantiated.
If the c-assoc constraint is met, an object of the c-class is created and
linked to the legacy object by an instance of the c-assoc. The value
of the consistency attribute is calculated, and the attribute is given
this value. At this point, an object of the c-class has been created and
linked to the legacy object; one consistency attribute has obtained its
value.

e The c-class and corresponding c-assoc have been instantiated. The

value of the consistency attribute is calculated, and the attribute is
given this value.
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A.5.3 Interpretation of OCL Expressions

The checking and evaluation of OCL expressions is done by an OCL inter-
preter. Building an interpreter or adapting an existing one for our purposes
is achievable, as the object structure is stable and ordinary. An example
of a rather similar application is found in the UML Specification Environ-
ment (USE) [GRO2], where expressions written in OCL are used to specify
integrity constraints on class diagrams. A model can be animated to vali-
date the specifications; snapshots can be taken, and for each snapshot, the
OCL constraints are checked automatically. Other tools for OCL includes
the Dresden OCL Toolkit [HDF00] and OCLE [Com)].

A.6 Summary and Research Directions

This paper has demonstrated how the full power of OCL as a declarative
language can come to play in a setting where the consistency of semanti-
cally overlapping data sources is to be specified and checked. The proposed
modeling technique is based on standard OCL and a small subset of UML’s
visual modeling elements. It is possible to use an ordinary UML tool to
model the consistency. A consistency test environment is described. The
use of XMI enables the integration of models and data of quite different
origins; for this to happen, conversion to XMI must take place. The frame-
work described needs a set of XMI-conversion tools to be in place; relation
database schemas can easily be mapped to UML models, and it does not
seem to be difficult to convert data stored in relational databases to XMI.

Because the amount of XML-data is growing rapidly, an investigation
of how XML schemas and data fit into this framework is of great interest.
The roles of ontologies [BKKT01] and the semantic web [KCH"01] have yet
to be investigated; automatic generation of consistency models may be an
option.
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This appendix presents the paper: Towards a Data Consistency Mod-
eling and Testing Framework for MOF Defined Languages [NJOO3], with
coauthors Christian S. Jensen and Vladimir A. Oleshchuk.

The paper can be seen as a continuation of Appendix A [NJ03]; it focuses
on the architecture of a framework for integration of models.

A slightly modified version of the [NJOO03] is presented below:

The number of online data sources is continuously increasing, and related
data are often available from several sources. However accessing data from
multiple sources is hindered by the use of different languages and schemas
at the sources, as well as by inconsistencies among the data. There is thus
a growing need for tools that enable the testing of consistency among data
from different sources.

This paper puts forward the concept of a framework, that supports the
integration of UML models and ontologies written in languages such as the
W3C Web Ontology Language (OWL). The framework will be based on the
Meta Object Facility (MOF); a MOF metamodel (e.g. a metamodel for
OWL) can be input as a specification, the framework will then allow the
user to instantiate the specified metamodel.

Consistencies requirements are specified using a special modeling tech-
nique that is characterized by its use of special Boolean class attributes,
termed consistency attributes, to which OCL expressions are attached. The
framework makes it possible to exercise the modeling technique on two or
more legacy models and in this way specify consistency between models.
Output of the consistency modeling is called an integration model which
consist of the legacy models and the consistency model. The resulting inte-
gration model enables the testing of consistency between instances of legacy
models; the consistency model is automatically instantiated and the consis-
tency attribute values that are false indicates inconsistencies.

B.1 Introduction

The Semantic Web [BLHLO1] aims at giving well-defined meaning to web
content, in this way allowing automatic reasoning about, and processing of,
web content. An important aspect of supporting this is the provisioning of
appropriate knowledge representation [Sow00] languages, which remains an
active area of research. Prominent examples of such languages include the
Resource Description Framework, RDF [BG]|, the DAML+OIL [HPSvHO02]
language, which integrates the US DARPA Agent Markup Language and
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the European OIL effort and is an extension of the RDF Schema, and
DAML+OIL’s successor, the World Wide Web Consortium’s Web Ontol-
ogy Language (OWL) [BGO3].

Somewhat unrelated to this, the Unified Modeling Language (UML) is
being used widely for conceptual modeling in the development of software
systems. It may be noted that UML has substantial semantic overlap with
knowledge representation languages such as those just mentioned, although
there are also differences [OMG03e, KCHT01].

The Object Management Group (OMG) recently issued a request for
proposals [OMGO03e] that seeks:

e A standard, Meta Object Facility (MOF) 2.0 [OMGO3h] compliant
metamodel for Ontology Definition (ODM).

e A UML 2.0 [OMGO03d] (UML for short) Profile that supports reuse of
UML notation for ontology definition.

e A mapping from the ODM to the profile.

The OMG request also seeks a language mapping for the ODM to OWL.
There are good reasons to reuse the UML notation for ontology defini-
tion [BKK™01]. For example, the graphical notation of UML is well tested
and tools exist that support UML.

There is a trend towards the use of languages that are tailored for spe-
cial problem domains and also towards integration of different languages
(as indicated by the latest request for proposals from OMG); in an OMG
context this can be done by using the extension mechanisms of UML, defi-
nitions of UML profiles, and also definition of new MOF metamodels. Tools
that support definition and application of this type of languages are largely
missing.

This paper takes the first steps towards defining a framework for exper-
imenting with the integration of UML and knowledge representation lan-
guages. The framework should contain components that can be assembled
to form different tools.

Our selected application is consistency testing of user data; the objective
is to ensure consistency among semantically related data, but with different
models (schemas) that might have been expressed in different languages
like UML and OWL. For data sources with semantically related models, one
simple consistency rule could be: two objects (entities) with the same identity
must have the same values stored for corresponding attributes; otherwise,
they are not consistent with each other (e.g., one data source claims that
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Bob has income of 10.000 an another lists earnings of 50.000). Figure 13
offers an overview of our approach to consistency testing of user data.

Manual
M1 > Consistency &=~ M2
Modeling

Model of User Model of User

Data Data
Consistency
Model
Automatic
M1 Consistency (& --------- M2
Testing
User Data ' User Data

\/
Consistency;
Report

Figure 13: Consistency Modeling Overview

Given models M1 and M2 for two data sources, a consistency model is
defined manually. The consistency model explicitly states constraints that
must be fulfilled in order for instances of the two models to be consistent
with each other. The consistency is defined at the “model level”; automatic
consistency testing is done on the user data with help of the consistency
model (which is instantiated automatically). The user data, depicted as
:M1 and :M2, must be instances of model M1 and model M2, respectively.
As can be seen from Figure 13, we need a consistency modeling tool and a
consistency testing tool.

This main body of this paper offers a more detailed description of the
consistency modeling and testing in a pure UML context, a more complex
example would involve usage of both UML and OWL in defining the consis-
tency model.

Some metamodeling tools are available in the literature [Inc03, Met06].
The consistency modeling and testing approach espoused in this paper is
based on the results presented in [NJO3].

This paper is structured as follows. Section B.2 specifies what the frame-
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work should support together with preliminary design considerations. In
Section B.3, a consistency modeling technique is described in the context of
UML; and the section also briefly describes how consistency testing of user
data can be performed. Finally, Section B.4 offers a short summary and
conclusions.

B.2 Data Integration Framework

In this section, we first describe the OMG metamodel architecture and how
to represent user data and model. Then a non-exhaustive list of requirements
to the framework is given, and finally initial design and implementation
considerations are presented.

B.2.1 Use of the OMG Meta-Model Architecture

The OMG advocates a four-layer metamodel architecture [OMGO03c] where
MOF constitute the top level (level M3). The UML metamodel resides on
the next highest level (level M2) and can be seen as an instance of MOF.
When system’s developers design a model using UML (level M1), the devel-
opers instantiate the metaclasses of the UML metamodel. In our context,
only the small subset of the UML metaclasses that typically get instanti-
ated on class diagrams are of interest. The run-time instances (user data)
are found at the lowest level (level M0). The user-defined model has been
instantiated to obtain these instances.

The OMG recommendations [OMGO3e] state that the Ontology Defini-
tion Metamodel (ODM) should be an instance of MOF; this places the ODM
at the same level as the UML metamodel—see Figure 14(a).

There is a semantic overlap between the UML metamodel and the ODM,
but they are not subsets of one another, and a combination of the two might
be worth investigating. Figure 14(b) illustrates a situation where the UML
metamodel and the ODM are combined.

Our aim is to establish a framework where different types of languages
and mixtures of languages can be investigated. The focus will be on lan-
guages that are defined by metamodels or, more specifically, MOF defined
languages. If successfully implemented, the framework might be character-
ized as a framework for integration of MOF-based languages.
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Figure 14: ODM Relative to the Metamodel Architecture

B.2.2 Representation of Model and Model Instance

UML 2.0 introduces the metaclass InstanceSpecification, which can be
used to model an instance of another model element. An instance of Inst-
anceSpecification can for example be used to illustrate an instance of a
class (an object) or an instance of an association (a link between objects). As
a concrete example, given a class Person (an instance of metaclass Class),
InstanceSpecification can be instantiated to illustrate an instance of
class Person; this is sometimes referred to as a snapshot (a run-time instance
at a specific time) of the object. An InstanceSpecification will have a
reference to the classifier that is the classifier of the represented instance.
Consequently, it is possible to have a model (at level M1) that describes both
a snapshot of user data and the corresponding metadata. When the user
defines the consistency model, only metadata (models) matters; when the
consistency testing is performed, both data and metadata must be present.

XML Metadata Interchange (XMI) [OMGO02] is an interchange format
that can be used on models/data from all the four levels of the OMG meta-
model architecture; XMI is a natural choice when it comes to storing and
exchanging models and data.

The proposed framework should be able to visualize instances of models,
e.g., visually pinpoint inconsistencies exposed by the consistency testing.
The mentioned use of InstanceSpecification will make this possible.
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B.2.3 What the Framework Should Support

The list that follows briefly states central functionality expected from the
proposed framework.

e Support definition of MOF metamodels, e.g., guide the combination of
two metamodels and resolve possible conflicts. The definition of MOF
metamodels can also be done using tools such as UML2MOF [net03b],
which transforms UML models (conforming to UML Profile for MOF)
into MOF metamodels. Also, standard tools from IBM [Rat03] have
plug-ins that allow this.

e Offer users the possibility to load an MOF-specified metamodel.

e Offer users the possibility to instantiate the loaded metamodel. For
example, if the loaded metamodel is the UML metamodel then the
user is given the possibility to make UML models (which is done by
instantiating the loaded UML metamodel); or if the loaded metamodel
is ODM, the user is given the possibility to define ontologies.

e Import and export of models based on XMI and the UML Diagram
Interchange Specification [BJMF02].

e A UML model is typically represented as an instance of the UML
metamodel, but an SQL schema is not. Transformation of an SQL
schema to an UML model is rather straightforward. A transformation
that is even more likely to be necessary concerns the user data that
have to be represented as instances of metaclass InstanceSpecifica-
tion.

e Specific features that support the modeling of consistency and auto-
matic consistency testing. Section B.3 offers more detail.

B.2.4 TImplementation of the Framework

The implementation will be a set of components that can be assembled to
form different tools. Figure 15 shows a set of interconnected components
that together form a modeling tool. For example, if the component named
Metamodel Defined with MOF' is the ODM, the component named MOF
Based Modeling Tool will give the user the ability to define an ontology that
is made persistent with the help of the Model Repository component. Since
modeling is to be done visually, the tool needs to know how to display the
specific ontology elements. The Concrete Syntax Definition component will
support this, although how this is to be achieved has yet to be investigated.
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Figure 15: A UML Component Diagram Showing a General MOF Based
Modeling Tool

An important implication of the framework being based on the four-layer
metamodel architecture is that formal Meta Object Facility descriptions of
abstract syntaxes must be a understood; this understanding is incorporated
(hard coded) into the the component named MOF Based Modeling Tool.
Figure 15 only offers an abstract picture, and further investigation is neces-
sary.

The Eclipse Platform [Dri01,DFKT03] is designed for building integrated
development environments; it has a plug-in architecture that makes it suit-
able for extensions, and several useful plug-ins are already present. The
UML tool Rational XDE from IBM [Rat03] is built on the Eclipse Plat-
form. Our framework could be built by making the right plug-ins for the
Eclipse Platform. NetBeans IDE [net03a] is a similar framework and is also
a candidate for use in implementing such frameworks.

B.3 Example Application of the Modeling Frame-
work

Our consistency modeling and testing approach is presented in [NJ03]. This
section presents an example and propose a component architecture to achieve
the desired functionality.
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Figure 13 offers an overview of our approach. The consistency modeling
is to be done with the Object Constraint Language (OCL) [OMGO03c| and
a selected subset of UML modeling elements:

e Association

e OCL constraint
e Association class
e Class

Class attribute

The output of the consistency modeling is an integration model where
the two legacy (in this context, “legacy” means “pre-existing”) models (M1
and M2) have been integrated and the desired consistency has been expressed
explicitly. We term the part of the integration model that is not part of any
legacy model the consistency model—see Figure 16.

IM
«consistencymodel»
L1 CM L2

C1 C2
idl fe—-———- Y ‘ ....... = -3 id2
a1 a2

Figure 16: Integration Model Encompassing Legacy Models and a Consis-
tency Model

We assume that the modeling activity is manual. Next, consistency
testing is done automatically with the consistency model and legacy data
(:M1 and :M2) as inputs. Some processing of the user data might be neces-
sary since they are to be represented with the help of metaclass Instance-
Specification. The output of the consistency testing activity is a report
describing the consistency violations that were encountered.

B.3.1 Consistency Modeling Example

Figure 17 visualize three legacy models. Legacy model M2 relates pictures
to persons, legacy model M3 concerns observations done at different obser-
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vation posts and legacy model M1 concerns information about police inves-
tigations.

M2 M3
1 1
1 1 -
ObservationPost
Person Observation TN
SSN " * Ol a.rrl1e
ame time oPost| Position
M1
Investigation Suspect Stay Location
name i = ssN L I timelnterval 1 1 area

Figure 17: Three Legacy Models

From the perspective of the police, the following question is of interest::
Has the suspect lied about his whereabouts? A suspect is exposed as lying
if he claims to have been in one place, but has been observed at the same
time from an observation post located elsewhere..

In Figure 18, a consistency model has been inserted. The dashed-dotted
line between class Person and class Suspect represents an association—
we term it a consistency association. This association is used for linking a
suspect with a picture of the suspect. The OCL constraint attached to the
association: person.SSN = Suspect.SSN ensures that an object of class
Suspect can only be linked to a correct object of type Person (the two
objects must represent the same person).

Assume that classes TimeSupport, AreaSupport, and PictureSupport
are part of the framework; the operations of these classes are class scoped
and can be used inside OCL expressions.

The class Stay is used to record where a suspect claims to have been
during a specific time interval. The consistency association between Stay
and Observation is used to link a “stay” with observations done at the
same time at different locations.

Class ObservedAtOtherLocation is a consistency class (stereotyped as
c-class). The model prescribes that each Stay object must be linked to an
ObservedAtOtherLocation object (multiplicity one-to-one). The constraint
on the attribute cNotExposed prescribe the value true if no inconsistency
has been exposed regarding where the suspect claims to have been and
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observations done; if there is an inconsistency then cNotExposed must be
false. Attribute cNotExposed is an example of what we call a consistency
attribute.

{cNotExposed = not stay.obs->exist(oneObservation | [ —
PictureSupport.recognized(stay.suspect.person.picture,
oneObservation.picture))  }
M2 M3
1 1
1
Person oo ob 1 ObservationPost
<<c-class>> i
SSN ObservedAtOtherLocation servation * 1| oName
time iti
name cNotExposed:boolean A oPost| Position
1\ 1%, =, obs
AN \ ’
S \
. \ /
\.\ N\ 7/ |{ TimeSupport.inside(obs.time,
N \. / stay.timelnterval)
{person.SSN= . \ 7 and
Suspect.SSN} N \-\ # AreaSupport.outside(obs.oPost.Position,
'\_\ \ / stay.location.area) }
. \ ;
M1 N N
4 EWS
Investigation Suspect Stay Location
1 * *
name SSN ! timelnterval 1 1 area

Figure 18: Consistency Model: Has the Suspect Been Somewhere Else?

The integration model can be made with an ordinary UML tool (except
for the use of the dashed-dotted line, a stereotype c-association might be
used instead).

At consistency test time an instance of the integration model will be
instantiated. Instances of legacy models (the user data) are prefabricated
and will be inserted as parts of the integration model instance. The test
tool then automatically instantiates the consistency model. The consistency
model can be seen as a declaration: instances of consistency model elements
are in a sense derived from the legacy instances and the declaration. The
constraint person.SSN = Suspect.SSN can function as a sort of production
rule: for each pair of a Person object and a Suspect object, the constraint
can be evaluated; and if it is fulfilled, a link can automatically be created.
The rest of the consistency model can be instantiated in the same way.

A closer look at the constraint on cNotExposed reveals navigations through
all the consistency associations. As a consequence, instantiation of this at-
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tribute must be performed last. The constraints, the consistency associa-
tions, and the attributes of the consistency classes must not be dependent
on each other in a cyclic way—if they are, it might not be possible to do
the automatic instantiation. The order of instantiation can be decided by
building a dependency graph, see reference [NJ03] for details.

The attributes of the consistency classes are used when the consistency
report is generated, e.g. if cNotExposed equals false then there is a con-
sistency violation.

B.3.2 Consistency Test Tool

A preliminary design of the consistency test tool is presented in Figure 19.
The component named UML Model and Data Repository provides the inte-
gration model and the legacy data.

«component»
Consistency Tester

‘[;ITATPGZ?:; «component» «component» «comopgtent»
)__ Manager _( _c

and Data | % 9 & IgsutiTS:f & Expression

Repository Evaluator

T 1

«component» «component» «component»
Consistency —§)——— Report — Integration
Report Generator Model

Instance

Figure 19: UML Component Diagram Showing the Consistency Tester

Looking inside the Consistency Tester component, we find the subcom-
ponent Instance Builder that builds the consistency model instance which
is represented by subcomponent Integration Model Instance. To build the
instance, evaluation of OCL-expressions are necessary; this is done with the
help of the OCL Expression Evaluator subcomponent.

The subcomponent Report Generator uses the subcomponent Integra-
tion Model Instance and produces a consistency report.
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As mentioned above the integration model can be made with an ordinary
UML tool, but an ordinary UML tool will allow cyclic references; a more
sophisticated tool could prevent this. Obviously the framework presented
above (section B.2) is a candidate for making such a tool. In [NJ03] a
metamodel for consistency models is proposed. This metamodel could be
input to the general MOF-based modeling tool presented above.

B.4 Summary and Conclusions

There is momentum in industry and academia towards the integration of
UML and knowledge representation languages. A recent request for pro-
posals issued by the Object Management Group is a clear indication of this
(e.g. [OMGO3e] and [OMGO3f]). We have started the development of a
tool (or framework) that will support such an integration: if successfully
developed, the tool can be used to define diagrams that simultaneously
incorporate both UML and “ontology features.” The tool is meant as a
MOF metamodeling tool, meaning that a MOF metamodel can be input as
a specification. The tool then allows the user to instantiate the specified
metamodel.

This paper has demonstrated how the full power of OCL as a declarative
language can come to play in a setting where the consistency of partially
overlapping data sources is to be specified and checked. The modeling tech-
nique proposed in the paper for consistency specification is based on stan-
dard OCL and a small subset of UML’s graphical modeling notation. In
future work, the reasoning possibility typically offered by knowledge repre-
sentation languages will be included.

The proposed tool may be seen as representing a step in the direction
towards the creation of a language that possesses the full power of UML and
knowledge representation languages. The described consistency modeling
and testing, which is an application of the framework will function as a
practical demonstration.
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This appendix presents the paper: Representation of Levels and Instan-
tiation in a Metamodeling Environment [NPKO04], with coauthor Andreas
Prinz and Andreas Kunert.

The paper presented in the previous appendix (Appendix B) discussed
how to represent metalevel instances, this paper continues the discussion
and propose a technique for handling instantiation. The paper is presented
below:

In the scope of meta-modeling it is important to consider descriptions
sometimes as a model and sometimes as a metamodel, e.g. the UML meta-
model which is a metamodel for UML and at the same time a model in
terms of MOF'. For this handling to be easy, this article describes a meta-
level representation that includes both aspects. It covers the most impor-
tant relations within the MOF framework starting with plain objects and
relations. A prominent role plays the instantiation, which is the only con-
nection between levels. The article explains how instantiation is represented
and which kind of constraints are related to it. This way it is possible to
bring metamodeling to its basic semantics.

C.1 Introduction

There is a trend towards the use of languages that are tailored for special
problem domains and also towards integration of different languages; in an
OMG context this can be done by using the extension mechanisms of UML,
definitions of UML profiles, and also definition of new MOF [OMGO3h]
metamodels. Tools that support definition and application of this type of
languages are largely missing. Some of the goals of the SMILE (Semantic
Meta-model-based Integrated Language Environment) project are to design
and implement a framework that can be used to do metamodeling, inte-
gration of different languages and even support for the definition of new
meta-metamodels different from MOF.

Our SMILE project targets all the levels of the OMG four-layer meta-
model architecture, and we are proposing a basic representation to be used
on all levels. We call our representation FORM after its main construct
Form ?. The term carrier from the telecommunication field has many simi-
larities with our representation since all types of objects and classes are to
be carried (represented) with it.

3We also consider FORM to mean “Fantastic Organized Representation of Models”.
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All levels, also the lowest level, will be covered in our basic representa-
tion; this lays the ground for executable UML with “metadata facilities” and
it also makes it possible to specify how two neighboring levels fit together
as described later.

As an example we discuss how FORM can be used to “carry” the different
levels of the metamodeling architecture of UML. Afterwards we consider how
instantiation relates to FORM.

Except for instantiation, semantics is not considered, but will be dealt
with at a later stage. Even without full support for semantics the framework
has interesting applications like analyzing static data (e.g. a snapshot of a
running system) and check if an instance is consistent with a given model.
To do these types of applications we would also need OCL. Relating OCL
and XMI with FORM is briefly discussed.

This paper is structured as follows. Section C.2 gives an introduction
to metamodeling and representation of metadata, followed by an overview
of related work in Section C.3. We introduce our FORM representation in
Section C.4. In Section C.5 we discuss why this simplified representation
is able to cover all the things already within XMI, hence covering all that
is necessary for models. We define the semantics of instantiation within
Section C.6 and offer some conclusions and directions for further work in
Section C.7.

C.2 Metamodeling

Today the metamodeling approach is a common way of organizing models,
a way that involves descriptions on levels placed on top of each other. The
concepts of one level have corresponding descriptions on a next level (met-
alevel, level above). Stated differently, a level is a model and the level below
is an instance of this model. In relation to object-oriented programming
the lowest level contains the objects of a running system, while the classes
reside on the next lowest level. Traditionally, the BNF notation has been
used to describe a programming language, this would be the next level. The
top level would be a definition of BNF4. These 4 levels correspond to the
4 levels of the four-layer metamodel architecture of OMG, but here visual
UML models are used instead of BNF. See Fig. 20 for an overview.

The advocated architecture is based on strict metamodeling which means
that all elements on one level are instantiated from the level directly above.
It seems natural to view the instantiation logic as operating with 3 levels,

4Please note that we do not need a level above BNF, because BNF can describe itself.
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Figure 20: The four-layer metamodel architecture

e.g. you have a description of what a class is, you have a class (e.g. class
Person) and you have an object. The definition of the class concept must of
course be done with the help of yet another level.

MOF and UML do both offer support for object-oriented concepts and
the core parts of MOF and UML are structurally equivalent. Since MOF is
used to define itself, the level above MOF (M4) can be seen as MOF once
more; one can imagine an infinite number of MOF levels - we have infinite
regression. MOF is defined by self referencing, “ending up with” class Class
which is an instance of itself.

The syntax of UML has been described in a notation independent way;
this abstract syntaz defines the elements of UML and how they relate to
each other. There is also an agreement on the concrete syntax of UML.
The concrete syntax of a simple class is a rectangle with the class name
inside the top compartment and optional compartments for attributes and
operations. An object is described as a rectangle with a top compartment
containing an optional object name and then after a colon its class, the
complete text is underlined (e.g. Bob:Persom); an object can also have a
second compartment for slots with values (attribute values).

You can only display modeling elements by using concrete representation;
the abstract syntax is usually defined with class diagrams together with
OCL [OMGO03d] constraints. An instance of the UML metamodel can be
shown as an object diagram or as a class diagram; the class diagram being
a visual interpretation of the underlying object-graph. In a sense the class
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Figure 21: Different representations of the same structure.
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diagram notation is using syntactic sugar, e.g. an attribute is shown inside
a compartment and not as an instance of Property. A class diagram is a
natural choice when you see a level from the level below, while an object
diagram shows how the level has been instantiated from the level above.

A part of the MOF (abstract syntax) is shown in Fig. 21(a) on level M3, it
deals with the structure of classes and states that a class can own attributes
(properties). Fig. 21(a) shows how the abstract syntax has been instantiated
to form the UML concept Class with attributes name and isAbstract on
level M2; the class Class on level M2 is an instance of class Class of level
M3 and the attributes are instances of class Property. Similarly, the class
Person on level M1 is an instance of the UML concept of Class, and on level
MO there is even an instance of the class Person. Fig. 21(b) show the same
with clabjects. In [AK02, AKOOb] an entity with class and object nature
is called a clabject, in fact all classes are clabjects. The clabject-notation
allows you to see the attributes and the slots of a class, this can be shown
in separate compartments as done in the figure. All the classes of Fig. 21(a)
are represented as clabjects in Fig. 21(b); Fig. 21(b) is more explicit: for
instance the name attribute of class Class on level M3 has been instantiated
to a slot with value ¢ ‘Class" on level M2, class Class on level M2 can be
instantiated since slot isAbstract has value false, the attribute name is
an instance of Property.

We can make this representation even more explicit by also showing the
relations between the classes and their attributes as in Fig. 22. Here we have
shown all attributes as separate Property objects being associated with their
defining class. Please note that for full completeness we also would have to
insert a definition of the association between Class and Property on level
M35.

C.3 Related Work

Metamodeling has been discussed for a long time, to mention a few articles:
[AKO2] describes the unification of the class and object facets (clabject);
the same article also presents an elegant enhancement of the instantiation
mechanism to allow definitions to transcend multiple levels; [CEK00] aims
at improving the metamodeling architecture of UML.

®The definition would be like: Class:Class (already on M2) linked to :Property linked
to :Association linked to :Property linked to Property:Class (already on M2). Both
the links on M2 could now have an instanceOf relation to :Association on level M3. For
the sake of understandability we have omitted these parts on the figure.
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Figure 22: Representing the same underlying structure as Fig. 21, but more
explicit.

There are several metamodeling repositories based on the Java Metadata
Interface (JMI) [Jav02] specification. JMI is based on MOF and makes it
possible to create and access metadata; this can be done at design time or
runtime by using the reflective JMI API or via a set of generated metamodel-
specific APIs. A tool like Metadata Repository (MDR) [Mat] can import
a model represented in XMI and automatically produce JMI interfaces for
accessing the metadata and also automatically provide implementation of
the JMI interfaces.

The Eclipse platform [Dri01] is designed for building integrated devel-
opment environments (IDEs). It provides already a working IDE for Java
development and there are plug-ins for drawing UML diagrams. The Eclipse
Modeling Framework (EMF) [Ecl04] includes a metamodel (Ecore) that is
different from MOF; there is an EMF-based implementation of the UML
2.0 [Ecl07] metamodel. The functionality of EMF is quite similar to MDR.

All the mentioned Java-based approaches are using the class/interface
concept of Java to implement the metaclasses, and the semantics are not
handled separately as we plan to do.

The Coral modeling Framework [Iva02] is not based on Java but on the
Python programming language; the meta-metamodel (MOF) is hard coded
but different metamodels can be installed automatically; there is currently
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no support for the lowest level. The framework support some advanced
features, like transaction control of model updates and scripting of queries
in Python. This approach is quite similar to the Java approaches, but here
the class mechanism of Python has been used.

One major source of inspiration has been the UML and MOF specifi-
cations; inspecting these documents made it clear that a level can be rep-
resented as a graph consisting of connected objects; the concepts related
to describing a class must then also be represented by objects, e.g. an at-
tribute is an instance of Property linked to another object representing
the class. Also by examining the possible instantiations described (e.g. an
association is to be instantiated as a link), we got a picture of how the
instanceOf-relation applies. We are designing a metamodeling framework,
and are concerned about how two single levels can be connected in a correct
way. Those types of questions are not answered by a repository-based ap-
proach. In our approach we separate out the representation, and then allow
attaching of different semantics.

C.4 FORM: Our Basic Representation

As our aim is to represent models the same way as metamodels, we propose
in this section a basic representation for models called FORM, which can be
used independently of the level of the models. Our proposed representation
is based on the following observation: Fvery part of a level in the metamodel
structure is an instance of something at the level above.

Generally an instance has been instantiated from the level above, but
the top level is special: everything at this level can be seen as an instance of
something residing on this same level. This can be seen as using the same
level for describing itself.

The metamodeling environment can be restricted to objects; in a sense
“object” is the lowest common denominator of all levels. Since our meta-
modeling approach is object-oriented, we need to represent the following
information:

e Objects.
e Slots owned by objects.
e Slot values and their type.

e Links between objects.
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Figure 23: FORM Context

e Every object knows its class.
e Every slot knows its attribute.
e Every link knows its association.

One metalevel is an understanding (meaning, semantics) of how the level
below can look like; this understanding is necessarily coded into the structure
of the level. To make such a structure one needs a carrier - a substance that
can be formed into a coded understanding. We are used to papers and
pencil, our FORM representation on the other hand is meant for computers.

As we can see in Fig.23, FORM is providing an abstract representation
of models (e.g. UML models). We can describe the constituents of this
representation as done in Fig. 24, where we define physical building blocks
that can be put together to form complex structures, much like how atoms
can be put together to form molecules.

The metaphor above used the term physical which in this context can
be seen as the same as concrete, one can choose to see the computer objects
as existing physical objects [MMPr93]. “Abstract information” must be
coded in concrete representation; the coded information is forming a pattern
(structure) that might be interpreted by humans or machines. A computer
can interpret in the sense that it can transform and operate on the structure.

It is of course problematic to talk about abstract representations and
even to handle them. Therefore we also need a concrete (physical) repre-
sentation. For our implementation this can turn out to be computational
objects, e.g. Java objects. For the sake of this article, we do also need a

152



App. C - Representation of Levels and Instantiation in a Metamodelling...

Symbol

name:String

instanceOf

Instance
interpretation

. [,
H Slot H Form ‘

{ordered} >

1

Figure 24: FORM - the basic representation

representation that can be put onto paper. We define such a representation
in section C.4.2.

C.4.1 Definition of FORM

Fig. 24 shows a model of our basic representation; where we have Form,
Slot, Value and Link as four special types of instances. Objects will be
represented as instances of Form, links as instances of Link and slots as
instances of Slot.

Form will be involved in the representation of both objects and classes;
it seems that Form is a good name since it has the following two meanings:
“the shape and structure of something” and “a mold for shaping something”.
We also consider a value to be an instance, this is further discussed in
section C.6.

An instance of class Symbol (typically the name of what it represents),
will have a link to the Form-instance it symbolizes. The mentioned Form-
instance, together with connected slots and possibly some other linked Form-
instance, can be seen as an interpretation of the symbol. Instead of letting an
instance be linked directly to what it is an instance of, we have an interface
of Symbols between levels. This allows us to handle levels separately from
their adjoining levels and only bringing them together when necessary. It
is easy to relate the model to a metalevel border: the interpretation of a
symbol is on the upper side of the border and the “instances of the symbol”
are on the lower side of the border. The symbols of the instantiable forms
of one metalevel constitute the interface towards the level below.

Fig. 25 shows how the levels can be seen as separate components; each
component provides an interface which can be thought as the symbols on the
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Figure 25: Viewing the levels as components

lower border of the level it represents. On the other hand, each component
is requiring an interface which can be seen as the upper border of the level
it represents. The MOF-component is special since its required interface is
the same as the interface it provides. Also level MO (User Data) is different
since it provides only an empty interface.

C.4.2 The FORM Notation

In order to be able to visualize the (abstract) FORM representation, we
need some notation. Of course it would be possible to use some kind of
UML notation, because UML includes all aspects that are necessary here.
However, as our notation is used for representing models and metamodels,
it usually leads to confusion if we use a known notation. Therefore we
use the symbols shown in Fig. 26 for visualizing the elements of our abstract
representation. We visualize a reference as a line connecting the two involved
entities (arrows are used to indicate the direction of the reference; if there are
two references going opposite ways we omit the arrow-head). The X inside
Symbol instance is to be replaced with the actual name of the Symbol; the
A inside Value instance is to be replaced with the value (e.g. 5).

In Fig. 27 our mechanism is used with the example of Fig. 21. As we
can see, a (UML) class is represented as a Form, a slot as a Slot, and so on.
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Figure 26: The visual symbols of the FORM-notation.

It is obvious that this again is just an even more explicit representation, the
structure represented is still the sameS. From Fig. 27 it can be clearly seen
that our representation is capable of representing all levels in a uniform way
using only the few notational elements given in Fig. 26.

C.4.3 1InstanceSpecification in MOF 2.0 and UML 2.0

The object notation with the instanceOf-relations introduced in figure 21
is not defined in [OMGO03h, OMGO03g, OMGO3i]. The concrete syntax of
InstanceSpecification is quite similar, but the purpose of Instance-
Specification is not to relate an object to its class at the level above. The
UML specification [OMGO03g] states: “An instance specification is a model
element that represents an instance in a modeled system... An instance of
an InstanceSpecification is defined in a model at the same level as the model
elements that it illustrates”.

An extract of the UML metamodel is shown in figure 28. As we can see,
there will be no reference to the level above when it comes to instances of
InstanceSpecification or any of the other classes. Our conclusion is that
InstanceSpecification does not fill our needs, we must have references to
the level above.”

SPlease note that the simplifications done in the earlier figures are inherited and also
that some symbols are duplicated.

7Author comment given when the dissertation was compiled: Figure 28 shows an as-
sociation from InstanceSpecification to Classifier and this may be interpreted as a
reference to the level above when instantiated; the two levels involved would then be re-
lated by ontological instance of relations. However, it does not seems like ontological levels
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Figure 27: FORM representing the same underlying structure as Fig. 21

C.5 XMI

In this section we want to discuss if the FORM representation is sufficient
to represent models stored using XMI and describe how a production of
XMI files starting from models represented by FORM looks like. In SMILE
we plan to use XMI as the exchange format. The main advantage is that
XMI is a widely accepted standard, so we are able to exchange our models
with modeling tools from other vendors. This is especially important in the
project startup phase, where we can use XMI documents created by other
tools as test samples.

XMI is a standard for exchanging and storing models using XML. The
current version is 2.0 released by the OMG on May 2, 2003. The standard
defines a number of production rules which are used to read/store models
in/from XML files. The main production rules are:

are considered in the citation given: “...an InstanceSpecification is defined in a model at
the same level as the model elements that it illustrates” — this is somewhat confusing!
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Figure 28: InstanceSpecification from the UML 2.0 metamodel

e production of XML Schemas starting from an object model

e production of XML documents compatible with XML Schemas
e production of XML documents starting directly from objects

e reverse engineering from XML to an object model

The first three methods are used for saving model data while the last one
is needed for restoring. There are at least two ways of getting an XML file
out of a model. The longer one is:

e Create an XML Schema which represents the metamodel (in older
version of the XMI standard Document Type Definitions (DTD) were
used instead of XML Schema).

e Create an XMI File according to the XML Schema containing the
model.

The shorter way consists only of one step:
e Directly create an XMI File representing the model.

As you can see, the creation of XML Schemas representing the meta-model
is optional. It is recommended nonetheless because it allows you to validate
your model (stored in an XMI file) against the meta-model without having
to decode the XMI file first. Moreover it gives you a possibility to define
unique representations of certain model elements when the XMI standard
allows multiple ways of encoding them.

However, it is still possible to store invalid models (according to the meta-
model) in a valid XML file (according to the XML Schema produced out of
the same meta-model) due to some semantic constraints of the meta-model

157



App. C - Representation of Levels and Instantiation in a Metamodelling...

which cannot be expressed in the XML Schema. Thus XML Schemas of
meta-models provide you necessary, but not sufficient criteria for validating
models stored in XMI.

If we have a model stored using the FORM representation, we can create
an XMI file using the following rules:

Every model element stored as Form in FORM becomes an XML element
in XMI. This XML element is named like the Symbol the Form is described
by, and has an attribute xmi : id whose value is unique among the saved forms
(we will use xmi as the name for the namespace http://wuw.omg.org/XMI
in the following examples). A Form implementing a computer (defined in
the metamodel) would be written like the following:®

<computer xmi:id="cO01"/>

Attributes, stored in Values and referenced via Slots in FORM, can
be represented in XMI in two different ways. They can either become XML
attributes of the corresponding XML element (the XML element of the Form
the attribute belongs to) or XML elements that belong to the XML element
of the owner. In the first case, the name of the Symbol describing the
textttSlot is represented by the name of the XML attribute. In the second
case, it becomes the name of the XML element.

Considering the computer mentioned in the example above had an at-
tribute called os (which is stored using a Slot implementing the Symbol os).
The XMI representation of two computers running two operating systems
could be represented by the following XMI fragment (both possibilities are
shown):

<computer xmi:id="c01" os="linux"/>

<computer xmi:id="c02">
<os>unix</os>
</computer>

Associations are represented by Links in FORM. Like attributes they
can also be stored using either XML attributes or XML elements. An XML
attribute is named like the association (i.e. the Symbol it is described by)
and carries the xmi:id of the referenced element(s) as value. An XML
element is named in the same way and it contains the referenced element(s)
in the href attribute. If we add an association user from computers to

8¢01 is just an automatically generated identity of this entity. It is not needed in this
small example.
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persons in our example, we can represent two computers which are both
used by the same two persons like that:

<person xmi:id="p01">
<person xmi:id="p02">

<computer xmi:id="cO01" user="p01l p02"/>

<computer xmi:id="c02">
<user href="#p01"/>
<user href="#p02"/>
</computer>

Apart from some minor details the transformation process from a FORM
model to an according XMI representation is rather simple. However, the
process of restoring XMI data is much more complicated.

It is obvious that we are able to import XMI files formerly exported by
ourselves. It is harder to import XMI files from other vendors.

The biggest problem is that XMI allows different representations of the
same model construct. Moreover there are some XMI constructs that we do
not plan to use, but we have to expect tools from other vendors using them.
However, we can represent all these constructs using FORM.

The only exception to this statement we know are the so-called vendor
extensions. These are extension elements in an XMI file that can be used
to store additional data which is only important for the tool which exports
(and reimports) the XMI file (e.g. graphical modeling tools can use vendor
extensions to store the screen positions of model elements).

The standard behaviour of XMI applications is to ignore all unknown
vendor extensions. In SMILE we plan to deal with vendor extensions the
same way. This is not only unavoidable due to the fact that the data in
vendor extensions is unstandardized, but also acceptable since vendor ex-
tensions should not contain model data.

To summarize this section we can say that we are able to convert every
model from a FORM representation to an XMI representation and vice
versa. This means that FORM is sufficient to store any kind of models.

C.6 Instantiation

The most interesting action with metamodeling is instantiation, meaning
creating a level using the information on the next higher level. However,
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metamodels are declarations; the act of instantiating a metamodel is not
described, and only the set of possible correct results is described®.

Therefore we will discuss in this section the problem of deciding if two
given single levels can be seen as neighboring levels. What are the seman-
tic consequences of connecting two levels and what must the underlying
structure support to achieve a “sound” connection?

The discussion will be concerned with two adjacent levels, a lower level
(object/instance level) and an upper level (meta level). We consider basic
instantiation patterns for all the elements of our FORM representation, i.e.

e Instance, see C.6.1

e relation between Symbol and Instance, see C.6.1
e different kinds of Instances, see C.6.3

e relation between Form and Slot, see C.6.2

e relation between Link and Slot, see C.6.2

e relation between Slot and Value, see C.6.2

e built-in values, see C.6.4.

We only consider the symbol interfaces related to the instantiation, i.e. the
upper interface of the lower level (client interface) and the lower interface of
the upper interface (server interface). In our approach, we do not have any
information coded “into the symbols”. This way the names do not provide
semantics.

C.6.1 Basic Instantiation - Matching Symbols

Any instance on any level has to be related to a defining Form on the level
above. The most basic pattern describes this: an Instance on the ob-
ject level relates to a Form residing on the meta level through matching
Symbols of their related interfaces, i.e. level borders. Two Symbols in differ-
ent borders are considered to be the same Symbol if they have equal names,
assuming that the Symbols of each border are unique.

Fig. 29(a) shows two levels that are to be connected; the Symbols are
represented as Al and A2, for a match to occur these Symbols must be the
same. Assuming Al and A2 are equal then the result of matching can be
seen in Fig. 29(b).

9The MOF specification has some instructions on how to go about and also includes a
factory-class.
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Figure 29: Connecting a Form to its description.

If some Symbols of the server interface are not merged with Symbols of
the client interface, then it simply means that there are no “instances of”
these Symbols, which is no problem. If some Symbols of the client interface
are not merged with Symbols of the server interface then some instances of
the object level are still without definition, which means that the matching
was not completely successful - some Symbols are unresolved.

If we assume that this rather uncritical matching of Symbols has created
a situation where all Symbols of the client interface are matched, then we
have to check that the descriptions on the meta level fits to the instances
on the object level. This is described below.

C.6.2 Instantiation of Links

The only possible information that can be given on the meta level so far is
structural information in the sense of connections between entities. There
are three kinds of connections defined in Fig. 24, ignoring the connections
with Symbols which already have been taken care of.

The connections we are talking about are not the links which are in-
stances of Link as part of FORM; the connections we are talking about are
the most basic ones and they must be supported by the underlying system
(how they are physically represented is up to the underlying system - in Java
such links could be implemented as references).

What is the relation between Link and a connection? It is clear that we
need some kind of description of an object level connection. This descrip-
tion should be given on the meta level, and according to the possibilities in
FORM it has to be a Link instance. However, as Link can only be connected
to a Slot, a “complete” link is represented as (form-)slot-link-slot(-form),
and connections will be used to bind those entities together (e.g. a connec-
tion from a Slot-instance to a Link-instance).

161



App. C - Representation of Levels and Instantiation in a Metamodelling...

A A
o} Aemed,

[4]

[4]
N
>

>e]
>[4

[

(a) (b)

Figure 30: Relating a connection to its description.

Fig. 30(a) shows two levels that are to be related; the Symbols match
and the two levels connected can be seen in Fig. 30(b). On the upper level
of Fig. 30(b) we find the pattern: “slot-link-slot” which is what we choose
to see as a description of a connection. On the lower level we find the
connection between a form and a slot. A connection on the lower level must
always have a corresponding instance of the slot-link-slot pattern on the
upper level meaning that the slot-link-slot pattern is to be found on the
upper level between the descriptions of the two involved entities.

If this condition can not be met we can not correctly connect the levels,
the description does not fit to the instance. The same logic also applies for
a connection from a Slot to a Value, and for a connection from a Link to
a Slot.

C.6.3 Different kinds of Forms

It seems that so far all connections on the lower level are always represented
by the same slot-link-slot pattern on the upper level. This is not really
sufficient since the three kinds of connection are different, e.g. a slot-link
connection is different from a slot-value connection. In order to provide
support for this we attach an information to the Forms stating which kind
of instance can be related to them. In order to also have this information
visible on the interface, we in fact attach it to the corresponding Symbols.
In Fig. 31 we have added an enumeration InstanceKind to distinguish the
different kinds of instances a Form can create.

The description type (or instance type) can not be assigned arbitrarily.
Take as a complex example the instantiation of Link: To do this a rather
huge structure has to be present on the upper level (a complete description
of an association). If this structure is not in place we end up with having a
description that does not make sense. The support of these things is done
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by the framework and is not described in this article.

C.6.4 Handling Values

The only special kind of values we have introduced so far are the Links. How-
ever, in real systems it is also necessary to handle primitive data like integers
or strings. Looking at UML we find the concept of primitive type, which is
called PrimitiveType (or just Primitive); instances of PrimitiveType are
primitive types like Integer or String. Instances of these types are values
of the domain they represent, e.g. 5 is an instance of Integer. The number
5 is an example of what they call a PrimitiveValue. A primitive type is
special since it is implemented or built in by the underlying infrastructure;
it is made available for modeling and is accessible at all times and at all
levels. Its semantics cannot be found on a level in the metamodel struc-
ture - it has no “relevant substructure (i.e. it has no parts)” as they state
in [OMGO03d]. Assume that 5 is used on level M1; 5 could then be seen as
an instance of the type Integer which resides on level M2; Integer could
then be seen as an instance of PrimitiveType which resides on level M3,
and finally PrimitiveType could be seen as an instance of Class.

However, a basic value has already a defined semantics, which can be
related to the definition of its (proto)type on the level above. The same is
not true for the other instances, they all have an explicit structure as their
semantics.

In our approach, however, we do not have the possibility to give special
semantics to names - all semantics should be given explicitly or be built-in.
Therefore we introduce a special kind of Value for the basic values called
BasicValue. We also introduce a special kind of Form for the basic types
called BasicType. Both basic types and basic values are not characterized
by their internal structure, but they carry their semantics already with them.
In a way, they have an “external structure”!?. Handling of external structure
is only possible to be built-in, which is what we do here.

The only interesting information about basic values and basic types when
it comes to instantiation is their relation: When is a basic value an instance
of a basic type? This structural conformance check has two parts. First,
the defining form of a basic value has to be a basic type. Second, the basic
value should be within the range of the basic type.

10 As the research on abstract data types has shown it is possible to turn every external
structure into an internal structure. However, as was also shown by the ADT community,
this is in general very error-prone and should be avoided if there are other possibilities.
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The first requirement is easily handled by introducing a new InstanceKind
for basic values. The second requirement is handled by introducing a type
checking function for basic types, i.e. BasicType:membercheck(Value) —
Boolean. The result of all these additions is seen in Fig. 31.

«enumeration» Symbol
InstanceKind -

name:String
form instantiateAs:InstanceKind
slot
link instanceOf *| 1
basicvalue

Instance

[ l 1| interpretation

BasicValue —D{ Valuer o Slot }* { Form ‘

|
ordered
value:String . } 2 ! %
1 BasicType

membercheck(Value):Boolean

Figure 31: FORM with instantiation information

This handling conforms very much to the schema of UML. If we repeat
the example with 5: 5 is a BasicValue instance of the type Integer which
resides on level M2; Integer is an BasicType instance of PrimitiveType
which resides on level M3; PrimitiveType would be a Form which is an
instance of Class. The difference is that we are giving the semantics bottom-
up instead of top-down as within UML. In other words, it is completely
arbitrary which class the basic types are collected in because we do not
attach meaning to names.

C.6.5 Derived Consistency with OCL

The above checks are enough for checking all the semantic things that are
defined on the basic model. However, sometimes it is necessary to define
some more checks. This is done using OCL, i.e. by attaching formulas to
the forms which should be checked on the level below.

We take the view that this is still another application of the same in-
stantiation pattern for the OCL parts. This means the OCL formulas are
considered to be the templates and are instantiated as values on the level be-
low. In this context the OCL formulas are considered well-formedness rules
and the implied semantics is that these values should all be True. However,
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it is possible to consider any other use of the values generated by the OCL
formulas.

We want to give the semantics of the OCL formulas directly on the
OCL metamodel, not within the implementation. This way it is possible
to consider OCL as just an additional module allowing a way of semantics
description. In a similar way also dynamic semantics can be defined as a
separate module.

C.7 Conclusions and Research Directions

In this article, we have described FORM, the abstract syntax of a lan-
guage for representing levels in a metamodeling environment. An instance
of FORM will be an object-graph were objects have slots with values and
the objects are linked to each other by a link value (instance of Link). Form
is a powerful construct, an instance of Form is always an object, but it can
also be used to represent a class, a class for classes and so on.

This is achieved using the very basic structures present in all the models
and also within the UML and MOF. We have taken this to the extreme and
removed all special cases in order to get a level independent representation.

This way all entities are understood to be created according to some
object or pattern on the level above. Similarly, all Forms have the power
to create objects on the next level. In this article, we have tried to give a
better understanding of the process of instantiation, or the semantics of it.

Using our approach we can represent all the things possible to be repre-
sented using XMI, i.e. all models. This representation does not yet include
any semantics apart from the instantiation.

We envision to provide ways to attach semantics to the meta model
elements making it possible to use this semantics on the next level to de-
scribe static and dynamic properties, textual and graphical representations
or exchange formats.
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This appendix presents the paper: Accessibility testing XHTML docu-
ments using UML [GNPTO05], with coauthors Terje Gjgsaeter, Andreas Prinz
and Merete S. Tveit.

The paper presented in Appendix A described modeling and testing of
consistency requirements; the paper of this chapter describes another appli-
cation of the metamodeling framework. The paper is presented below:

This paper handles modeling and test of accessibility requirements for
web documents. We propose to use metamodeling with UML and OCL for
this task. Our own environment within the SMILE project has proposed
a basic representation that can be used on all levels in a metamodeling
architecture; this representation is used for representation of the elements
of the metamodel, models and model instances. We show the use of OCL
formulas to express simple and advanced accessibility requirements.

D.1 Introduction

Access to web content for all is crucial for building the information society.
Information on the web should be accessible to all users, independent of dis-
abilities or choice of web browser. Within the ETAO!' (European Internet
Accessibility Observatory) project [EIA], we want to improve the acces-
sibility of web content by providing measurement data about accessibility.
However, it is not straightforward to measure accessibility, because this is
very subjective. One main task within the EIAO project is to formalize the
informal and subjective requirements.

In order to tackle the problem from a higher level and for making sure the
formalization is understood by the experts, a pilot project called MEBACC
has been established in cooperation with the Norwegian Directorate of Pri-
mary and Secondary Education [UTD]. The aim of the project is to create
a prototype for an Open Source tool for accessibility checking of web docu-
ments and web based teaching material. The approach within the MEBACC
project is to model the requirements and the measurement policy explicitly.
The project is integrated with the ongoing research on metamodeling at
Agder University College (SMILE project) and the EIAO project. An im-
portant part of MEBACC is to define web document models representing
the relevant standards for use in conformance testing. This paper will show
how UML can be used for this purpose. A subset of the XHTML specifi-

HETAO has been co-funded since Sept. 2004 by the European Commission under con-
tract number 004526.
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cation will be represented as a web document model in UML. XHTML is
chosen because it has stricter requirements for structure than HTML; it is
therefore easier to create model instances from an XHTML document than
from a HTML document.

The SMILE project is built around a kernel that can represent models
on arbitrary levels of the metamodeling hierarchy. We will also show in this
article how this SMILE basic representation (called MATER) looks like for
the case of UML-like models as used here. In fact, the use of UML is taken
here just as one possible representation of the metamodel and the model,
because this is a familiar notation. The MATER model abstracts from this
kind of representation, such that any notation could be used (e.g. UML).

Within MEBACC, we also built a prototype to show the relevance of our
theoretical results. The prototype is simple while still advanced enough to
prove the potential of our approach. Carefully chosen subsets of XHTML,
OCL and the WCAG 1.0 accessibility guidelines are supported in the pro-
totype.

The article is structured as follows. In Section 2, we give background
information about web accessibility measurements in the scope of the EIAO
project. Section 3 deals with metamodeling in general and with our SMILE
project. In Section 4 we describe our approach and give a small example to
demonstrate how accessibility is modeled using OCL and UML. We conclude
the paper in Section 5.

D.2 Measuring accessibility

There are defined some standards to measure web accessibility. The WCAG
guidelines presented in Section 2.1 is one standard that will be used within
the ETAO project. EARL reporting (Section 2.2) is another standard that
will be used to evaluate web pages against the guidelines from WCAG.

D.2.1 The WCAG guidelines

The WCAG Web Content Accessibility Guidelines [W3C99] is produced
as a part of W3C Web Accessibility Initiative [W3C06], and explains how
to make web content accessible to people with disabilities. The WCAG 1.0
includes fourteen guidelines, or general principles of accessible design. The
guidelines discuss accessibility issues and provide accessibility design solu-
tions, and they address typical scenarios that may pose problems for users
with certain disabilities. Each guideline includes a list of checkpoints which
explain how the guideline applies in typical content development scenarios.
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D.2.2 EARL reporting

EARL (the Evaluation And Report Language) [EAR] is a language to ex-
press test results. Test results include bug reports, test suite evaluation and
conformance claims. EARL is in a RDF based framework for recording,
transferring and processing data about automatic and manual evaluations
of resources.

EARL expresses evaluations about all sorts of languages and tools, and
could be used to evaluate web pages and web sites against WCAG, and then
generate an accessibility report corresponding to the test results.

D.2.3 The EIAO project

The European project EIAO [EIA] (European Internet Accessibility Obser-
vatory) will assess the accessibility of European web sites and participate in
a cluster developing a European Accessibility Methodology. The assessment
will be based on the WCAG developed by W3C. The project is carried out
in a co-operation among 10 partners in a consortium co-ordinated by Agder
University College Norway.

EIAO is carried out within the Web Accessibility Benchmarking (WAB)
Cluster together with the projects [EAM] and BenToWeb [BEN], co-funded
by the European Commission. The cluster consists of 24 partner organisa-
tions in Europe.

Among its planned output is a set of Web accessibility metrics, an Inter-
net robot “ROBACC” for automatic collection of data on Web accessibility
and deviations from Web accessibility standards, and a data warehouse pro-
viding on-line access to measured accessibility data.

EIAO is defining an extensible plug-in architecture in cooperation with
W3C and the European WAB Cluster. This architecture will allow exchange
of web accessibility assessment modules among different applications. The
test modules that are produced based on accessibility models, may imple-
ment the EIAO interface, and thereby use the ROBACC crawler of ETIAO
as a vehicle for testing of a large number of web sites.

D.3 Metamodeling using SMILE

Our metamodeling approach is done inside the SMILE metamodeling frame-
work; this section describes and introduces some of the basic concepts of the
SMILE metamodeling framework.
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The SMILE project targets all the levels of the OMG four-layer meta-
model architecture; this implies definition of an object representation. FORM
[NPKO04] was the first definition proposed; it was meant to be used on all
the levels of a metamodel architecture and it included the instanceOf-
relation between elements of to adjacent levels. FORM allowed two levels
to be tested for “adjacency” (can one be seen as the model for the other).
Its successor MATER (Model All Types and Extent Realization) has been
extended with a deep instantiation mechanism; this has been done by sup-
porting definitions of patterns that span multiple levels. Since this paper
has another focus instantiation patterns are not described here. MATER is
more flexible than FORM allowing different “styles” of metamodeling.

D.3.1 MATER - Model All Types and Extent Realization

MATER defines a uniform way of representing metadata and object infor-
mation in a metamodeling environment. This uniform representation is a
level independent representation, meaning that all levels can be represented
with the help of one common mechanism.

MATER is not meant to be a metamodel or a meta-metamodel, it
is meant to be “the substance” that is used when a level of the meta-
model architecture is made; this proposed basic representation takes care
of what [GKP98] calls inter-level instantiation and [AK02] calls the physical
classification. The conceptual model of MATER is object-oriented; when
instantiated an object graph will be the result.

If a metamodel for relational databases is defined, the model level will
define the layout of tables, and the information level will consist of actual
tables. In the SMILE metamodeling framework the information level will
be an object graph that can be mapped to actual tables, the object graph
will have a structure that logically correspond to the tables.

Fig. 32 presents the conceptual model of MATER in UML (how to handle
basic types is left out, but [NPK04] demonstrate how this can be done).

The metamodel border between two levels is seen as an interface com-
posed of symbols (instances of Symbol) which from the level below represent
the instantiable elements of the level above (e.g. names of classes). One met-
alevel together with the upper and lower interfaces constitutes a manageable
module. An instance of Symbol that does not reside on the border is ab-
stract and will have no instances.

A Slot-instance can keep one or more values (e.g. a number); a special type
of value is the link-instance which can connect two or more Slot/Substance-
instances. A Link instance can represent a reification of an association in-
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Figure 32: The conceptual model of MATER.

stance (which in UML is called a link); the Link instance makes it possible
to have an instanceOf-relation from the “link” to the association which
has been instantiated. The links” of an object graph made by instantiating
the conceptual model are called connections; this are not considered objects
and must be supported by the underlying software (e.g. references in Java).
This problem is discussed in [Atk97] which have the following statements:

. it is possible to reify (i.e. view as objects) links and associ-
ations so that they can be modeled as objects and clabjects re-
spectively... The difficulty in reifying links is not in working out
how to view them as objects, but in knowing when to stop view-
ing them as objects...To break this potentially infinite regression
it is necessary to identify certain kinds of links as implicit or
primitive links which will not be stored as objects.

Substance is a specialization of Slot; instances of Substance can keep
values and have other substance as property; the owner and property associ-
ations used together can define compositions, while the namespace-names-
association obviously is meant for modeling namespaces. Description is
meant for additional semantic information.

There is not full agreement on what object-orientation includes and con-
sequently the conceptual model of MATER is one approach; the conceptual
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model of MATER is kept small but still powerful enough to allow flexible
modeling.

In object-oriented metamodeling the essential object-oriented concepts
must in some way be stated since abstract syntaxes are described with class
diagrams. It might be possible to use the underlying representation in such
a way that it directly supports a specific object-orientated concept, e.g.
that it supports objects with slots. Other concepts might be modeled more
indirectly where we as humans must study the structure of several levels
to make an adequate interpretation. The following is a list of the object-
oriented concepts considered and how they can be supported in the MATER,
approach:

Object: The underlying representation supports this. A class will be de-
scribed with the help of objects.

Slot: The underlying representation supports this.
Link: The underlying representation supports this.
Multiplicity: Must be modeled explicitly

Identity: A symbol can be used to identify a Slot.

Namespace: Slot/Substance has a special association for modeling names-
pace hierarchies; the members of a namespace instantiate this associ-
ation to reference the Substance which function as a namespace; a
member can be a new namespace. A Slot-instance that is member of
a namespace must have a Symbol-instance as value, this value function
as a name. The default namespace is the level which means that all
symbols that are not part of another namespace must be unique. It is
up to the metamodeler to model the namespace.

Composition: In UML 2.0 class Property has a boolean attribute called
is- Composition; an instance of Property typically becomes a prop-
erty (attribute or “association end”) of the owing class (instantiated
from Class); isComposite will be a slot of the Property-instance; if
the Property-instance is an association end and this slot has value true
then this is indicated by showing a filled diamond; an object instan-
tiated from such a class will be a container for the object referenced
by the slot or value contained in the slot. In UML 2.0 one has to look
at the level above to see if something is a composite or not. In MAT-
TER composition can be modeled as done in UML 2.0; additionally
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the owner-property relations (composite-part) can be used to show
the composition where it actually occurs.

Concrete class: Is not directly supported and must be modeled by the
metamodeler. If something is a class then it can be instantiated to ob-
jects on the next level - the metamodeler models this with instantiation
patterns, e.g. a metaclass will be specified on one level; instantiated
on the next level to a class; which again can be instantiated to an
object on the next level. Examining the levels and how they relate
shows what are classes; the names used are irrelevant.

Abstract class: Same as concrete class but the symbol will not be placed
on the border but reside “freely on the level”.

Property (attribute and association end): Isnot directly supported and
must be modeled by the metamodeler. If something is a property then
it can be instantiated to slots on the next level.

Association: Is not directly supported and must be modeled by the meta-
modeler. If something is an association then it can be instantiated to
links on the next level.

Inheritance: Isa description technique; which means that from the “object-
level” it looks like ordinary class-instantiation and it is only by ex-
amining the model level that the use of inheritance will be revealed.
Inheritance is not directly supported.

Packages are a way of grouping elements and defining namespaces. One
might consider one level as a package which defines the default namespace.
To simplify the presentation packages are not included.

D.3.2 MATER with set notation

Fig.33 shows a concrete notation for MATER; it has similarities with the no-
tation used when visualizing sets, but here extended with meta-information.

Fig.34 shows how an object of class Person and class Person can be
modeled, corresponding UML notation is also supplied (at level M2 only
UML notation is shown). Class Person is on level M1 and the object on
level MO. Note how class Person is modeled as composite for its property
called name, the owner and property associations of basic representation has
been used to model this (both being instantiated). Multiplicity information
is included for the name property of class Person (it is set to 1). Note how
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Figure 34: Two levels with MATER, concrete syntax as shown in Fig.33
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namespace information has been modeled by the arrow (the one with the
filled arrow head) going from the Person-substance to the name-substance
(the description of the name property of class Person); the value of the n-slot
(the symbol called name) is used as a name in the namespace; class Person
function as the namespace, in effect all properties of the class have to have
unique names.

D.4 Modeling accessibility for XHTML with UML
and OCL

The XHTML standard is represented as a UML model called the web doc-
ument model. The planned tool will take a set of web documents as input
and instantiate those into web document model instances based on the web
document model. If this instantiation is successful, the web documents are
considered valid.

metamodel subset of UML
metamodel

I N
! <<instance of>>
1

. 1
<<instance of>> |
1

M

XHTML
model . .
specification
"N N
| <<instance of>> I <<instance of>>
1 1
. XHTML
model instance
document
metamodel architecture our solution

Figure 35: Our metamodeling architecture

OMG operates traditionally with a four-layer metamodel architecture
[OMG]. For our purpose it is sufficient with three levels shown in Fig. 35.
The elements of Fig. 35 are explained below.

Metamodel: The top level is a metamodel that describes the concepts
that will be used when defining the XHTML-standard as a model. This
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metamodel could be the concepts of XML, but we chose an object-oriented
approach. We select a subset of the UML metamodel that includes: class,
property, association generalization and composition. OCL will work well
on such a subset.

Model: The middle level will be an object-oriented representation of a
subset of the XHTML-standard itself and can be seen as an instance of the
top level. It is at this level the accessibility modeling with OCL is performed;
OCL accessibility constraints are attached to the modeling elements and can
later be evaluated on the model instance level.

Model Instance: An XHTML-document is transformed to be an in-
stance of the model (level above); the OCL accessibility constraints are
evaluated and a report is generated that states to which degree the web
document fulfils the accessibility demands.

The EARL Evaluation and Report Language will be used for reporting
deviations from standards and accessibility requirements. The instantiation
technique of MATER will be used when building the metamodeling archi-
tecture.

D.4.1 The Metamodel

For our experiments with web accessibility we have developed a very sim-
plistic metamodel as shown in Fig. 36. The metamodel is compatible with
UML in that it is just a very restricted MOF (a simplified subset of the
UML metamodel kernel), and it is compatible with SMILE as SMILE al-
lows representing it using MATER.

D.4.2 The Web Document Model (subset of XHTML)

The XHTML standard is represented as a UML model (the middle level)
called the web document model. The planned tool will take a set of web doc-
uments as input and instantiate those into web document model instances
based on the web document model. If this instantiation is successful, the
web documents are considered valid.

OCL is a powerful language that offers first order predicate logic on ob-
ject graphs. OCL expressions can include function-calls with elements of the
graph as parameters. The prototype includes a hard coded subset of OCL
and a set of functions that have been specifically made to do accessibility
testing; the functions are available in the evaluation environment and can
be used in OCL- expressions.
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Figure 36: A minimal reflexive metamodel

OCL or OCL-like constraints will be added to the web document model
to model accessibility requirements. If there is a valid instance-of relation-
ship between the model instance and the accessibility model, the tested
documents are considered accessible.

We have created a model of a large enough subset of the XHTML 1.0
transitional specification to cover the sample web document. Some more
complicated parts of the specification will require OCL constraints, such as
the requirement that you must have either HTTP-EQUIV or NAME, but
not both, as attributes to a META tag (OCL constraint is not shown in this
model).

Accessibility constraints: For the XHTML model given above we formu-
late three constraints that are derived from the WCAG guidelines.

1. Each image has to have a valid alt tag associated with it. Guide-
line 1 Provide equivalent alternatives to auditory and visual content
describes how content developers can make images accessible. Some
users may not be able to see images, other may use text-based browsers
that do not support images, while others may have turned off support
for images. The guidelines do not suggest avoiding images as a way
to improve accessibility. Instead, they explain that providing a text
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equivalent if the image, which serves the same purpose, will make it
accessible. An image in HTML has an alt-tag which is used to provide
text equivalents.

2. You must have either HTTP-EQUIV or NAME, but not both, as at-
tributes to a META tag. This is in fact not a WCAG requirement but
a static constraint for XHTML.

3. The color of the text should have enough contrast with the surround-
ing color. Guideline 2 Dont rely on color alone ensures that text
and graphics are understandable when viewed without color. Check-
point 2.2 says that it is important to ensure that the foreground and
background color combinations provide sufficient contrast when viewed
by someone having color deficits or when viewed on black and white
screen.

These constraints are formulated in OCL as follows.

1. Context Img
Inv: libAcceptableAltTag( alt )

2. Context Meta
Inv: name.size() > 0 xor http-equiv.size() > 0

3. —— We define an auxiliary recursive function that
-- finds the body.
Context Block
def: getBody(b : Block) : Set(Body) =
if b.body->size() = 1 then body
else b.getBody(composite)
endif
Context Font
Inv: 1libAcceptableContrast(textColor,
getBody (this)->any(true) .background)

The functions libAcceptableAltTag and libAcceptableContrast are
library functions.

D.4.3 The Model Instance

For the presentation we use a simple web page as shown in Fig. 38. We use
this web page to evaluate accessibility requirements according to the OCL
formulas given.
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Figure 37: The web document model

The web document shown above is a (slightly broken) XHTML docu-
ment, with the following source:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<meta http-equiv="Content-Type"
content="text/html;charset=utf-8" />
<meta name="generator" content="gedit" />
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Figure 38: A web sample web page

d_t: DocType

dtd ="-//W3C//DTD XHTML 1.0 Transitional /EN™
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Figure 39: The sample web page as instance of the web page model
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<title>Test</title>
</head>
<body bgcolor="yellow">
<img src="http://www.eiao.net/kickoff_s.jpg"
alt="" />
<br />
<font color="black">
Participants at the EIAO Kickoff meeting in
Grimstad, 2004-10-14.</font>
</body>
</html>

The document has an empty alt-tag. This is in conflict with the WCAG
1.0 Guideline 1: “Provide equivalent alternatives to auditory and visual
content.” If the alt-tag was missing, the document would also be in conflict

with the XHTML specification.

3 space
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Figure 40: The instance of the web page model using the notation of MATER

When evaluating the OCL constraints on these instances, we have to

check the following conditions.
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1. The first condition is applicable in Img context. The only instance of
this kind is the object i. So we have to apply 1ibAcceptableAltTag(),
which will give the result false. So this requirement is not fulfilled.

2. The second condition is applicable in Meta context. We have two meta
objects m1 and m2, and for both the condition is fulfilled. So there is
no problem here.

3. The third condition refers to the Font context. For the font object f in
our example we have to check 1ibAcceptableContrast (black,yellow)
which yields the result true. So this requirement is also fulfilled.

Fig. 40 uses the notation of MATER and shows the same as Fig. 39.
Fig. 40 is not showing all the details: the instanceOf-relation for the links
is not shown, and also the details of head and body are not shown.

D.5 Conclusion and further work

Accessibility requirements and web technology are constantly evolving. High
level modeling of accessibility requirements can support more rapid genera-
tion of new test modules and improve the understanding of the accessibility
barriers for web documents. UML seems to be the natural choice for this
modeling. However, we need to take into account the limitations of using
OCL to define accessibility constraints; we may need to extend OCL to be
able to perform some more advanced accessibility tests. The basic repre-
sentation and instantiation technique from the SMILE project is very useful
when it comes to implementation of these ideas.

Starting from the prototype tool we have created, we will extend the
subsets of HTML and WCAG 1.0 covered. We will integrate a complete OCL
interpreter into the SMILE framework, such that it is possible to express
more constraints than just simple comparisons. Moreover, we will extend
the library of functions needed to do sensible checks for accessibility.
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This appendix presents the paper: Modeling Accessibility
Constraints [GNPT06], with coauthors Terje Gjgseeter, Andreas Prinz, Mikael
Snaprud and Merete S. Tveit.

The approach presented here is different from the one presented in Ap-
pendix D - this approach is more practical and robust. The paper is pre-
sented below:

This paper describes the combination of research topics from two projects
focusing on web accessibility testing, and on metamodeling and high-level
specification languages. This combination leads to a novel approach to ac-
cessibility assessment that will improve the understanding of accessibility
issues, and explore the potential for generating executable accessibility tests
based on accessibility constraint models.

E.1 Introduction

Access to web content for all is crucial for building an inclusive information
society. Information on the web should be accessible to all users, indepen-
dent of disabilities or choice of web browser. In order to improve accessibil-
ity, the ETAO [EIA] project evaluates web content according to accessibility.
This will raise the awareness for accessibility, and hopefully in the long run
increase accessibility.

However, the evaluation of web pages is only trustworthy if the measure-
ments are transparent to the users so they can understand how a ranking
is established. We see two supplementary ways to achieve transparency: 1)
the consistent use of Open Source software, and 2) explicit models of tests.

The SMILE [SMI] project is concerned with explicit representation of
semantic information, such as description of formulae or algorithms. This
is done using a metamodeling approach with an explicit description of the
semantics of a language using a model of the language.

Building on experiences and results from the EIAO project, we apply
the methodology of the SMILE project in the area of the EIAO project.
Describing the issues with a metamodel-based approach [MEB], we will
be able to model accessibility aspects directly. This work will result in a
platform for experiments with accessibility constraints.
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E.2 The EIAO project

The EIAO project is designed to develop a European Internet Accessibil-
ity Observatory (EIAO). It comprises a set of Web accessibility metrics, an
Internet robot for automatic collection of data on Web accessibility and de-
viations from Web accessibility standards, and a data warchouse providing
on-line access to measured accessibility data. In this way, the EIAO project
will contribute to better e-accessibility for all citizens in Europe by providing
a systematic and automatically updated overview of the current compliance
with Web accessibility guidelines. ETAO is carried out within the Web Ac-
cessibility Benchmarking (WAB) Cluster [WAB] together with the projects
Support-EAM [EAM] and BenToWeb [BEN], also co-funded by the Eu-
ropean Commission'?. The cluster consists of 24 partner organizations in
Furope.

Web accessibility is on the European agenda through the eEurope action
plans 2002/2005 on European and on national level. eGovernment policies
in many European countries require compliance with WAI [W3C06] stan-
dards, and the private sector increasingly has to deal with Web accessibility.
Existing automatic Web site tests are mainly used to evaluate and improve
single Web sites. Benchmarking of, for example, all public sector Web sites
or large collections of Web sites are not available. The objective of the
European Internet Accessibility Observatory EIAO is to develop a frame-
work for an automated Web accessibility assessment. The EIAO assessment
system can provide valuable input to European benchmarking and can ef-
fectively support Web accessibility analysis and policies. Together with the
EU projects BentoWeb and Support-EAM, the ETAO project forms a cluster
that develops a Unified Web Evaluation Methodology (UWEM) [UWE].

E.3 The SMILE Project

The SMILE project accepts the current challenge of semantic information
processing. Providing a methodology combined with a framework, SMILE
allows us to enrich data with semantic interpretation (context knowledge);
this is a key technology for providing tools for IT-based information pro-
cessing. Using an extended project-specific metamodel approach, SMILE
supports turning low-level information into higher-level information in new
contexts by generating tools that produce and process this higherlevel in-

2The project is co-funded by the European Commission DG Information Society and
Media, under the contract IST-004526
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formation.

The capability of the SMILE methodology and of the framework will
be demonstrated by solving problems in different application domains. The
entirety of the identified practical problems forms the requirement base of
SMILE; the solution of these problems will prove SMILEs feasibility.

The SMILE methodology can be seen from the meaning of its name:
Semantic Metamodel-based Integrated Language Environment. The parts
of this name have the following meaning in the scope of SMILE.
Semantic refers to the underlying idea to represent the semantics of lan-
guages and language constructs in an explicit way. This builds on the exist-
ing language description frameworks (e.g. grammars) and extends then to
cover all aspects of modern computer languages.

Metamodel-based means that the approach is relying on modeling on
all levels. We do not only use models for the actual systems, but also for
the languages to be used for describing the systems and even for languages
describing languages, etc. The important point is that the high-level de-
scriptions of systems and languages should be complete. Our approach is
Integrated, because we handle all the information in the same way, be
it languages or systems. We describe the meaning of the constructs unam-
biguously in the (meta)model, and use this high-level description to generate
tools.

Languages are in the focus of our project, because most of the activities
can be related to languages. We are concerned with formal languages, and
try to lift the level of formality so that all important aspects of the languages
can be captured.

We build a complete Environment, such that the tools used within the
SMILE project are finally built using the SMILE technology. A very im-
portant issue is that all parts of the SMILE description capabilities will
be supported by tools: tools handling the description (reading, generating,
editing) and tools transforming the description into other formats (e.g. code
generation).

Currently we have succeeded in building the basic framework of SMILE ac-
cording to [NPKO04] together with a simple user interface. Further work
will include the creation of all the other components necessary for semantic
modeling.
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E.4 The Approach

The main idea is based on a combination of the accessibility rating accord-
ing to ETAO with the modeling approach of SMILE. Modeling is especially
important for web content, because accessibility requirements and web tech-
nology are constantly evolving. High level modeling of accessibility require-
ments can support more rapid generation of new test modules and improve
the understanding of the accessibility barriers for web documents in a wire-
less environment.

UML models with OCL-like constraints [OMGO03d] can be used to model
requirements for accessibility testing [TGN05]. Accessibility constraints will
be attached to web document models that represent the relevant standards;
such models guide the accessibility testing of web documents that are seen
as instances of the mentioned models.

One approach to accessibility testing of XHTML documents was pre-
sented in  [GNPTO05]. The approach defines a three-level metamodel archi-
tecture where each level is to be represented in the SMILE-framework:

Metamodel A simple metamodel that defines the most basic object-oriented
concepts like class, property and composition (a small subset of the
UML metamodel).

Model A subset of the XHTML-specification [XHTO05] represented as a
UML model instantiated from the metamodel. The model is extended
with OCL constraints that define accessibility requirements to be ful-
filled at the model instance level.

Model Instance An XHTML-page is represented as an instance of the
model. The OCL accessibility constraints are evaluated at this level
to expose accessibility violations.

The EARL Evaluation and Report Language [EAR] developed by W3C,
will be used for reporting deviations from standards and accessibility require-
ments.

The approach presented here is different from the one presented in
[GNPTO05]; it is meant to be more robust when it comes to deviations from
the XHTML standard and it does not require a full model of the XHTML
specification. The approach is based on the observation that an XHTML-
document can be seen as a tree if we ignore external and internal links.
Links could be handled with ordinary associations on the model level and
links on the model instance level, but we have postponed this issue for a
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later version. By doing this simplification only the following object-oriented
concepts are needed: class, property and composition.

The following subsections presents the constraint modeling technique by
giving an example and how to implement the tool is also briefly described.

E.4.1 The XHTML-document and the Accessibility Constraints

We used the three constraints defined in [GNPTO05] as examples of ac-
cessibility constraints. These constraints are derived from the WCAG 1.0
Guidelines [W3C99]:

1. Each image has to have a valid alt tag associated with it to provide
text equivalents.

2. Only one of HTTP-EQUIV or NAME is allowed as attributes to a
META tag.

3. The color of the text should have enough contrast with the background
color. Checkpoint 2.2 in the WCAG says that it is important to ensure
that the foreground and background color combinations provide suffi-
cient contrast when viewed by someone having color deficits or when
viewed on black and white screen.

These constraints are formulated in OCL as follows:
1. Context Img Inv: libAcceptabledAltTag( alt )

2. Context meta Inv: name.size() > 0 xor
http-equiv.size() > 0

3. Context font
Inv: ltbAcceptableContrast (textColor,
getBody (this)->any (true) .background)
-- We need an auxiliary recursive function that
-- finds the body for this definition.
Context block
def: getBody(b : Block)
Set (Body) =
if b.body->size() = 1 then body
else b.getBody(composite) endif

The functions libAcceptableAltTag and libAcceptableContrast are
library functions defined in the framework.
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We use the web page with the following XHTML code as example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.o0rg/1999/xhtml" xml:lang="en" lang="en"
>

<head>

<meta http-equiv="Content-Type"
content="text/html;charset=utf-8" />

<meta name="generator" content="gedit" />

<title>Test</title>

</head> <body bgcolor="yellow">

<img src="http://www.eiao.net/kickoff.jpg" alt="" />

<br />

<font color="black">Participants at the EIAO Kickoff

meeting in Grimstad,2004-10-14.</font>

</body>

</html>

The first constraint will expose that the document has an empty alt-tag
which is in conflict with the WCAG 1.0 Guideline 1. The second constraint
will test the instances of meta and find that this constraint is fulfilled.

The third constraint refers to the font context; the call 1ibAcceptable-
Contrast("black","yellow") will give the result true; so this requirement
is fulfilled for the font-element in the document.

E.4.2 The Three Level Metamodel Architecture

Inspecting an XHTML-document, or more generally an XML-document,
reveals that you have elements, some elements have attributes and some
have content (elements inside another element). In our approach an XML-
document is related to a model instance and a model in the following way:

XML Element An element in an XML-document is seen as an object of
a class with the same name as the element-name.

XML Element Attribute An element attribute in an XML-document is
seen as a slot with the same value as the value specified for attribute;
the slot is seen as an instance of a property with same name as the
attribute; the property is a property of a class with the same name as
the element containing the attribute.
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XML Element Content The content of an element is in a composition-
relation to the containing element; the content is seen as part of the
element.

There is no special translation of hyperlinks. Fig. 41 shows how the
chosen XHTMLdocument is represented as a model instance, also the model
and metamodel is shown.

The translation schema demands a metamodel that can support class,
property and composition. The presented metamodel fulfils this demand
and is an extremely simple reflexive metamodel'®.

Multiplicity is not defined; we simply see the multiplicity as fixed to
zero-to-many on the part side of a composition and zero-to-one on the com-
posite side of the composition (this can be specified as well-formedness rules
in OCL). Constraints can be attached to classes in the form of text, e.g.
constraint number two (described above) will be attached to class Meta on
the model levell The metamodel defines that compositions are named; this
is ignored at the model and model instance level because no names are given.

E.4.3 The Process of Defining and Evaluating the Constraints

The metamodel is defined in advance and it is this metamodel that dictates
the translation schema and conceptually it defines our world view. Obviously
the metamodel does not have to be in place (built as a complete level in
the framework) unless it is accessed which is not the case in the presented
approach; as far as we know other metamodeling frameworks would require
that the meta-model is in place, but not the SMILE framework.

On the model level only the classes, properties and compositions refer-
enced by the constraints need to be modeled by the user, e.g. the user only
needs to define class meta with attributes name and http-equiv if constraint
two (see above) is the only one to be defined.

We have developed a reader that reads an XHTML-document and con-
verts it to a model instance as defined above; the reader is at the same time
building a model, e.g. an element named meta gives a class meta on the
model level as described in the subsection above. When the reader has done
its job, the predefined model (which contains the constraints) is merged with
the model that has been automatically created; at this point the constraints
are tested on the model instance and a report describing the accessibility
violations is created.

13 A metamodel is reflexive if it defines all the entities it uses for its own definition
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Figure 41: The Metamodeling Architecture Presented with the help of UML
(the model level is only partly shown)
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E.4.4 Benefits

Modern techniques for doing semantic validation of XML data are in nature
declarative and typically based on XML-technology, e.g. Schematron [Jel02]
based on XPath, and xLinkit [NCEF02] based on XPath. Formalisms based
on XSLT and XPath are considered hard to write, understand and maintain
(see [CBCO5]).

Schematron is more suitable for simple rules. Therefore we used Schema-
tron in the first release of EIAO for expressing the basic building blocks of
the accessibility tests. In order to express the higher-level tests, we will use
a higher-level formalism, probably based on OCL.

[CBCO5] was published at the same workshop as [GNPTO05], it describes
a general approach for semantic validation of XML data based on metamod-
eling; the paper describes some strengths that also apply to our approach.
Please find below a non-exhausting list of the advantages.

e Only one formalism is used (UML/OCL) and the constraints are spec-
ified at a high level of abstraction.

e It is partly graphical (UML).
e Deviations from the XHTML standard are allowed.

Some more benefits are added by our approach:

e We allow testing of XHTML-documents against constraints on frag-
ments of models, i.e. we do not need the full specification of the
XHTML standard.

e The parts of a document that conform to common deviations can
be tested for accessibility; this is done by including model elements
describing common deviations and attaching accessibility constraint
to those elements.

e We apply special library functions in the OCL accessibility constraints,
e.g. functions for testing foreground against background colors.

Our project is at the time of writing not yet completed (some important
parts of OCL are not yet supported). In particular we want to investigate
extensions of the navigation possibilities in OCL, e.g. navigating through
objects of types that were unknown at model time (deviations from the stan-
dard), e.g. looking for background colors defined by elements of unknown
type. However, we think we can already claim with some confidence that
this approach to web accessibility assessment allows a flexible description of
accessibility criteria and their evaluation.
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E.5 Conclusion

Accessibility requirements and web technology are constantly evolving. High
level modeling of accessibility requirements can support more rapid genera-
tion of new test modules and improve the understanding of the accessibility
barriers for web documents. UML seems to be the natural choice for this
modeling. The basic representation and instantiation technique from the
SMILE project is very useful when it comes to the implementation of these
ideas.

Starting from the prototype tool we have created, we will extend the sub-
sets of XHTML and WCAG 1.0 covered. We will integrate a complete OCL
interpreter into the SMILE framework, such that it is possible to express
more constraints than just simple comparisons. Moreover, we will extend
the library of functions needed to do sensible checks for accessibility.

This work was the result of successfully bringing together two relatively
unrelated projects at AUC. The synergies between the SMILE and EIAO
projects proved fruitful for the high-level description of accessibility require-
ments.
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This appendix presents the paper: Automatic Generation of Modeling
Tools [NPTO06], with coauthors Andreas Prinz and Merete S. Tveit.

The paper focuses on design of a metamodeling framework and several
existing frameworks are described. The paper is presented below:

Higher-level modeling is considered to be the answer to many of the prob-
lems computer science is faced with. In order to do modeling, it is necessary
to use proper tools. This article is about modeling tools and how they can be
generated automatically out of (modeling) language descriptions. Language
descriptions in turn are given in meta-models. In this article, we define a
terminology for aspects of meta-models and check how they are supported
by existing metamodeling tools. In particular we look at semantic aspects
of the meta-models.

F.1 Introduction

Information technology is spreading more and more into all areas of daily
life, leading to an ever increasing amount of information and applications
of a very high complexity. Traditional methods of software production and
data handling cannot cope with this ever increasing complexity. New ways
of complexity handling take higher levels of abstraction and describe systems
using models. In particular, OMG puts forward their idea of a model-driven
architecture (MDA) [OMGO03a] which focuses on software development by
means of high-level models. We will use the term MDD (model driven devel-
opment) in the sequel to denote an approach taking high-level descriptions
for the generation of low-level results, e.g. executable code. For an effective
application of MDD it is necessary to use models that fit their application
domain, which means to use domain specific languages (DSLs) or domain
specific adaptations of languages.

This leads to the problem of the development of DSL tool support. The
currently existing tools support common multi-purpose languages, but are
not particularly adapted to a specific domain. On the other hand, developers
insist on integrated development environments to be effective in their daily
work. In this context, the choice is either to take a not fitting language with
a good tool support or to use a well fitting language with no tool support.
Of course, none of these alternatives is satisfactory.

So the problem is to provide tool support for modeling languages. There
are basically two ways to achieve this, either by manually building such
tools or by having higher-level tools that generate modeling tools. In any
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case it is necessary to have a description of the language first. We will call
such a description of the language a meta-model. There are varying levels of
accuracy when it comes to describing meta-models and also a whole range of
tools that support parts of this tool production by automation. Of course,
also meta-models are just a special kind of models and for their handling we
again need (meta-)modeling tools. This closes the circle and we can apply
the same reasoning on the next level. So in all the levels we have the need
of powerful tools that are able to handle models of different kind.

In this paper we will focus on this need for generating modeling tools.
We will first in section F.2 look at the different requirements coming for
these tools. Then we will look at a new class of integrated tools claiming to
support the complete description of languages in Section F.3. Section F.4
concludes the paper.

F.2 Meta-modeling and Tool Production

A modeling tool is a tool that is able to handle models of a certain kind.
The description of the model kind is given by a meta-model, or in simpler
cases by an abstract grammar or even by a concrete grammar.

[GSCKO04] defines metamodeling as: ... the construction of an object-
oriented model of the abstract syntax of a language. However, in our article
we use the term meta-model in a wider sense: A meta-model is a model that
defines a language completely including the concrete syntaz, abstract syntax
and semantics.

The current situation of meta-model use is characterized by the following
observations.

e Meta-models are usually not given explicitly, but are built-in into the
tools that provide them; this can be seen as a sort of hard coded im-
plementation of a meta-model. In particular there is no direct relation
between an external meta-model and the representation in the tool.

e Meta-models change over time. Tool builders adapt their meta-models
along with their tools and do only provide means to align with their
own old versions.

e Meta-models are not standardized. Although several organisations,
in particular OMG, try to publish standards for meta-models, the
standards are far from being formal and implementations deviate more
or less severely from the standards.
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This leads to the fact that users are bound to one tool at a time. They
are allowed to import models from other tools, but then they are again
encapsulated. On the other hand, most metamodeling tools provide a set
of basic facilities that are the same and some advanced facilities that are
specific. A user is usually not able to combine the positive parts of different
tools.

In this section we will be looking at tools, aspects of meta-models and
how tools and meta-models are related.

F.2.1 Aspects of Meta-models

The meta-model can have several aspects that are to be covered by the
modeling tool. In figure 42 we have shown the essential parts of a meta-
model. There is no complete agreement about these parts, but in most
contexts the same or similar parts are identified. In the picture, we have

shown the following parts.

v

Figure 42: Structure of a Meta-model

Structural information for the meta-model including all the information
about which concepts exist in the domain and how they are related. An
example of this would be a MOF class diagram. In our understanding
this part does just include very simple structural properties and not
more advanced concepts that rely on the use of constraints.

Constraints giving additional information about the structure in that they
identify the allowed structure according to additional logical constraints.
This will include first-order logic constraints (e.g. written in OCL) as
well as multiplicity constraints. In classical compiler theory these are
collected under the name of static semantics and in a meta-model con-
text they are called well-formedness rules.

Representation description includes model serialization syntax and infor-
mation about how the models are to be (re)presented to the user.
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The textual grammars (concrete textual syntax) are well understood
in terms of compiler theory. When it comes to graphical grammar
(concrete visual syntax), there is less agreement and also some open
research topics.

Behavior description describes how the model is used. This item includes
execution of the model as well as mappings. By mapping we will under-
stand a relation between the model itself and another representation,
e.g. in another language. A typical example would be a compiler from
UML to Java, or mapping from PIM to PSM. An execution is the
real run of the model, which is of course only possible if the model is
executable. A typical example here would be a run of a UML state
diagram.

In the picture given, the structure is the central aspect and all the other
parts relate to the structure. This is quite clear for the constraints, which
need the structure to be meaningful, but also for the representation and the
semantics. Most language descriptions do currently follow this approach, i.e.
defining a structure first and attaching all the static and dynamic semantic
information to this basic structure.

When we take a step back, we will notice that the representation as well
as the semantics are not that closely bound to the structure. In fact, several
modeling languages use the same representation in order to represent similar
things and also the semantics is largely comparable although the internal
structure might be different.

For this situation, the MVC (model-view-controller) pattern is better
suited. This means in our case that the connection between the representa-
tion and the structure and between the semantics and the structure is not
direct, but mediated via a controller. This will allow to associate both with
each other as shown in figure 43.

Figure 43: Decoupling the Structure of a Meta-model

198



App. F - Automatic Generation of Modeling Tools

In the new structure, the middle is just connecting the parts as described
below.

Integration gives the connections between the different model parts. Each
part forms a unit of its own, e.g. the syntax is described separately
without reference to the basic structure of the language. Afterwards,
the integration allows to connect these separate parts.

Please note that the explicit connections are already implicitly present in
figure 42. We have just extracted them explicitly in order to allow a better
handling of model descriptions. In the following we will ignore the explicit
connections and use the figure 42 as a reference.

F.2.2 Tools as Meta-model Implementations

We have discussed in the previous section how meta-models describe the
possible models to be handled. When we now look at tools, we can see that
tools have the same property as meta-models. They also define what kind
of models are allowed, how they look and what you can do with them. This
way, a tool can be considered a special meta-model as shown in figure 44.

Tool Description
Language

Modelling

_—s Tool
Code

Tool
Description

B

Running
Modelling
Tool

The Model

Figure 44: Tools and Meta-models
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The meta-model gives a description of the tool, which in turn can be
transformed into tool code. This code has then to be executed in order to
be a running tool, which then can handle a model.

Figure 44 does also match nicely with the OMG 4-level architecture.
The model would here stay on the level 1 (models), the tool code and the
meta-model would be on level 2 (meta-models) and then we do also have
languages described on level 3 (meta-meta-model).

This meta-meta-aspect goes into the next level of description. In order to
have (formal) description of the meta-model, we need a (formal) meta-meta-
model which can be used to provide this description. Alternatively, we can
use known ad-hoc solutions, e.g. using a low-level programming language
for doing the description. Of course, all the aspects identified in figure 42 for
a meta-model have to be supported on all levels. For the tool, there should
be code for each of them; in the meta-model we need a description for each
of them and in the language level we need a language for each of them.

F.2.3 Tool Production Requirements

When it comes to tools that produce modeling tools, we will look at the
following requirements:

Generativeness: As we speak about tools that produce modeling tools,
the most important requirement is that they are able to automatically
produce the tool. In figure 44 this amounts to the mapping from the
meta-model to the tool code.

High-level Description: The descriptions are more easily handled when
they are given in a high-level notation. This means that a tool should
provide high-level notations for the different modeling language as-
pects. This is reflected in the figure 44 by the top-level layer.

Completeness amounts to the coverage of the different aspects introduced
in the previous section. A good meta-tool will allow the expression of
all important aspects of a modeling language. This requirement is
reflected in figure 44 by the amount of the meta-model aspects that
are covered. Please note that completeness is applicable for the tool,
for the tool description and for the tool description language.

Conformance to Standards is given in this respect very easily when the
tools are produced automatically from the corresponding standards
documents. For this to be possible the standards documents have to
be given in a formal way.
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User friendliness: Of course, for generated tools there is also the aspect
of user friendliness. As we focus on the very generation of the tools,
this end-user aspect is out of our focus.

When we look at the requirements, we see that they are all completely
covered in the two upper levels of figure 44. Therefore we will use these
two levels as the reference for comparing several metamodeling tools in the
next section. There, we just identify which aspects are supported and if
they are described formally or built-in. If they are described formally, we
check if they have a high-level notation or if they are given using a low-level
language. The template for the comparison is therefore the two upper levels
of figure 44.

F.3 Some Meta-modeling Frameworks and Tool
Production

In this section, we will compare different metamodeling frameworks accord-
ing to the structure presented in the previous section.
F.3.1 MDA Meta-modeling

Karl Frank [Fra0ba] states the following:

At the core of MDA are the concepts of models, of meta-models
defining the abstract languages in which the models are captured,
and of transformations that take one or more models and produce
one or more other models from them.

Since OMG introduced MDA in 2001, much work has been done in defin-
ing this approach with proposed specifications and implementations. Please
find below some specifications that together cover all langues aspects of
figure 44:

e For serialization: XMI [OMGO7a] based on XML and UML 2.0 Dia-
gram Interchange Specification [OMGO05d].

e For concrete textual syntax: Human-Usable Textual Notation [OMGO04].
e For concrete graphical syntax: Human-Usable Graphical Notation [OMGO04].

e For transformations: Query/View/Transformation Specification [OMGO05a]
which also has a reference implementation.
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e For execution: Action Semantics [OMGO5¢] (no concrete syntax de-
fined).

e For constraints: OCL [OMGO5b].
e For abstract syntax: MOF [OMGO3hL].

When it comes to tool production the specifications are important with
respect to “input” and “output”, e.g. code conforming to the Action Se-
mantics specification [OMGO5c¢] might be produced as output and run on
some UML virtual machine.

The QVT [OMGO5a] might turn out to be important since the jobs a
tool does in many respects can be seen as transformations.

Today there is no single tool or coherent set of tools producing a family
of tools that conforms to the listed specifications.

For MDA to work in practice models have to be unambiguous and their
semantics have to be precisely defined - UML does not fully comply with
this demand [GSCKO04].

In many respects UML has been defined as a general modeling (pro-
gramming) language (but without fully described semantics) - a DSL, on
the other hand, is specific (by definition), such that a UML tool might not
be the right tool for expressing statements in a DSL (considering a DSL a
subset of UML).

If the UML tool allowed advanced configuration (e.g. excluding parts of
the UML language), supported the extension mechanism of UML (profiling),
then the UML could be set up as a DSL tool; but even this might not work
well in all cases since UML after all is a predefined language based on some
language design decisions - this is the opposite argument of the “missing
semantic” argument, UML might be to specific in “the wrong way”! It
seems harder to reject MOF in the context of defining DSLs (which is done
in [GSCKO04)); if some semantic is missing then add it!

F.3.2 XMF-Mosaic

XMF-Mosaic from Xactium is a platform for building tailored tools that
should provide high level automation, modeling and programming support
for specific development processes, languages and application domains. The
tool is implementing a layered executable metamodeling framework called
XMEF that provides semantically rich metamodeling facilities for the design
of languages. This way the Mosaic platform is realizing the Language Driven
Development (LDD) process presented by Xactium in [CESW04]. LDD is a
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model-driven development technology based on MDA [OMGO03a] standards,
and it involves adopting a unified and semantically rich approach to describe
languages. A key feature of the approach is the possibility to describe all
aspects of a language in a platform-independent way, including their con-
crete representation and behaviour. The thought is that these language
definitions should be rich enough to generate tools that can provide all the
necessary support for use of the languages, such as syntax-aware editors,
GUT’s, compilers and interpreters.

XMF provides a collection of classes that form the basis of all XMF-
Mosaic defined tools. These classes form the kernel of XMF and are called
XCORE. XCORE is a MOF-like meta-metamodeling language, and it is re-
flexive, i.e. all XCORE classes are instances of XCORE classes. XMF pro-
vides an extensive language for describing language properties called XOCL
(eXtensible Object Command Language). XOCL is built from XCORE
and it provides a language for manipulating XCORE objects. In addition
to XCORE, XMF provides a collection of languages and tools defined in
XOCL.

The general architecture of a tool or a language built using XMF-Mosaic
is as follows:

Structure At the heart of most XMF-Mosaic tools is a meta-model, in
XMEF called the domain model. This meta-model describes the struc-
ture of the concepts in a language or in a domain. The language for
building the structure is XCORE.

Constraints For adding constraints to the domain model, XMF-Mosaic
supports a constraint language based on OCL. It is also possible to
create instances of the domain model and test them against their con-
straints.

Representation This is also called the user-interface model in XMF, and
describes the concrete representation of the concepts in the domain
model. For this purpose XMF-Mosaic provides XBNF, which is a
grammar definition language for defining the textual syntax, and XTools
which is used to specify the concrete graphical representation of a lan-
guage and to model user interfaces.

Behaviour The language XOCL is used to build executable tools with ex-
ecutable semantics. XMF-Mosaic also supports the representation of
model-to-model transformation and model-to-code mappings, includ-
ing generation of Java from XCore models and XML serialization of

203



App. F - Automatic Generation of Modeling Tools

models. The language XMap is a pattern-based language that is used
to write model-to-model transformations.

According to this, XMF-Mosaic is fully covering all the aspects of the
template in figure 44.

F.3.3 Coral

Coral [AP04] is a meta-model independent framework, which means that it
positions itself at the top of the OMG’s meta-model architecture and then
creates a meta-meta-model interface. In figure 45 it is shown which parts of
the template (see fig. 44) Coral supports by indicating them in grey. It was
a bit problematic to describe Coral according to the template, because the
tool is not fully documented.

Figure 45: Aspects supported by Coral

Coral is divided into two main components: the kernel and the graphical
user-interface. The kernel is implementing a model repository. This repos-
itory could be seen as a program library or an application framework that
is used to manage models described in the user-defined modeling language.
This model repository is based on a specific modeling language, Simple
Metamodel Description Language, which defines the structure of all model-
ing languages in Coral. SMD can be seen as analogue to MOF, but SMD
contains some extensions to deal with models described in multiple mod-
eling languages. When Coral needs the definition of a modeling language,
the SMD model for this language is loaded and converted to a meta-model
internally. This way Coral provides full support for all structural aspects of
meta-models.
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The graphical user-interface in Coral can be used to view and edit models
manually. The kernel and the graphical user-interface are independent. This
means that the kernel can manage and transform models even if the user-
interface cannot render them graphically.

Currently Coral is coming with some predefined modeling languages,
such as UML 1.1, UML 1.3, UML 1.4 and UML 1.5, and also the XMI-
DI 2.0 [OMGO05d]. Coral can load and save models and meta-models using
XMI 1.0 and XMI 2.0 format. It is also possible to load and save models
containing diagram interchange information using XMI-DI, and this format
is also used to represent diagrams. When it comes to interactive graphical
support, this is missing, and support for every diagram must be written
explicitly.

One feature in Coral is the possibility to query and modify models at
runtime. This is done by creating Phyton wrappers around the Coral kernel,
which is written in C++. Model transformation can be written as Phyton
programs with separate phases for precondition, query and modification and
post conditions. The Phyton interface in Coral makes it possible to query
models in a very similar way to OCL [OMGO5b], thus allowing constraints
and transformations and executions to be expressed. Because there is no
specific language to express these things, but just Python modules, we have
not indicated these parts in the top-most language layer.

F.3.4 Software Factories

Software Factories are described in [GSCKO04] in the following way:

A software factory is a product line that configures extensible
development tools like Microsoft Visual Studio Team System
(VSTS) [Mic06] with packaged content and guidance, carefully
designed for building specific kinds of applications ... the soft-
ware factory schema specifies which DSLs should be used and
describes how models based on these DSLs can be transformed
into code and other artefacts, or into other models ... the soft-
ware factory template ... provides the patterns, guidance, tem-
plates, frameworks, samples, custom tools such as DSL visual
editing tools, scripts, XSDs, style sheets, and other ingredients
used to build the product ... When configured with the soft-
ware factory template, VSTS becomes a software factory for the
product family.
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Software Factories are promoted by Microsoft and can be based on tools
like VSTS - which is a tool that lets you develop Microsoft .Net Framework
applications. In .Net many different languages can be used; compilation is
done to a common binary language (IL) which can be executed by the same
runtime engine. The .Net approach gives integration of different general
purpose languages (e.g. C# and C++) and this seems to be a good starting
point for the development of a DSL framework.

The Software Factories method describes a MDD approach that is not
based on UML or MOF; it opposes the MDA which is based on UML and
claims it to give insufficient support to development of DSLs.

A comprehensive example is given in [GSCKO04]; the following list de-
scribes the elements that constitute a DSL:

1. Abstract syntax graphs instantiated from meta-models and also ab-
stract syntax trees instantiated from context-free grammars.

2. Layout information instantiated from concrete syntax. Concrete syn-
tax is described with annotations on meta-model elements, e.g. class
Identifier has annotation: [$shape: TextBox].

3. Serialized abstract syntax graphs and layout information which con-
forms to defined serialization syntax. Serialization is not based on
XMI, which is seen as too strongly coupled to the target language
meta-model and also hard to read; they advocate the following: “...,
the XML syntax should be designed on a language-by-language basis,
so that the language designer has the flexibility to change the mapping

to accommodate different rates of change on either side.”
4. Well-formedness rules defined with some “OCL-like” language.

5. Trace-based semantics describing what happens during execution; this
semantics is described with a meta-model attached to the meta-model
of the DSL; well-formedness rules can be attached in the “normal
way”; a concrete syntax for the trace-based semantics is described (as
above).

Software factories do also demonstrate how a meta-models can be broken
down to parameterized language elements, called language design patterns,
that can be glued together in different configurations - this gluing is consid-
ered a special case of model mapping.

Item 2 above describes how graphical layout can be attached; OMG has
a different approach [OMGO05d] which seems to be more flexible since it
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defines a separate graph for the graphics - a graph that will be connected
to the abstract syntax graph, e.g. one element of the abstract syntax graph
might be represented with several nodes in the concrete syntax graph.

The arguments concerning the rejection of XMI (item 3) seems hard to
follow, e.g. change from one XMI version to another can be performed by
some (simple) transformation. It seems likely that this approach will lead
to yet another standard!

It is hard to get an overview of tool support (tools that makes tools)
when it comes to software factories since a product line is put together in
a somewhat ad hoc way and since there is no specialized complete frame-
work (as we know of) for supporting the software factory method - only
more general frameworks with some pre-made components. On the other
hand, [GSCKO04] and articles like [Jac04] present a vision that includes full
language support (a fulfillment of all the aspects of figure 44).

F.3.5 More Examples

Of course, the idea to generate language processing tools out of language
descriptions is not new. The first attempts were grouped around the idea
to generate grammar handling tools out of grammars. They have been suc-
cessful in the area of lexical handling (e.g. [LS]) and in the area of parsers
(e.g. [PQI5], [Joh]). It was quickly clear that these properties did not fully
describe a language and several other approaches have been defined to cap-
ture the complete range of language aspects. However, none of these has
had real success.

Currently, there are several initiatives towards the idea of a more com-
plete language handling coming from different starting points. We have a
closer look at two of them.

Intentional Software [Int, CEQ(] is an attempt to use the informal de-
scriptions of a software in order to generate code from them. This way,
the intent of the code is still visible later and the connection to the
real code stays alive. It is very difficult to get deeper understanding
of their technology from the publicly available information. What we
have seen is that they allow the definition of languages that capture
the intent at the level that the developer has meant it. Then they
apply tools that make these descriptions valuable, i.e. they are trans-
formed to code. It is not visible which kind of description languages
are used in order to describe languages.

Meta-Programming System [MPS06] is coming from JetBrains. The
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name does already say that this is a tool for meta-programming. They
state "MPS is an implementation of Language Oriented Program-
ming [Dmi04], whose goal is to make defining languages as natural
and easy as defining classes and methods is today. The purpose is to
“raise the level of abstraction”, which has been a major goal of pro-
gramming since the first assembly language was born.” This way they
also allow the definition of languages and the generation of tools out
of the descriptions. It is not easy to see what languages they use for
language description and which aspects they cover. On their website
it is possible to get a pre-release of their tools for experiments.

GMF The Eclipse Graphical Modeling Framework (GMF) [GMF] is a promis-
ing open-source technology based on the Eclipse Modeling Framework
(EMF) and the Graphical Editing Framework (GEF). One purpose of
GMF is to support definition and implementation of Domain-Specific
Languages. EMF provides its own meta-model, called Ecore which is
very similar to EMOF (a subset of MOF 2.0). EMF includes support
for XMI 2.0 serialization and reflection APIs; support for OCL has
also been added. GEF is an MVC-based framework to create graph-
ical editors. GMF brides EMF and GEF; it supplies a set of tools
that allows you to define and then automatically generate a graphical
Eclipse-based modeling tool. GMF seems quit complete already and
it will probably play an important role as a tool making tool. This
new approach has not had the time to mature and it is left to see if it
is flexible enough to meet the demands of tomorrow.

MetaEdit+ [Met05] is a commercial metaCASE tool developed by the
company MetaCase Consulting, Finland. The tool consists of two
parts: the Method Workbench and the CASE tool. The Method
Workbench is a dialog based interface, which allows the user to de-
fine the language concepts, their properties, associated rules, symbols
etc. To describe the language concepts, a metamodeling language
called COPPRR is used. GOPPRR stands for Graph, Object, Prop-
erty, Port, Relationship and Role, which are the meta-types used to
describe modeling languages. The CASE tool MetaEdit+ follows the
language definition given in the Workbench, and provides a model-
ing tool according to this specification. MetaEdit+ support auto-
matic code generation for predefined and user-defined programming
language. The predefined includes: Smalltalk, C++, Java, Delphi,
SQL and CORBA IDL.
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F.3.6 The SMILE Framework

The SMILE project [NPK04, GNPT05, NP04] started as an attempt to im-
plement a technology that allows high-level language descriptions to be in-
terpreted or compiled into real tools.

The basic idea of SMILE is the application of MDD to the language
handling itself. This is done by using high-level descriptions of the languages
for creating complete development environments. The descriptions are given
in high-level languages, thus allowing the application of the SMILE principle
to itself, which is usually called bootstrapping or self-reference. This idea
came out of the success of this technology in the implementation of the SDL
formal semantics [ITU99, EGGT01, Pri00].

For language modeling, the SMILE methodology takes three steps:

1. the description of structure and semantics,
2. the automated generation of specific repositories and tools, and
3. the use of the generated repositories and tools for concrete models.

This methodology is based on a combination of metamodeling for infor-
mation structure description with technologies to describe the semantics of
that information accordingly. These description techniques, covering differ-
ent language aspects, have to be adopted and aligned to create a common
language modeling framework. With this new technology that integrates
structure and semantics, the SMILE toolset will be able to generate data
repositories and language tools that reflect the given semantics.

The SMILE methodology will be supported by a domain-independent
framework that provides language support for information structure and se-
mantic descriptions, making SMILE applicable to the described domains.
To describe the information structure SMILE will use existing standards to
describe a repository, e.g. MOF or RDFS. In the area of semantics SMILE
distinguishes between five kinds of semantics: Static semantics that is de-
scribed with a condition language based on OCL, execution semantics that
will be handled through the ASM method, transformations formally de-
scribed by rules and two ways to describe concrete representations, textual
and graphical. SMILE will provide a) languages to handle these semantics
and b) implementations that allow the generation of tools (model check-
ers, transformation engines, model editors and parsers) from descriptions in
these languages.

The SMILE approach is best understood by looking at the meaning of the
project abbreviation, which is Semantic Model-based Integrated Language
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Environment. These parts stand for the following concepts.

Semantic: SMILE acknowledges the importance of explicit semantic de-
scriptions in all places of the technology. The current approach to
have informal descriptions of parts of modeling languages (most promi-
nently the dynamic aspects) is not fitting the state of the art. There
is enough knowledge about how language semantics can be formalized
and there are even tools that can transform such explicit semantics
descriptions into real tools (interpreters or compilers).

Model-based: The whole approach of SMILE is focused on the idea to
handle models. Not only the descriptions of the software are models,
but also the descriptions of the languages and the languages to describe
them and even the generated code. In order to handle these models in
a unified way, a basic model representation is used allowing to capture
models internally. This is detailed below.

Integrated: The integration within SMILE starts with the unified model
representation. Every bit of information in SMILE is handled in a
similar way. This is achieved by using a basic instance representation
with an explicit interface between metamodeling levels. This means,
SMILE follow a strict metamodeling approach without connecting the
levels to each other by default. In SMILE, a model can be connected
to different meta-models if the interface between them allows this cou-

pling.

Language: The most prominent examples of using SMILE are languages.
In fact, in SMILE a model is just a kind of a language and vice versa.
Therefore, the concentration on languages is not that special, because
everything is a language in the end.

Environment: The final aim of SMILE is providing a complete model-
ing environment, which would also be a metamodeling environment.
Moreover, the SMILE technology does also an easy integration of
external modeling or metamodeling tools. The SMILE implementa-
tion is started in the scope of the Eclipse [DFK*03] platform using
EMF [Gri03].

The SMILE project is still in its early phases and is not yet completely
implemented. A basic representation called MATER (see [GNPTO05]) was
defined that allows the representation of any model (and meta-model) inde-
pendently of the corresponding meta-model. This is possible since SMILE
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has the complete information about the model and the meta-model encoded
into structural properties. This allows models to be connected to different
meta-models in SMILE.

F.4 Concluding Remarks

In this article, we have defined a terminology for the comparison of environ-
ments that generate modeling tools. This framework is very heavily related
to metamodeling. There are several current initiatives to create such an
environment, and although very few results exist so far, we can conclude
that almost all approaches focus on the same aspects of languages, namely
structure, constraints, representation (textual and graphical), and behavior
(mapping and execution).

Despite these striking commonalities, there are also several differences,
that mostly relate to the semantics of the parts. In all MDA-related ap-
proaches a fixed exchange format (XMI) is taken as part of the structure
semantics. Software factories argue that this is not needed and will use a
specific format defined for each language instead. This kind of reasoning is
understandable when one thinks of the many versions of XMI and that they
do not really achieve the goal of exchangability. However, we still think that
in an ideal setting a basic exchange format should be defined independently
of the concrete language. This is taken into account in the SMILE frame-
work in that we consider also the semantics of structural information to be
given by the description language of structural information, and a general
way of exchange can be described there in terms of textual representation.
This way, it is just a special case and would also be possible the same way
in software factories.

Another difference are the concrete languages put forward for express-
ing the different aspects of meta-models. Surprisingly, very concrete lan-
guages are used, although they are defined based on meta-models. There is
not much work in integrating these different formalisms. Only the SMILE
project tries to tackle this problem, but they are at the very beginning of
their work.

Finally, it remains to be said that almost all approaches take the language
structure for granted and do not allow handling of changes to the meta-
model. As these approaches are that similar, it would be a very good idea
to allow them to integrate, i.e. that there are ways to use the models of one
approach also in another approach.

The plans described in the different environments sound very promising and
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could lead to a completely different way of software development, once they
are fully implemented.
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This chapter presents the paper: A Generic Model For Connecting Mod-
els In A Multilevel Modeling Framework [Nyt06], written without any coau-
thor and presented at ICSOFT 2006.

This paper uses the same application as presented in Appendix A [NJO3];
it describes how to achieve a solution in a multilevel modeling environment.
A model for connecting models on the same and on different levels is defined.
The paper is presented below:

In science and elsewhere models are weaved together forming complex
knowledge structures. This article presents a generic way of connecting
models with model borders both vertically and horizontally in a multilevel
modeling framework. One model can be connected vertically to several
models allowing a model element to be an instance of several metaclasses
and different views can then be managed in an integrated way. Models at
the same level can also be connected by defining the correspondence between
model elements.

The idea behind the approach is to break model architectures down to
elementary building blocks so that all parts that might be of interest become
explicit and accessible.

G.1 Introduction

In this article some of the ideas behind a metamodeling framework called
Semantic Integration World Animation (Siwa) is presented; this framework
is under development at Agder University College and it is meant for learning
and experimentation; it is an offspring of the SMILE project [NPKO04] which
is more directed towards integration of existing language technologies.

MOF metamodel [OMGO3h] architectures have a pyramid structure,
while a Siwa architecture is like a directed graph with models as nodes.
The graph is not cyclic except maybe for the top models (e.g. level M3 in
the UML metamodel architecture).

OMG has issued a request for revision of MOF 2.0 [OMGO06a], some of
MOFss restrictions are becoming increasingly burdensome. MOF does not
allow properties to have an independent existence and multiple classification
is not possible - Siwa can be used without these restrictions. It will also be
possible to specify architectures that are not complete, e.g. that a meta-
model is missing; this opens up for data analysis, reasoning about models
and in some cases the framework might automatically suggest a metamodel.

Some models are static structures and some are executable models. We
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call the executable models semantic engines, some sematic engines are pre-
sented but they are not the main issue in this article.

A model is to a large extent defined by the role it plays in relation to
what it models; two basic roles are defined by Thomas Kiihne [Kiih05]: token
and type. A token model captures the singular aspects, while a type model
captures the universal aspects of what it models. A class Building might
capture the universal property that buildings have owners. An object that
models one specific building is a token model for this building, e.g. it might
capture the name of the owner. The focus of this article is a technique for
connecting models, the following model configurations are to be supported:

Vertical (type model) This is the type model role which spans two model
levels (some would call this the instance0f-relation). Several models
can be type models for the same model instance; this is not supported
by MOF.

There are variations of this relationship, e.g. a model instance might
actually have been instantiated from the model or the model is de-
scribing only some aspects of the model instances.

Horizontal (token model) We see the need for a model-to-model rela-
tionship which do not span a level border, but is between two models
that are considered to be on the same level. Several models can in
different way and with different level of granularity and detail model
the same thing; these models are related with this relationship.

Fig. 46 demonstrates, as we understand it, both token and type model
roles (the UML notation has been used in an ad hoc fashion).

The transitive property of the token model role can also be seen in
Fig. 46: the TMBuilding class is a token model for class Building which is
a token model for “the concept of a building”, consequently TMBuilding is
also a token model for “the concept of a building”. It seems to be a growing
agreement [Kith05, Fav04a] that a metamodel is a type model for another
model which again is a type model for its model instance. These models
are forming a stack structure where you don’t have the same transitivity as
for the token model role. Subclassing is a transitive relation and should not
span a level border [Kiih05, Fav04a).

UML has no diagram type that truly spans several (metamodel) levels;
UML object diagrams shows instance specifications (instances of metaclass
InstanceSpecification) and also classes are allowed; an object diagram
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Figure 46: Example of token and type model

is placed on the model level (M1). As the name indicates, an instance spec-
ification is a specification and it might in fact specify properties of several
instances at the model instance level (MO). According to this understanding,
an object diagram is correctly placed on M1 because an instance specification
is not “truly” in a horizontal relation to an instance on MO. In our view, if
a model is in a horizontal relation to another model, then both models are
modeling “exactly the same specific thing” even if the number of details and
precision might be different; the models should consequently be placed on
the same level since they model the same thing.

The idea behind our approach is to break model architectures down to

elementary building blocks so that all parts that might be of interest become
explicit and accessible; the framework should of course allow the user to view
an architecture at different levels of granularity and with different concrete
syntaxes that hide the underling complexity.
Using the example in Fig. 46: object :Building is a structure that contains
a slot called id with value ¢ ‘b1" and a slot called owner with value ¢ ‘Tom";
we consider Building, id and owner to be symbols that forms an upper
border to the type model containing class Building; we actually have two
borders (or border sides), one for each models being connected, this allows
different number of symbols at the borders and it allows symbols to have
different names.

216



App. G - A Generic Model for Connecting Models

Sec. G.2 presents our multilevel (meta-)modeling framework and explains
how models are connected. In Sec. G.3 we mention some related work.
Sec. G.4 presents an example of how Siwa can be used to do testing of
data consistency. We summarize and describe some research directions in

Sec. G.5.

G.2 The Siwa Approach

Lately the term megamodel has been used to name a model of MDE itself,
e.g. by Bézivin and Favre [BJV04, Fav05]. Such a megamodel describes
the concepts of MDE - concepts like model, metamodel and transforma-
tion. Fig. 47 shows our preliminary megamodel which has been inspired by
Favre [Fav05].

elements

#

/N\

elementOf

’ PhysicalSystem ‘ ’ AbstractSystem ‘

sets

’ DigitalSystem H Set

#*
’ SiwaWorld }0%’ SiwaModel ‘
system- |# % model
UnderStudy (sus) T
'
modelOf

AN

’ horizontal H vertical ‘

Figure 47: Megamodel

As we can see from Fig. 47 basically everything is a system. In [FBJV05]
a system is described as a group of interacting, interrelated, or interdepen-
dent elements that form a complex whole.
Abstract systems can only be described since they are not to be found in
the concrete; physical systems are concrete and manifested “in reality”. We
consider a computer system to be a special type of physical system since
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they are manifested in computer hardware.

The Siwa framework supports the notion of levels like you find it in meta-
modeling architectures defined by OMG. Atkinson and Kiihne [AKO01] have
earlier used the term multilevel metamodeling, we prefer the term multilevel
modeling framework since an arbitrary number of levels will be supported
including metamodel levels. We call a multilevel metamodel architecture
defined in the framework for a Siwa world. Fig. 47 defines a Siwa world as
a special type of digital system. A Siwa world is composed of Siwa mod-
els which also are considered to be special types of digital systems. The
modelOf relation comes in the two generic types: vertical and horizontal.

A Siwa model can be a model for an abstract or a physical system which
is not part of a Siwa world. This possible relation is not depicted in Fig. 47
since it can not be explicitly represented in the framework.

Favre presents briefly the notion of static and dynamic system in [Fav05],
a Siwa world also has these two aspects which we call: Model All Types with
Extent Realization (MATER) and Play Activations and Transformations
with Extent Realizations (PATER). The focus of this article is MATER and
in the following subsections MATER is presented with the help of UML
notation and examples. PATER is touched in Sec. G.4 when some sematic
engines are described.

In Subsec. G.2.1 we present how to represent the internal structure of a
Siwa model, in Subsec. G.2.2 we describe how Siwa models can be connected
to constitute a Siwa world (a multilevel model architecture).

G.2.1 Representing One Model

Fig. 48 presents the part of MATER that is used when one model is to be
represented, it is meant to be used on all the levels of a Siwa world. There
are several similarities between this part of MATER and MOF [OMGO3h]
as an instance model, e.g. an object can be represented as an instance of
Structure containing instances of Slot with values representing properties
of the object and Descriptor can be used for type information as described
later. Links between objects can be represented as instances of Link. The
property/owner associations can be used to represent relations between sets;
since there is no reference to a Descriptor, instantiation of these associ-
ations might in some cases lead to ambiguous situations when it comes to
finding their description on the level above. Fig. 48 has two types of symbols:

Descriptor This symbol type is used to indicate classification and it is used
to establish a vertical relation, e.g. structure describing a building
called b1 might have a descriptor called Building.
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Identifier An instance of Identifier is labeling a part of the model be-
ing defined and functions as an identifier for this structure, e.g. an
identifier b1 might reference structure that describes a building with
that id. Another example would be an identifier Building referencing
a structure that describes a class Building. Several identifiers might
reference the same structure; in some cases this means that there are

synonyms.
Descriptor
name:String
*

| Structure |

*/I\ owner *

® property \|, J7

| Slot |

15| target 1 %d'ent»

{ordered} « ified 1%
Identifier Instance
name:String

{ordered} |, * %7

| Value
Z}

* |
Link DataValue

val:String

Figure 48: Part of MATER: the internals of a Siwa model

For us as humans the symbols are typically telling what a model is
about, from the “framework point of view” only what has been formalized
and represented in MATER “does matter”.

An example of how an object of type Building can be represented
is given in Fig. 50. In Fig. 50(a) the object is shown in UML notation,
Fig. 50(b) shows how MATER can be instantiated to represent the same.
Fig. 50(c) is showing an overview of the Building-object in an ad hoc
notation where the structure is hidden except for the symbols (two bor-
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Figure 49: The top metamodel of the examples

ders are shown, marked U and L, this concept will be explained below).
Fig. 49(a) shows the top model which is called Class-MM. It describes im-
portant object-oriented concepts like: abstract and concrete class, property,
multiplicity, association and generalization.

Fig. 51(a) shows a simple class called Building with a property called
id; Fig. 51(b) describes how Class-MM can be instantiated to get the class
and then Fig. 51(c) demonstrates how MATER can be used to describe the
class (the :Property-object is not shown). As we can see from the figure
the number of model elements is huge - it correspond approximately to the
number one would get if the UML metamodel was instantiated.

In the object-oriented literature, and also in this article, the difference
between a class as a set (something abstract) and the description of a class
is often confused'. As a consequence of being abstract: it is not possible
to “point to” a class and say “there it is”, but it might be possible to point
to the instances of a class and also to a description of a class!®>. MATER
does not have class as a built-in construction - there is no model element in
Fig. 48 called Class, but it is possible to describe classes (e.g. Fig. 51(c)).

Seeing a class as an object is not in conflict with the UML metamodel
architecture since a UML model can be seen as composed of objects instan-

Tn our view reification is merely to establish a descriptions of a concept.

5The terms abstract class and concrete class used in object-oriented programming is
something else, in that context a concrete class means that there are objects that are
direct instances of the class which is not the case for abstract classes.
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Figure 50: Example of how to represent an object in MATER
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:Descriptor :Descriptor L L]
name="Class:name” name="“c” /I\ J/
. . . :Slot
:Descriptor :Descriptor
name="Class:isAbstract” name="c_p” 4\ \J/
:Link
:Descriptor :Descriptor
name="Class” name="class:p” .Slot
:Slot %‘ :Structure ‘
M sidentified /]
.
[ St |>|  ddentifier
name="Building”
(c)

Figure 51: A part of the description of class Building

tiated from the UML metamodel (see [AK02] for more on this class/object
nature); the UML metamodel can again be seen as composed of objects
instantiated from MOF and MOF can be seen as composed of objects in-
stantiated from itself.

A class Building in a UML class diagram is an instance of class Class of
the UML metamodel, we understand that Building will be a class when
we read about the semantics of class Class [OMGO6b]: A class is a type
that has objects as its instances... The instances of a class are objects. From
this description we understand that a whole UML metamodel architecture
can be depicted as an object diagram, which is known from the literature
(e.g. [NPKO04] and [GFBO05]).

MATER offers several ways to model the same thing and it is not
“strongly” constrained - this is deliberate and opens for experimentations.
It is not discussed in the article but it will be possible to configure the
framework with the help of some OCL-like language, e.g. enforce strict
metamodeling [AK00D].
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Figure 52: Sketch of connected models

G.2.2 Connecting Models

Fig. 53 extends MATER and adds the possibility to connect models. A
Siwa model can contain borders; two models are connected by connecting
two borders, one from each model. When the models to connect are on
the same level both borders will be of type HorizontalBorder (Fig. 53(c)),
when the models are on different levels the border on the lower level is of
type UpperBorder (Fig. 53(b)) and the border of the upper model is of type
LowerBorder.

Fig. 52 offers a sketch where a model called M3 is connected to a model M2
that resides on a level above. M3 has an instance of UpperBorder (marked
with letter U) containing two instances of Descriptor called D1 and D2;
these two symbols are connected to instances of Identifier, I5 and I6 re-
spectively; M2 has an instance of LowerBorder (marked with letter L) con-
taining both I5 and I6. Fig. 52 is also demonstrating how model M1 and M2
residing on same level are connected by two instances of HorizontalBorder
(marked with letter H).

The vertical association in Fig. 53(b) has multiplicity 0. .1 on the Ident-
ifier side, this means that incomplete architectures, as claimed in the intro-
duction, are possible. The claim that a model can have several metamodels
is justified by allowing several upper borders for one and the same model.

Fig. 54 shows in more detail an example (same example as in Fig. 46)
of how MATER can be instantiated to connect models, (a) shows how
TMBuilding and Building residing on the same level are connected, while
(b) shows how Building and :Building residing on different levels are con-
nected.

This way of connecting models is an extension to what we have presented
before; [NPK04] presents a solution where two models would share a common
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SiwaModel

Border *
* 1

- name:String
name:String

¢

1

£

’HorizontalBorder‘ ’ VerticalBorder ‘ ’ Instance ‘

(@)

Identifier

connected-
Identifier

connected-
Descriptor

Descriptor

(b)

0..1

connected-
Identifier

(©

Figure 53: Part of MATER: connecting Siwa models
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name= [ | name=
“TMBuilding” “Building”
I I l

:Structure :Horizontal- :Horizontal- :Structure
Border Border
oo | I LR N}
:Identifier :Identifier
name= [ | name=
“TMBuilding:id” “Building:id” _m

(a)

LN ]

Lower-
Border
name="Building” name="Building:id”

o~ N

:Descriptor :Descriptor
name="Building” name="Building:id”

:Structure

(b)

Figure 54: The example (incomplete) of Fig. 46 in MATER
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border instead of having one border for each model to be connected; also
the connecting of models on the same level is new.

Building-M
Building
Building U

o

Figure 55: Architecture of building example (TMBuilding is not included)

o g =
L

belongsTo *
*

a L.#7) target ZT */I" property
DataVal
ataValue ® 1% 01
val:String l Link l Object ‘

Figure 56: Model Object-M in detail

In Fig. 55 some of the models described above are put together to form a
multilevel architecture. The only model that has not been mentioned before
is the one named Object-M; as can be seen in Fig. 56 it simply defines an
object as a structure having slots with values and links to other objects. The
instance of Structure representing the building object has both Building
and Object as descriptor.
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Model Object-M is introduced to demonstrate that a model can have
several type models. Object-M could be used to define a more general XML
format than if Building-M was used.

G.3 Related Work

Today there is much interest in the use of metamodels, e.g. in MDA [OMGO03a],
MDE [Fav04b], LDD [Fow05], DSL [GSCKO04].

The part of Siwa presented in this article, which is mainly the static
part, can be used as a starting point in all the mentioned fields.

There are several other metamodeling frameworks, to mention a few:
MetaEdit+ [Met06], Coral [AP04], XMF [CESW04], EMF [Ecl04] and
MPS [MPS06].

Rondo [MRBO03] is a programming platform for generic model manage-
ment and it includes high-level operators used to manipulate models and
mappings between models. AMW [FBJ'05] goes further and allows ex-
tensible mappings. AMW [FBJT05] is a generic model weaver that allows
the specification of correspondences between model elements from different
models - models are in this way connected with a model, e.g. correspon-
dence Fquals might be established between the two id attributes of classes
TMBuilding and Building of Fig. 46.

Our approach has similarities with the aforementioned works, but we
have not found a framework that allows models and model levels two be
connected so freely as our approach does, e.g. the weaving of models de-
scribed above can be achieved simply by introducing another model with
borders to the models to be weaved; this new model will describe the struc-
ture of the correspondences, semantic engines can then be defined to handle
the semantics of the correspondences; a somewhat related example is given
below.

G.4 Legacy Data Consistency As Example

Our article [NJ03] focused on the consistency problems that occur when pre-
viously uncoordinated, but semantically overlapping data sources are being
integrated. The paper presented techniques for modeling consistency re-
quirements using OCL and other UML modeling elements. The paper also
considered the automatic checking of consistency in the context of one of
the modeling techniques. This section presents an outline of how Siwa can
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be applied to implement one of these techniques and how automatic testing
of consistency can be performed.

G.4.1 Consistency Modeling And Testing

Fig. 57 shows an integration of two legacy models, where one is a description
of apartments (class Apartment) and the other a description of buildings
(class Building). The consistency requirements are as follows:

1. The number of apartments that is given as a property in class Building
should be equal to the number of apartments with the same building
id (attribute bId).

2. One building should have at least one apartment, and an apartment
should belong to exactly one building.

| {cAparlmentCount =
| (building.apartment->size() = building. aparimentCount)} I

i C yApartment d J
i cApartmentCount:boolean J
A
\i/ 1
Apartment . Building
1. 1
ald € — = === = >| bld
bld ! apartmentCount
|
e i

Figure 57: Consistency between Apartment and Building

The elements with dash-dotted line style in Fig. 57 constitute what we
call a consistency model, this model is manually made by the user. When
the consistency model is established, consistency testing of legacy data can
be performed automatically. In our case there is one legacy data source
with information about buildings and one about apartments. Consistency
testing results in a report revealing which legacy data that do not fulfil the
consistency requirements.

The association (Fig. 57) between Apartment and Building, including the
attached invariant expressed in OCL, constitute consistency requirement
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two. When testing is performed on the legacy data, a link is created be-
tween an Apartment and a Building instance if the invariant is fulfilled; if
the multiplicity on the association is broken, this is reported in the consis-
tency report.

Consistency requirement one is specified with help of class Consistency-
ApartmentBuilding, property cApartmentCount and its attached invariant.
During testing instances of type ConsistencyApartmentBuilding are cre-
ated and linked to Building instances; slot cApartmentCount will be set
to the value that fulfils the invariant; if the value is false then a con-
sistency violation has occurred and will be reported. Note that links be-
tween Building and Apartment instances are traversed when the values of
cApartmentCount slots are set. From this example we can understand that
standard OCL-statements are used as production rules when the consistency
model is being automatically instantiated.

G.4.2 Implementation In Siwa

In Siwa the consistency model can be seen as an instance of the declarative
domain specific language described by the metamodel given in Fig. 58.

CProperty CClass CClassEnd
name ! hame 1) name
constraint multiplicity

1

. CProxyEndl 1 CClassAssociation
® name
name .
I | constraint 1
1

CProxyClass CProxyEnd2 CAssociation
name '™ | name 2 1| name
legacySystem multiplicity constraint

Figure 58: Consistency modeling metamodel

In brief: The legacy classes Building and Apartment have prozy classes
to represent them in the consistency model; a proxy class is an instance
of CProxyClass. Class ConsistencyApartmentBuilding (Fig. 58) is an in-
stance of CClass; its property cApartmentCount is an instance of CProperty,
where the value of slot constraint is the text:

cApartmentCount = (building.apartment— size() = building. apartmentCount)

The association between ConsistencyApartmentBuilding and Building is
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represented as an instance of CClassAssociation going between the build-
ing proxy class and ConsistencyApartmentBuilding.
The association between Building and Apartment is represented as an in-
stance of CAssociation going between the two proxy classes; the value of
slot constraint for this instance is the text:

apartment.bld = building.bld

Fig. 59 gives an overview of the complete architecture. The lowest level
can be seen as one contiguous model composed of legacy data and a consis-
tency model instance. The legacy models are on the other hand not changed
- the borders towards the consistency model can be extracted automatically.
From a model management point of view this is considered an advantage
since it gives few models to manage (remember that the lowest level can be
produced automatically at will).

=
[onf—u

l L1 E— L2 Class L3
Class

A
[ow =
e |

——
[ecms

[os f—u [eow ey

Il

Apartment Apartment w I Building I Building Building-M
U
H2 _— H3

II
H1 H4

I LS I CApartmentBuilding L6 l Building L7
I U6 I CApartmentBuilding |F= U7 I Building Us

Apartment-MI Consis y-MI Building-MI

Figure 59: Architecture example: consistency modelling and testing

The format of this article does not give room for presenting a complete
picture of how Siwa solves the problem at hand, but below is some informa-
tion about how the consistency model instance is automatically created by
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a semantic engine.
A semantic engine is a Siwa model that exhibits behavior. A special type of
semantic engines can be attached to borders, they are called border engines
and are typically involved in instantiation. For simplicity we can assumed
that such engines are programmed in Java since this is our implementation
language. The metamodeler has made a border engine and attached it to
border L4 (Fig. 59). Border U4 and L6 is created by the engine when the
modeler decides to make a consistency model. The engine is also attaching
a premade border engine at L6, it is this engine that automatically produces
the consistency model instance and the consistency report when triggered.
This last engine is an adapted implementation of the algorithm presented
in [NJO3].

This way of establishing the semantics can be seen as a specific way
of implementing deep characterization; some see deep characterization as a
natural part of metamodeling [Kiith05].

G.5 Summary And Research Directions

The MATER model presented in this article represent our understanding of
what we mean by a multilevel model architecture; we have tried to make an
explicit representation of all elements that constitutes such an architecture.
Complex and advanced concepts can then be built in a natural way by
combining these defined building blocks.

MATER can be seen as a metamodel by itself, but we choose to see it
as the physical carrier for multilevel modeling architectures. This view al-
low us to specify top models as we see needed, e.g. a top model that gives
properties separate existence.

The following is a list of features that in our view makes Siwa a promising
and unique framework:

e It is not strongly coupled to the instantiation found in its implemen-
tation language, this allows a model to have several type models each
offering different and useful information about the model.

e It is extremely generic which makes it adaptable to many different
modeling needs, e.g. it might allow separate existence of properties.

e It is possible to have incomplete architectures, e.g. XML documents
might be loaded for analysis, and then a model might be produced au-
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tomatically [GNPT06]. This is typically not possible in other frame-
works due to their strong coupling to instantiation in the selected
implementation language.

Parts of our framework are already implemented in the Eclipse framework
[DFK'03]. The first prototype is implemented by defining the MATER
model as a UML model in Eclipse and from this we create an EMF Model;
this looks like a trick since we end up with having all the Siwa model levels at
one EMF level [PNCWO06], but it gives us a jump-start and it automatically
produces a lot of useful code.
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This appendix gives an informal introduction to the object-oriented way
of thinking and the basis of modeling.

Often the object-oriented development paradigm is presented with ref-
erences to philosophers like Aristotle and Plato — this is no coincidence, phi-
losophy is a potent source of knowledge when doing computer science, e.g.,
language as a topic by itself is essential to both philosophy and computer
science. Also, defining ontologies — which is an old philosophical discipline —
can be seen as modeling. The close relation between philosophy and model-
ing (metamodeling) is exploited in temporary works, e.g., Alfons Laarman
and Ivan Kurtev states the following [LK09]:

The philosophical theory presented here gives us a set of concepts
to build a new metalanguage...

In this paper we use an ontology called Four-category ontology
(FCO) that can be traced back to Aristotle and is also used in
several contemporary works on Formal Ontology...

The philosophical theory presented in this section gives us a
stable and well-founded set of concepts to start with building
our metalanguage.

H.1 Seer, Seeing, and the Seen

In our normal state of mind we perceive the world as composed of objects
with properties. The state of an object is given by the values of its properties;
one property may be that an object can be linked in some specific way to
another object (e.g., a flying object placed in the gravitation field of earth).
Some properties seems to be more intrinsic than relative, like you being the
object and the level of your blood pressure' bing the property. An object
may interact with other objects exhibiting behavior which is governed by
its state. All types of objects conform to this general description — and it
defines the object-oriented world view.

What does it mean that we perceive the world as composed of objects
— does it mean that the world is composed of objects or is this “only” our
perception? The object-oriented view is dualistic in the sense that you have
subject and object. It is not meaningful to talk about an object without

16Blood pressure of course depends on the outside pressure; there is a lot to the state-
ment “everything is relative”, and some philosopher even call the physical reality for the
relative.
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a subject; it is the subject that experiences “something”!” as an object;

something becomes an object if it appears before our inner eye as something
separate from its surroundings. Reality has the potential of being perceived
as composed of objects, and our perception “works” since it allows us to
“navigate in reality”.

Some objects are more equal than others, which makes it possible to
classify objects by their differences and similarities. The notion of a class
is built on this understanding; discrimination is done by some established
demands on properties of the objects in question'S.

A concept is often considered to be an abstract idea generalized from par-
ticular instances; the instances may be physical entities or concepts. One
may argue that a concept is described with (symbolic) references to other
concepts and because of this we have a non-useful self referential situation,
however, our physical experiences can be referenced and descriptions of “ab-
stract things” can in this way be grounded in the physical. The term concept
is not always indicating a set of instances, e.g., the mental representation
of Lassie (seen as an individual dog) is also considered to be describing a
concept and in this case there is a one-to-one relation between the particu-
lar instance and the concept. The Four-category ontology'® is used in some
later works as a basis for modeling [Gui05, DHHS01]; this ontology have two
main entities: Individuals and universals. Individuals can further be di-
vided into substantials and moments; a substantial is typically represented
as an object in UML. Moments are dependent on other individuals for ex-
isting and they correspond to slots and links. If a complete ontology is to
be made, then change or time would typically be included; an object could
then persist while its inherent moments may come and go. We understand
from this, since Lassie (the dog) appears as a continuously changing entity,
that even the concept of Lassie must have a certain “flexibility” so that it
can continuously be connected to the dog Lassie.

The meaning of a new concept can be defined in terms of concepts which
already have a well-defined meaning, e.g., as a specialization of an already
known concept by describing additional properties (e.g., some additional
behavior); this may be how a subclass was established; classes can also be
overlapping; in this way complex hierarchies (taxonomies) can be defined.

"Below I have not always quoted the terms something and thing even if used in “an
imprecise manner”.

¥ This is not meant to be a political manifesto despite the terminology — but please note
that discrimination is based on choice and selecting an object is like giving it a property:
One of the chosen ones.

19(This ontology can be tracked back to Aristotle.)
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Typically, when “looking” at an object, we find that it is composed of
parts; focusing on a part makes that part an object, e.g., the head as part of
a human body. So an object can be seen as one object even if it is composed
of several parts that again can be seen as objects. The parts of a composite
(a whole) are related, and this makes a whole more then the sum of its
separate parts, e.g., the parts of a chair are not arbitrarily put together.

The reality is complex, “things” in reality are extremely entangled with
each other; senses and instruments are limited; consequently our perception
of the world is (extremely) limited.

Further
Abstractions
. . Subject Phenomenon Objects
impression {
expression { ﬂ ﬂ ﬂ ﬂ ﬂ U ﬂ
Object Noumenon “Reality”
(a) (b) ©

Figure 60: Subject and object.

Is objectivity possible? The definition of the word objective may involve
phrases like “observer independent” and “existing independently of mind”.
Fig. 60(a) shows an observation (done by some instrument/sense organ)
where the subject (observer) does not effect the observed object. Accord-
ing to Immanuel Kant we can not know the thing-in-itself (noumenon),
the subject can only know the phenomenon which can be understood as
the “physical impact” the noumenon has on the subject (Fig. 60(b) shows
the terminology used by Kant). Fig. 60(c) shows a more true story than
Fig. 60(a): An observer always causes a perturbation of some kind onto
the object being observed. The subject must be in some sort of interaction
with reality to receive information; the influence of the observer generates
a sort of response from the thing being observed — the response generates
the impression experienced by the observer. One should also be aware that
all subjects (e.g., human minds) comes with an individual context and that
the objects “constructed” will be “colored” by this context! Even if an ob-
server independent observation seems impossible, the following statement
is considered true: There is “something” in the outer world that in a “ho-
momorphic (isomorphic) way” correspond to the objects that appear before
our inner eye.
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H.2 Form and content

A variation of the whole-part relation can often be found by examining
an object at a “finer granularity” exposing smaller parts, e.g., the head
is composed of cells, a cell is composed of molecules and so on. Another
example would be text written on paper; first we realize that the text makes
some statement about something and this is typically not about the ink on
the paper; in this case ink on paper functions as medium; the ink/paper is
again made up of molecules which gives a more detailed description of the
medium. The language used making the text can also be understood as a
medium used to carry the description given by the text??. All media used
must be rooted in physical reality and all descriptions need a medium, even
the stuff that dreams are made of?' is physical in some way.

A description is about something physical (concrete) or about something
you imagine, something abstract — this is called the content of the descrip-
tion. The physical reality by itself is not a description of something else??
— “it describes itself”. Every medium in use (included languages), is rooted
in the physical reality, and consequently it communicates a physical state —
this state is called the form of the description. The form can often be viewed
at different levels that all contributes to the form appearing, e.g., a running
computer program can be understood at a level which involves electronics
and it may also be seen at a level involving byte code.

Content and form are intermingled and how they relate is still discussed
by philosophers, e.g., a specific medium is giving some quality to the de-
scription that other media can not give.

Content implies a language, and by “stretching” the notion of being a
language, one may say that the physical reality consists of statements made
in an “immanent language” — this is the language that physics as a science is
trying to capture and externalize. The term “implemented language” may
be used instead of immanent language, but it is problematic to use this term
since we do not know if there is a specification behind the “implementation”.

This view gives the understanding that all we relate to are statements
in languages which we in some way understand partially or fully — and, that
all things existing are statements in some language?®. One may say that

29The understanding, i.e., seeing a language as a medium, is used to make the ideas
presented more understandable; it is based on the believe that the term medium appears
to be less abstract than the term language and more easy to understand.

2'From Hamlet by W. Shakespeare

22Ignoring any metaphysical objections.

23Bypassing any metaphysical objections like the claim that there is an absolute formless
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this view constitutes a language-oriented world view.

The language-oriented world view is at a more general level than the pro-
gramming paradigms (e.g., the object-oriented paradigm, the event-oriented
paradigm, the rule-oriented paradigm, the function-oriented paradigm, etc.)
which all are based on languages.

Returning to the example above, i.e., text written in ink on paper, the
ink/paper medium may be seen as a representational language (embedding
language) for the text; the representational language is used in a specific
way to code sentences in the language represented, and consequently inter-
pretation is needed to get the sentences (which in this case is the meaning).
To get the semantics of the sentences interpretation is again needed.

To get the semantics of sentences in a language an interpreter doing
an interpretation is always needed. A language is typically built on top of
another language forming stacks of languages and it is not possible to make
a language without already having a language*.

H.3 1Is Concept the Same as Class?

In common use “abstract” is a relative term — something is more or less ab-
stract in relation to something else — the most concrete are then the things
that are seen as physically existing. Abstraction is the mental process of ab-
stracting out things that are considered to be more important than the ones
ignored. Abstraction often involves generalization; this gives abstractions
that describes several instances.

The meaning triangle, shown in Fig.61(a), was discussed by Aristotle
and it describes conceptualization; as an example: The referent may be a
concrete person with name Peter, the name Peter is a symbol (also called
represent) that stands for this person, the concept or idea of this person is
found at the top of the triangle. Another example of concept would be: The
“person concept” (all words represent concepts); the word Person could be
the symbol and “real” persons would be referents.

It seems that John F. Sowa [Sow00] consider a concept to be neural ex-
citations in the brain that relate the symbol to its object; I can not fully
agree on this — a concept should be considered something abstract and not
something concrete as brain excitations; I consider the brain excitations to

reality (non-relative).
24 . .
In the process of boot strapping a computer language, another language is at least
initially needed.
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Concept Description / Class / Intent

describes symbolizes

refers to symbolizes

stands for stands for

Referent Symbol Instance fitting Description / Class Name
Object of Class /

Element of Extension

(a) (b)

Figure 61: The meaning triangle (a) and a variant of it (b)

be descriptions/processing that give the “right linking of symbol to referent”.

All concept are by themselves abstract, it is not possible to “point to”
a concept and say “there it is”, but it may be possible to point to the
instance(s) of a concept and also to a description of a concept.

The term description is here seen as something physical, e.g., a (concrete)
paper map describing a terrain or a (concrete) painting of goddess Saraswati.

Concepts are the “ingredients” in intellectual human communication;
the following is meant as a schematic description: A symbol (e.g., “chair”)
is used as a starting point, by exchanging descriptions of what the symbol
means (e.g., a chair is something to sit on) a common meaning is established
or a disagreement on what is meant by the symbol is exposed; in this pro-
cess of communication one assumes that there is a truth which is language
(form) independent®® and it is this truth (right understanding) that we call
a concept.

Often we are able to use some “sort of logic” and see that two descrip-
tions are describing the same concept, in other cases we may agree that one
description is giving more information about one aspect of the concept than
another description. In mathematics the concepts are typically precisely
described but in other domains this is not the case, e.g., the concept of a
chair may have conflicting descriptions — some may claim that it must be
manmade and others not.

Nominalism is defined as [Her01] :

2°This is not meant as a complete description of the issue — after all this has been
discussed in philosophy for centuries !
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...the doctrine holding that abstract concepts, general terms, or
universals have no independent existence but exist only as names.

The discussion so far should have made it clear that concepts do not
have their own separate existence, one may stretch the term exist and say
a concept exists in the form of descriptions. Another view, advocated by
Aristotle, is to see a concept (class) as existing via its instances and not
independently of them. “Separating” reality into objects (without more
classification) is demanding a (mental) process, separating the objects into
categories adds further complexity to the process of selection/discrimination.

Both the description of a physical phenomenon and of a concept may be
stored on a computer — in this respect there is no difference.

Some physical phenomenon like “a game character” may only exist on a
specific computer, the description and its existence may in this case be so
tightly connected that removing the description removes the phenomenon
altogether; however, from the ”computer point of view” there are no differ-
ence.

Claiming that concepts are mere names (like just “an empty sound”) is
“taking it to far”. Visioning a world which includes time but no reoccurring
patterns — that is hard or impossible since “no thing” would appear! Our
world is not a world of total chaos, we manage by using our creative minds
to abstract and reason. “Concepts are” potential ways of understanding
the world, by agreeing on some logic and context we have ways that will
lead us to common concepts. The mentioned logic is not enough — there is
also a human element of choice involved, a creative factor, consequently the
“conceptual worlds” are many (this is particularly evident when it comes to
politics, religion, etc.).

Fig. 61(b) shows a modified triangle, here concept has been replaced by
a description of referent — in a sense this triangle is more directly applicable
when it comes to computers since only descriptions can be stored and ma-
nipulated. (Fig.61(b) correspond to the viewpoint of John F. Sowa [Sow00]
where the description is found in a humans brain.)

Is concept (ignoring the “one-to-one type of concepts”) the same as class?
James Rumbaugh et al define a class as [RJBO05]:

The descriptor for a set of objects that share the same attributes,
operations, methods, relationships, and behavior. A class repre-
sents a concept within the system being modeled.
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A descriptor is defined as:

A model element that describes the common properties of a set
of instances, including their structure, relationships, behavior,
constraints, purpose, and so on.

From this we understand that class is not the same as concept — a class
is a description of what is the intent or the meaning of the concept. In this
view a class and a copy of the class are not the same class, but they describe
the same concept in a similar way.

In addition to a description of the referents, different types of information
may be attached to a class:

e Descriptions related to the class itself, like who made the class.

e Descriptions about the concept itself, e.g., people can be classified as
melancholic where melancholic by itself is an instance of personality
type (notice that a person that is a melancholic is not an instance of
personality type).

Additionally there is always a linguistic aspect to a description since it is
done in a language.

Where does type fit in this picture? One view is to see a type as a descrip-
tion (specification) without a physical implementation [RJB05]; physical im-
plementation can in this context be interpreted as having the description in
a programming language; in this view a type is a “bit more abstract” than
class.

Philosophy contains many different and competing views on reality; con-
temporary philosophical realism (metaphysical realism) advocates the view
that there is a reality that is completely independent of our mental activ-
ities. Another view is constructivist epistemology which advocates a view
where all our knowledge is considered to be “constructed”, and that it does
not necessarily reflect any external reality.

Today phenomenology has a strong position, according to Husserl phe-
nomenology is (collected from [Smi07]): “...the reflective study of the essence
of consciousness as experienced from the first-person point of view”. Husserl
is considered to be the founder of contemporary phenomenology. Central to
phenomenology is the understanding that consciousness is directed towards
some object, in phenomenology this “aboutness” (“directedness”) is called
intentionality. In classical Husserlian phenomenology, there is a distinction
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between the represent (the mental object) and the thing it presents (refer-
ent) — as it is for Kant. The human experience of a thing goes via particular
concepts, images, etc. — this “direction towards the thing” makes up the
content or the meaning of the experience. An example that may explain this
view is given by Friedrich Ludwig Gottlob Frege 26: “The morning star” and
“the evening star” both refer to the same object (Venus) but express differ-
ent content (or meaning; Frege used the term sense; Husserl used the term
noematic sense) since the same object is presented in different ways.

Phenomenology does not rule out objectivity even if experiences are done
by subjects, e.g., in a mathematical system, which includes axioms and
deductive rules, two different persons can derive the same trustful results.

In performing phenomenology, Husserl proposed “bracketing” the ques-
tion of the existence of the natural world — this fits the view presented above:
A modeling framework is about descriptions; what is being described is only
“Important to the framework (tool)” if there are references in the description
to other descriptions found in the framework, e.g., an object and a reference
to its class.

For man computer can be seen as an extension to the brain; computer
and brain have different strengths but they are both used to memorize and
manipulate descriptions. There are many theories when it comes to philos-
ophy of mind, e.g., weak materialism proclaiming that each type of mental
state corresponds to or is identical with a type of brain state. Another
theory being functionalism, focusing on what brains do [Smi05]:

...Instead, mind is what brains do: Their function of mediating
between information coming into the organism and behavior pro-
ceeding from the organism. Thus, a mental state is a functional
state of the brain or of the human (or animal) organism. More
specifically, on a favorite variation of functionalism, the mind is
a computing system: Mind is to brain as software is to hardware;
thoughts are just programs running on the brain’s “wetware”.

There are several other theories, but it seems hard to come around that
at some level, neural activities and the states of the brain relate to the
descriptions that occur as the contents of consciousness.

However, as a modeling framework developer not all philosophic issues
have to be settled:

26Frege precedes modern phenomenology.

242



App. H: The Object-oriented Paradigm and Some Basic Philosophy

A modeling framework is necessarily about phenomena or appearances —
discussing if there is something like thing-in-itself and realism contra a more
constructivist view, is not needed when seeing the content of a modeling
framework as descriptions. Whether a description is describing something
existing or not, that question is left to the modeler!

Most object-oriented programming languages offer a class construct that
includes functionality that allows objects conforming to the class to be cre-
ated (instantiated) — this functionality is in some way coded into the con-
struct. This work takes another approach: It sees the functionality of in-
stantiation as what makes a description into a class. Also, object creation
can be done in different ways, allowing the explicit attachment of (varying)
instantiation functionality gives flexibility and a more “open solution”. An-
other, essential functionality is the one that allows objects to be classified —
this functionality may also be explicitly attached to the class (description).
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