
A QoS-Oriented Extension of UML Statecharts�

David N. Jansen1, Holger Hermanns2,1, and Joost-Pieter Katoen1

1 Universiteit Twente
Postbus 217, 7500 AE Enschede, The Netherlands

2 Universität des Saarlandes
Im Stadtwald, 66123 Saarbrücken, Germany

{dnjansen,hermanns,katoen}@cs.utwente.nl

Abstract. Performance, dependability and quality of service (QoS) are
prime aspects of the UML modeling domain. To capture these aspects
effectively in a modeling language requires easy-to-use support for the
specification and analysis of randomly varying behaviors. This paper
introduces an extension of UML statecharts with randomly varying du-
rations, by enriching a specific syntactic construct: The “after” operator
is equipped with (discrete or continuous) probability distributions, deter-
mining the duration of the delay caused by this operator. The semantics
of this extension is given in terms of a variant of stochastic automata. It is
shown how existing model-checking tools can be used to calculate model-
inherent QoS characteristics automatically. We study a UML model of
an automatic teller machine scenario using this approach.

1 Introduction

Background and Motivation. The UML is pervading many challenging engineer-
ing areas including real-time and embedded system design. Embedded systems
designers are usually facing various challenges if they strive for systems with
predictable quality of service (QoS). Most QoS aspects of current embedded sys-
tems are time-related features and properties. They are usually referred to as
soft real-time constraints, and are of stochastic nature. To incorporate these
constraints in the embedded systems design process is a challenging issue [22]:

– System dynamics is becoming ever more complex, making it more and more
difficult to properly predict the QoS.

– The trend to networked embedded systems raises issues like message buffer-
ing, inter-dependencies due to media sharing, and communication character-
istics, all influencing the system QoS.

– Applications involve more and more non-functional features in the form of
multimodal interfaces and multimedia support, having impact on the QoS.

A workable modeling and analysis approach to embedded system QoS is based
on the observation that networks, interfaces, and even circuits on chips [9,33]
� Parts of this work was achieved during the Dagstuhl seminar 03201 ‘Probabilistic

Methods in Verification and Planning’ held at IBFI Schloss Dagstuhl in April 2003.

P. Stevens et al. (Eds.): UML 2003, LNCS 2863, pp. 76–91, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

A QoS-Oriented Extension of UML Statecharts 77

can be understood and modeled as discrete systems exhibiting some form of
stochastic behavior, such as error rates, response time distributions, or message
queue lengths.

Mathematically speaking, the QoS characteristics of a given embedded sys-
tem induce families of stochastic decision processes, e. g. Markov chains or semi-
Markov decision processes. However, these mathematical objects are too fine
grained to be directly specifiable by an embedded systems designer. Therefore,
one must rely on modeling techniques and tools for stochastic processes. While in
principle the UML provides the right ingredients to model discrete event dynamic
systems, it lacks support for stochastic process modeling. This issue has been
addressed in both the UML profile for schedulability, performance and time [31],
and in the draft UML profile for modeling QoS and fault tolerance [30]. These
profiles suggest annotational extensions of UML providing means to specify per-
formance, dependability and QoS characteristics at various levels. However, the
vague semantics of the UML and of its annotational extensions drastically ham-
pers QoS analysis: It is simply impossible to distill a faithful performance or
QoS quantity from a stochastic (decision) process that is only partially defined.
This means that model-based QoS prediction is only possible for UML fragments
with a rigid formal semantics.

In this paper, we attack this problem for UML statecharts. We provide a
formal semantics of an extension of UML statecharts, the extension being both
simple and easy to understand, yet powerful enough to model a sufficiently rich
class of stochastic decision processes. The extension is twofold. One extension,
first introduced in [20], allows state transitions to select probabilistically out
of different effects, much like the rolling of a die can have one out of six ef-
fects, determined probabilistically. The second extension is novel, yet simple
and conservative: The “after” operator of statecharts is given a stochastic inter-
pretation, allowing the use of arbitrary probability distributions for modeling,
such as EXP[10 min] for a negative exponential distribution with a mean of 10
min, or UNIF[10 h, 15 h] for a uniform distribution in the interval from 10 to 15
hours. The resulting statecharts dialect is called StoCharts, and contains UML
statecharts (up to some minor features such as deferred events) as a subset.

Example 1. Consider the following workflow model of a car damage assessment
by an insurance company. In the damage assessment it is decided whether a
damaged car should be repaired and whether the garage offers an acceptable price
for the repair. To assure customer satisfaction, the insurance company imposes
the following QoS requirement: “In at least 95 % of the cases, an entire damage
assessment takes less than 4 days.” The damage assessment is split in several
mandatory and optional phases which take varying times, and in summary delay
the repair of the damaged car. In Fig. 1, the damage assessment is succinctly
modeled by a StoChart. Once a workflow starts, the damage assessor contacts
a garage. The time this step takes may vary, and it is modeled by an “after”
operator parameterized with a negative exponential distribution having a mean
duration of one minute. After completion of this delay, the conversation may lead
to one out of two outcomes, which are modeled probabilistically. Either a physical

78 D.N. Jansen, H. Hermanns, and J.-P. Katoen

Priority

Normal

P

0.8

0.2
Evaluate

assessment date after
(EXP[1 min])

Phone
assessment

P
0.7

0.3

Assessing

Contacting
garage

after
(EXP[1 min])

after(UNIF[30 min,
90 min]) / end

after
(EXP[3 d])

Negotiating
with garage

after(EXP[1,5 days])Physical
assessment

after(EXP[3 days])

after
(EXP[10 min])

Idle

start /

P

Writing
report

Waiting for
invoice

0.98

Checking
invoice

0.02 / write off
RepairReport

Reporting
finished

Repair
finished

after(UNIF[10 min, 20 min])

Fig. 1. Damage assessing process

assessment date is negotiated (with probability 0.3), or a phone assessment is
carried out (with probability 0.7). This behavior is modeled graphically by using
a P©-pseudonode, a drawing aid inspired by the C©-pseudonode of [15]. With this
probabilistic choice we abstract from a detailed analysis of the reasons that
lead to the decision. Dependent on the decision taken, the assessment continues.
With the above explanation, the subsequent intuitive behavior should be self-
explanatory.

Technical Merits. To make StoCharts a useful tool in QoS modeling and pre-
diction, requires more than a simple extension of UML with an intuitive inter-
pretation. In order to support model-based QoS prediction, a formal mathemat-
ical interpretation is indispensable. Otherwise, model-based calculations are not
trustworthy. Concretely, we needed to solve various challenges which we report in
this paper: (i) The semantic model associated with StoCharts needed to be de-
fined together with semantic mapping which conservatively extends the standard
semantics. As in [20], we take as a representative the requirements-level seman-
tics of Eshuis and Wieringa [12], which is based on the Statemate semantics [16]
and its formalisation by Damm et al. [10]. We have chosen the requirements-level
semantics because it is simple and matches our intended use of the UML closely.
(ii) In order to associate a stochastic interpretation to collaborative collections of
statecharts embedded in arbitrary environments, we provide a compositional se-
mantics, which uses concepts from Input/Output (I/O) automata [26]. (iii) Our
semantic embedding, though rather parsimonious in its scope (just one operator
is touched), exploits lessons learned in a decade of research in formal specifica-
tion of stochastic processes, rooted in the seminal works on stochastic Petri nets
[1,2], stochastic process algebra [14,18] and probabilistic automata [32]. (iv) We
provide experimental evidence that this approach can be used for modeling and
model-based prediction of interesting QoS quantities. The QoS characteristics
of an automatic teller machine scenario are modelled in the UML extension and
the user-perceived QoS is predicted using model-checking. Other model-based

A QoS-Oriented Extension of UML Statecharts 79

techniques can equally well be applied for QoS prediction, such as simulation or
numerical analysis.

Related Work. Quite some research has been devoted in recent years to enable
QoS analysis from UML. Several authors have suggested mappings of statechart
fragments onto stochastic Petri nets variants [6,19,23,25], of which the syntax
suggested by Lindemann et al. [25] is most similar to ours. This approach does
not consider nondeterministic phenomena, while we do. Others have linked to
process algebra [28,8]. Closest to our work is the work reported in [13], since
both approaches use variations of stochastic automata as semantic models. In
their approach, however, clocks appear as syntactic entities, and are explicitly
referenced in the syntax. Our approach instead keeps the syntax unchanged,
while timers are used under the hood. Furthermore, we do not limit standard
UML statecharts in any way.

Organization of the Paper. Section 2 introduces our statechart dialect. Section 3
introduces the semantic model, and Section 4 describes a mapping from Sto-
Charts to this model. A larger example of using StoCharts in modeling and
analysis is presented in Section 5. Section 6 concludes the paper. In the remainder
of this paper, we assume familiarity with basic probability theory [29].

2 StoCharts

This section describes our syntactic extensions to UML statecharts together with
their informal interpretation.

UML Statecharts. A (simple) UML statechart consists of
– a set of Nodes, organized as a simple typed tree where nodes are of type

‘basic’ (leafs), ‘and’ , or ‘or’. The root node and children of ‘and’ nodes are
of type ‘or’. Each ‘or’ node has a distinguished, initial child node.

– a set of Events with the distinguished element ⊥ denoting “no event re-
quired”.

– a set Vars of (typed) variables or attributes together with an initial valuation
V0 : Vars → D, assigning initial values to the variables. Here D subsumes
the domains of all variables.

– a set Edges of edges. Each edge connects a set of source nodes to a set of
target nodes, and is labeled with an event, a guard (a Boolean expression),
and a (possibly empty) set of actions (assignments to variables or sending
messages to other objects).

For analysis purposes, we assume that all these sets are finite and that variable
domains are restricted to bounded integers only.

Our Enrichment. We propose to extend statecharts as follows: an “after” oper-
ator is considered to indicate random delays, and the notion of edges is refined
into probabilistic edges (P-edges) to handle discrete probabilistic branching. The
latter concept has recently been introduced by us in [20].

80 D.N. Jansen, H. Hermanns, and J.-P. Katoen

– Like an event, the after-operator acts as a trigger of an edge (or a P-edge) and
has as parameter a cumulative distribution function F where F (t) determines
the probability to wait at most t time units.

– A P-edge is a tuple (X, e, g, P) where X is a non-empty set of source nodes,
e is either an event or an after operator, g is a guard, and P is a function
assigning probabilities to pairs consisting of a set A of actions, and a non-
empty set Y of target nodes1. P (A, Y) denotes the probability of selecting
target (A, Y).

To simplify matters, P-edges are indicated by numbers, i. e., we use a bijective
index function ι to identify P-edges. When ι(j) = (X0, e0, g0, P0), we write ι(j).X
for X0, ι(j).e for e0 etc. We also number StoCharts. A StoChart numbered
i is indicated by the tuple (Nodesi,Eventsi,Varsi,PEdgesi). A P-edge can be
projected to a set of ordinary edges in the following way: an edge is a triple
(j, A, Y), where j identifies a P-edge such that (A, Y) is assigned a positive
probability, i. e., P (A, Y) > 0.

The scope of an edge (j, A, Y) is the smallest (in the parent–child-hierarchy)
node that is not affected when the edge is executed. That is, it is the smallest
node of type ‘or’ that contains both the source nodes ι(j).X and the target nodes
Y . We require all edges (with probability > 0) belonging to a P-edge to have the
same scope. This may be understood as: “arrows from a P-pseudonode that cross
node borders – like inter-level transitions – should be avoided”. This restriction
slightly limits the expressiveness, but eases the semantics considerably. See [20]
for an extensive discussion of this issue as well as an alternative, unrestricted
semantics.

Drawing P-edges. A P-edge consists of two parts: an arrow labeled with an
event and a guard directed to a P-pseudonode (denoted P©) from which several
arrows to target nodes emanate, each labeled with a probability and an action
set. For example, the statechart in Fig. 1 contains a P-edge that starts in node
Contacting garage and allows to choose between the targets Phone assessment and
Evaluate assessment date. P-pseudonodes are omitted in case the P-edge consists
of a single edge that occurs with probability one.

Intuitive Interpretation. The StoChart is always in some state which consists
of one or several nodes. A P-edge may be taken (i. e., is enabled) if all its source
nodes are part of the current state, its guard holds, and if either its event happens
or the delay associated with its after operation expires. Nondeterministically an
enabled P-edge is selected (or a number of non-conflicting ones), and its discrete
probabilistic choice will be resolved. Once the selected edge is taken, its actions
are executed, and its target nodes will be entered. On entering a node with
an outgoing P-edge labeled with an after(F) operation, a sample is taken from
distribution F and a timer is set accordingly. The corresponding outgoing edge
becomes enabled once the timer expires.
1 Formally, P is a probability measure on the discrete probability space (P (Actionsi)×

(P (Nodesi) \ {∅}), P).

A QoS-Oriented Extension of UML Statecharts 81

3 Underlying Transition Model

The formal semantics of StoCharts is defined in terms of an extension of
labeled transition systems, basically automata with locations representing the
possible configurations of the system, and transitions between locations repre-
senting the system’s evolvement. These transition systems are equipped with
timers to model probabilistic delays, and with a set of actions to model system
activities. The use of timers in transition systems is very much in line with the
use of clocks in, e. g., timed automata [4,27]. While clocks in timed automata
run forward at the same pace and are always reset to 0, our timers are initialized
by sampling a probability distribution and run backwards, all at the same pace.
On the other hand, timers are always checked for expiration (i. e., is the timer
equal to zero?), while clocks can be checked in complex conditions.

Input and output actions are distinguished to allow for the composition of
transition systems, like in I/O-automata [26]. Three types of transition relations
are used: input transitions, output transitions, and delay transitions, the latter
being enabled once a timer expires. Whereas input and delay transitions are
standard ternary relations (input is even a function), the output transition re-
lation is probabilistic. Like in I/O-automata we assume input-enabledness, i. e.,
in each location any input can be accepted. The resulting model, a stochastic
I/O-automaton (Iosa, for short), is a tuple (L, l0, T ,A, I, O, ∆) consisting of:

– a set L of locations with initial location l0 ∈ L.
– a set T of timers such that each timer t has an associated cumulative distri-

bution function (cdf) Ft.
– a set A of actions, partitioned into inputs Ain and outputs Aout.
– an input transition relation, described by the function I : L × Ain → L.
– a probabilistic output transition relation O ⊆ L×Prob (Aout × P (T) × L).
– a delay transition relation ∆ ⊆ L × T × L.

Example 2. Figure 2 depicts an Iosa modeling the behavior of a bank from the
perspective of an automatic teller machine (ATM). Output, input and delay
transitions are labeled o:, i:, and d:, respectively. The ATM sends a request
(action request) to check whether a certain withdrawal is allowed; from the bank’s
point of view, this is an input. It needs some time to check the allowance; this
is modeled by setting a timer t and waiting until it expires. If the outcome of
the check is positive, the ATM may request to actually withdraw the money
from the account (withdraw). If the ATM sends a withdrawal request without
allowance, the bank moves to an error state.

Informal Semantics. The interpretation of Iosa uses similar ingredients as the
semantics of timed automata [4]. In fact, Iosa are symbolic representations of
infinite (probabilistic timed) transition systems [11] where a state consists of
a location and a timer valuation, recording the current value of each timer.
We only present the intuition behind this interpretation; its formalization can
be found in [21]. The behavior of the Iosa begins in its initial location, with
every timer being set to a random sample drawn according to its associated

82 D.N. Jansen, H. Hermanns, and J.-P. Katoen

i: request o: d: t
1

set t o: 0.98, allow

0.02, deny

i: request

i: withdraw

Idle
Preparing
to check

Error

Checking
Check

finished
Check

positive

i: withdraw i: withdraw i: withdraw i: withdraw

Fig. 2. Stochastic I/O automaton of the bank behavior

distribution. In each state, one enabled transition may be selected for execution.
Only if no transition is enabled, time may pass until some transition will be
enabled (if any). An output transition is always enabled, an input transition
is enabled only if its input action is offered by the environment, and a delay
transition is enabled only if its timer has expired (i. e., has reached value zero).
If input action a is offered in location l, the unique next location is I(l, a). If
timer t expires in location l, delay transition (l, t, l′) may be taken and results in
moving to l′. Output transitions are slightly more involved. To take an output
transition emanating from location l, first a probability space P with (l, P) ∈ O is
nondeterministically selected. Subsequently, one of the possible targets (a, T, l′)
in P, is probabilistically chosen. On taking this transition, action a is generated,
all timers in set T are reset and the system evolves to location l′.

Composition. Compositionality is of utmost importance to enable the use of
Iosa in arbitrary embedding contexts. That is to say, each of our extended stat-
echarts can be embedded in any environment, and the semantics of their com-
posite behavior can simply be determined in a modular way. This approach even
allows the embedding environment to be specified using a different specification
technique provided its interpretation can be given in terms of stochastic I/O-
automata. This differs from our earlier approach [20] where we only considered
system randomness for which a closed system approach suffices.

In a network of Iosa one automaton is selected (nondeterministically) to
take an output transition. This output action immediately triggers correspond-
ing input transitions in the other automata. (By input-enabledness, each au-
tomaton can react to the output.) The composite automaton accepts input
action a if all its components do so. Conversely, the composite automaton
takes a delay transition, if one of its components does so. Composition is de-
fined as a binary operator; as this operator is associative, it can easily be
generalized to finite collections of Iosa. For Iosai = (Li, l0,i, Ti,Ai, Ii, Oi, ∆i)
(with i = 1, 2) with Aout

1 ∩ Aout
2 = ∅, their composite automaton, denoted

Iosa1 ⊗ Iosa2 = (L, l0, T ,A, I, O, ∆) is defined by:2

– L = L1 × L2 with initial location l0 = (l0,1, l0,2)
– T = T1 ∪ T2

2 To simplify the notation, we extend I1 and I2 by Ii(li, a) = li if a �∈ Ai.

A QoS-Oriented Extension of UML Statecharts 83

– A = A1 ∪ A2, where Aout = Aout
1 ∪ Aout

2 and Ain = (Ain
1 ∪ Ain

2) \ Aout.
– I is the smallest relation defined by the rule:

a ∈ Ain

I((l1, l2), a) = (I1(l1, a), I2(l2, a))

– O is the smallest relation defined by two symmetric rules. We only give the
rule where Iosa1 takes the initiative for output:

(l1,P1) = (l1, (Aout
1 × P (T1) × L1, P1)) ∈ O1

((l1, l2),P) = ((l1, l2), (Aout × P (T) × L, P)) ∈ O

where P is the probability measure defined by:

P ({(a, T, (l1, I2(l2, a)))}) = P1({(a, T, l1)}) if a ∈ Aout
1 and T ⊆ T1

and P ({ω}) = 0 otherwise.
– ∆ is the smallest relation defined by the two rules:

(l1, t, l′1) ∈ ∆1

((l1, l2), t, (l′1, l2)) ∈ ∆

(l2, t, l′2) ∈ ∆2

((l1, l2), t, (l1, l′2)) ∈ ∆

Related Models. As already mentioned, Iosa are inspired by timed (I/O) au-
tomata [4,27] and probabilistic automata [32]. From another perspective, Iosa
extend stochastic automata [11] with discrete probabilistic branching and input-
output communication. Another strongly related model is probabilistic I/O au-
tomata (PIOA) [34]. The main differences between Iosa and PIOA are: All
clocks in the latter are governed by negative exponential distributions, while
Iosa allow arbitrary distributions. (Despite their name PIOA include stochastic
timing.) All choices in PIOA are probabilistic, while Iosa also allow nonde-
terministic choice. Consequently, a composite PIOA chooses the automaton to
produce an output in a probabilistic manner rather than in a non-deterministic
manner. Each probabilistic I/O automaton with deterministic input (and no in-
ternal actions) can be mapped to an equivalent Iosa; the reverse, however, is
not true.

4 Formal Semantics

We first describe how for an individual StoChart, steps are selected and exe-
cuted, and then consider the semantics of a collection of StoCharts.

How to Construct a Step for a Single StoChart. A configuration describes the
most important part of a StoChart. Configuration Ci of StoChart SCi is a
set of nodes containing: the root node, one child for each ‘or’-node in Ci, and
all children of all ‘and’-nodes in Ci. The set of configurations of SCi is denoted
Conf i. A location of SCi is a triple (Ci, Ii, Vi) with configuration Ci, event-set
Ii (to which still has to be reacted) and valuation Vi : Varsi → D. The set of all

84 D.N. Jansen, H. Hermanns, and J.-P. Katoen

valuations of SCi is denoted Val i. The validity of guard g in a location depends
on the configurations C1, . . . , Cn and the valuations V1, . . . , Vn. We denote by
(C1...n, V1...n) � g that g holds.

The set PT of P-edges to be executed has to obey a couple of requirements:
all P-edges in PT must be enabled, they must be pairwise consistent, obey
the priority constraints, and, finally, PT must be maximal. For a more detailed
description of these requirements, see [12,20]. The following algorithm constructs
PT , and probabilistically selects a step from it: Assume that the current location
of SCi is (Ci, Ii, Vi).

1. Calculate the set EnP(Ci, Ii, Vi) of enabled P-edges. P-edge j is enabled iff:

ιi(j).X ⊆ Ci ∧ ιi(j).e ∈ Ii ∪ {⊥} ∧ (C1...n, V1...n) � ιi(j).g

2. Calculate PSteps(EnP(Ci, Ii, Vi)), where PSteps(E) (for E ⊆ PEdgesi) con-
tains all maximal, prioritized, consistent sets of P-edges ⊆ E.

3. Select nondeterministically a set of P-edges PT of PSteps(EnP(Ci, Ii, Vi)).
4. Draw samples from the probability spaces of the P-edges in PT , resulting in

a set of edges T (called a step).

The second and third phases are similar to the nextstep-algorithm in [12]. The
last phase can be described by a discrete probability space over P (Edgesi). Its
probability measure P is a function on sets of sets defined as follows. For any
selection of Aj and Yj (for j ∈ PT),

P ({{(j, Aj , Yj) | j ∈ PT}}) =
∏

j∈PT

(ιi(j).P)({(Aj , Yj)})

and P ({ω}) = 0 otherwise. Subsequently, the selected steps (in the last phase)
are executed. For a single StoChart this amounts to update the variables and
events that occur in the activities and to determine the new state.

How to Construct a Step for a Collection of StoCharts. Actions of one
StoChart may influence events of other StoCharts. This is reflected in
the step execution of a collection of StoCharts. The collection of Sto-
Charts (Nodesi,Eventsi, Varsi,PEdgesi)n

i=1 is mapped to a single Iosa
(L, l0, C,A, I, O, ∆) as follows:

– L =
n

×
i=1

Conf i × P (Eventsi) × Val i

– l0 = (s0,1, . . . , s0,n), where s0,i = (C0,i, ∅, V0,i) is the initial location of SCi

– For each P-edge ιi(j) with label after(Fij), there is a timer tij ∈ T with cdf
Fij

– Ain = P
(

n⋃
i=1

Eventsi

)
and

Aout = P
(

n⋃
k=1

{i.e | ∃(j, A, Y) ∈ Edgesk : send i.e ∈ A ∧ i �∈ {1, . . . , n}}
)

A QoS-Oriented Extension of UML Statecharts 85

– I is the smallest relation defined by the rule:

E ∈ A
(Ci, Ii, Vi)n

i=1
E−→ (Ci, Ii ∪ (E ∩ Eventsi), Vi)n

i=1

– If PTi = (P (Edgesi) , Pi) ∈ PSteps(EnP(Ci, Ii, Vi)) for each i, then ((Ci, Ii,
Vi)n

i=1, (A × P (C) × L, P)) ∈ O, where P is the probability measure defined
by:

P ({(E, T,Execute(C1...n, T1...n, V1...n))}) =
n∏

i=1

Pi({Ti})

where E is the set of events that are sent to the environment:

E =
n⋃

k=1

{i.e | ∃(j, A, Y) ∈ Tk : send i.e ∈ A ∧ i �∈ {1, . . . , n}}

and T = {tij | ιi(j) becomes enabled}. Let P ({(E, T, ω)}) = 0 otherwise.
– ∆ is defined by the rule:

X ⊆ Ci0 ιi0(j) = (X, after(Fi0,j), g, P) ∈ PEdgesi0

I ′
i0 = Ii0 ∪ {after(Fi0,j)} ∀i �= i0 : I ′

i = Ii

(Ci, Ii, Vi)n
i=1

ti0,j−−−→ (Ci, I ′
i, Vi)n

i=1

for some i0 ∈ {1, . . . , n}.

Note that the communication mechanism between StoCharts differs from the
communication between Iosa. Whereas all StoCharts may take their steps
and produce output at once, only one component Iosa of some composite Iosa
is allowed to take an output edge at a time. In our context, the composition of
Iosa is only used to combine the embedded system under consideration with
the embedding environment.

5 StoCharts in Action

As an example illustrating how StoCharts can be used for modeling and model-
based QoS prediction, we develop a model of an Automatic Teller Machine
(ATM). An ATM (often called “cash dispenser”) distributes money to clients
who identify themselves with a personal chip-card and a PIN (personal identifi-
cation number). We measure whether the ATM satisfies a customer satisfaction
requirement. The distributions and probabilities used in this examples should
in practice be obtained from statistical analysis of observed behavior, while for
this example we decided to use plausible, but ad-hoc chosen, parameters.

86 D.N. Jansen, H. Hermanns, and J.-P. Katoen

Client

ATM Bank
prompts and questions

card, PIN, amount

money

request

allow or deny

withdraw

Fig. 3. A typical interaction of the ATM with its environment

Model. We model a system consisting of three components, (i) the ATM sub-
system, (ii) the bank, and (iii) the client. Figure 3 shows a typical interaction
of the ATM with its environment (client and bank). The ATM is described by
an UML-statechart in Fig. 4. This statechart contains neither P©-nodes nor af-
ter-delays.3 Since we assume familiarity with standard statecharts, we do not
comment on the modelled behavior.

Preparing Idle

/ client.prompt
"please insert card"

Waiting
for PIN

card / client.prompt
"please enter PIN"

Waiting for
amount

correct PIN / client.prompt "How
much do you want to withdraw?"

Waiting for
approval amount(n) /

bank.request(n)

stop button / client.prompt
"transaction aborted" ;

client.card back wrong PIN /
client.prompt

"please try again"

Offering card
(positive)

Offering
money

allow / bank.withdraw(n) ;
client.prompt "please take

your card" ; client.card back

take card / client.
prompt "please take your
money" ; client.money(n)

take money /

Offering card
(negative)

deny / client.prompt
"transaction aborted" ;

client.card back

take card /

Fig. 4. The automatic teller machine behavior

We have modelled the bank’s behavior as viewed by the ATM in terms of the
Iosa in Fig. 2. To check an account balance takes some time (given by the distri-
bution associated with timer t). With a certain probability (0.98) withdrawing
is permitted, and the bank processes withdrawals, otherwise it sends a denial
back to the ATM. We abstract from the internal structure of the bank and only
model the delays to handle the ATM’s requests.

The client’s behavior is also modelled as a StoChart, depicted in Fig. 5.
Each action of the client is assumed to take some non-negligible time, denoted
in the figure. The client first inserts the card. Then the client is ready to key
in the PIN and also the desired amount, the order depending on the type of
machine confronted with. There is a probability (0.01) that the user enters the
wrong PIN, and similarly the amount of money the client desires to withdraw
varies probabilistically. Afterwards, the client awaits the money and the card
back (also in either order). If the ATM reports a denial of the bank, the client
doesn’t expect any money, but still awaits the chip-card.

Model Analysis. Model analysis of a collection of StoCharts is based on the
analysis of the associated Iosa. This model can be analysed using simulation,
3 Note that any standard UML statechart is a trivial StoChart.

A QoS-Oriented Extension of UML Statecharts 87

Wait 1

Inserting
card

prompt "please
insert card"

after(EXP[2 s])
/ atm.card

Entering data

Wait 2
Entering

PIN
P

after(EXP[10 s])
prompt "please

enter PIN"

0.99 / atm.correct PIN

Wait 3

prompt "please
try again"

0.01 / atm.wrong PIN

prompt "transaction aborted" /

Wait 4
Entering
amount

prompt "How much do
you want to withdraw?"

P
0.5 / atm.

amount(50)
after(EXP[10 s])

0.3 / atm.amount(20)

0.2 / atm.amount(100)

Receiving service

Wait 5
Taking
money

money /
after(EXP[2 s]) / atm.

take money

Wait 6
Taking
card

after(EXP[5 s]) /
atm.take cardcard back /

prompt "transaction aborted" /

after(EXP[20 min])

Spending
money

amount
entered

PIN
entered

Card
taken

Money
taken

Fig. 5. The client’s behavior

or using model-checking. In the most general case model-checking algorithms in
the style of [3] are needed. If nondeterminism is absent (which is the case in our
example), one can deal with simpler algorithms, such as the ones implemented
in ProVer [35]. ProVer estimates probabilities of system requirements up to
a user-specified confidence by means of discrete event simulation. If all distribu-
tions are exponential, Markov-chain model-checking tools such as Etmcc [17] or
Prism [24] are available. These tools calculate probabilities with which certain
system requirements are satisfied by the model. As a requirement specification
language, all the above tools rely on the stochastic temporal logic Csl [5].

Requirement. We focused on a probabilistic requirement of the following form:
“Once the card has been entered, the probability that the client obtains the
money within time t is at least p.” This can be considered as a QoS requirement
imposed by the bank to ensure customer satisfaction. In the temporal logic Csl,
this requirement can be formalized as

prompt “please insert card” =⇒ P�p(♦�ttake money)

and can be fed into the Csl model checkers ProVer and Etmcc, which were
the tools we used in our studies. The Iosa models associated with the Sto-
Chart specifications were generated in a semi-automatic way, and manually fed
into the respective model checkers.

Experiments. In our experiments we considered two scenarios, a simple one, con-
sisting of one client, one ATM and the bank, and a more complicated one with
multiple clients, two ATMs and the bank. In the latter scenario, a mutual exclu-
sion module (not shown in the figures) sequentializes the critical communication
between bank (which is a shared resource) and ATMs. With respect to stochastic
timing, our basic model assumed that all after-delays are given by exponential

88 D.N. Jansen, H. Hermanns, and J.-P. Katoen

distributions with mean durations as listed in the respective figures. If only mean
durations are available from domain analysis, the stochastic behavior is known
to be reflected best by exponential distributions (since this class of distribution
has maximal entropy). But we also experimented with other distributions in the
context of ProVer.

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

0 20 40 60 80 100

Time (sec)

P
ro

ba
bi

lit
y

one ATM
two ATMs

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

0 20 40 60 80 100

Time (sec)
P

ro
ba

bi
lit

y

exponential
uniform

Fig. 6. The probability to withdraw money within t time units

Results. Some results of our experiments are shown in Fig. 6, where we evalu-
ated the above Csl-requirement for increasing time points t and calculated the
boundary probabilities p at which the requirement turns from being true to
being false. For a pair (t, p) above a plot the requirement is false, while for
pairs below it is true.

On the left we see the results obtained with Etmcc for both scenarios
(one/two ATMs). We observe that in the second scenario, the probabilities are
slightly lower than in the first one, with the maximum difference around 40 sec-
onds (0.58 vs. 0.53). The reason is that although the throughput of the bank is
higher with more ATMs, the individual customer perceived delay increases, with
the bank being the bottleneck.

On the right of Fig. 6 we plotted two graphs generated with ProVer, where
the confidence was set to 0.999. The solid curve corresponds to the second sce-
nario (two ATMs) studied with Etmcc, and the numerical results obtained
with both tools are very close. This can be considered as a simple sanity check,
indicating that the currently manual steps in the tool chain were performed cor-
rectly and that ProVer produces rather accurate results. The dashed curve
is obtained when replacing all exponential distributions with uniform distribu-
tions (over an interval around the mean durations). More precise, each EXP[t]
occuring in Fig. 6 is replaced by UNIF[t − 1

2 t, t + 1
2 t]. Since there is now some

minimum time before significant behavior can take place (with nonzero proba-
bility), the calculated probability stays below the other plot for small times. For
longer times we are on the other end of the uniform intervals involved, and it
is almost sure (except when the bank refuses the transfer) that the money will
have been received.

A QoS-Oriented Extension of UML Statecharts 89

6 Conclusion

This paper has introduced StoCharts, a simple twofold extension of UML stat-
echarts tailored to QoS modeling and prediction. We have laid out a formal map-
ping from StoCharts to the Iosa model, a model based on timed, stochastic
and probabilistic automata. This mapping provides the basis for faithful model-
based QoS prediction.

Care has been taken to define a compositional semantics, making use of I/O
automata. Most of the complexity of our semantic mapping is inherited from
standard UML statecharts, while the extensions map rather smoothly on the
Iosa model.

We have exemplified how QoS requirements on a StoChart can be model
checked. The tool chain used in the model checking example is incomplete, and
a few steps have been performed manually, namely the construction of an Iosa
given a set of StoChart and parts of the translations from an Iosa to the
input languages of the model checkers, in particular ProVer. We are currently
closing the gaps, by integrating the StoChart formalism into the Modest tool
environment [7].

References

1. M. Ajmone Marsan, G. Conte, and G. Balbo. A Class of Generalised Stochas-
tic Petri Nets for the Performance Evaluation of Multiprocessor Systems. ACM
Transactions on Computer Systems, 2(2): 93–122, 1984.

2. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
eling with Generalized Stochastic Petri Nets. John Wiley & Sons, 1995.

3. L. de Alfaro. Formal Verification of Probabilistic Systems. Ph.D dissertation,
Stanford University, 1997.

4. R. Alur and D. Dill. A theory of timed automata. Th. Comp. Sc., 126: 183–235,
1994.

5. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms
for continuous-time Markov chains. IEEE Transactions on Software Engineering,
29(6): 524–545, 2003.

6. S. Bernardi, S. Donatelli, and J. Merseguer. From UML sequence diagrams and
statecharts to analysable Petri net models. In Workshop on Software and Perfor-
mance (WOSP), pp. 35–45, ACM Press, 2002.

7. H. Bohnenkamp, H. Hermanns, J.-P. Katoen, and R. Klaren. The Modest modeling
tool and its implementation. In P. Kemper and W.H. Sanders, editors, Computer
Performance Evaluation, LNCS 2794, 2003.

8. C. Cavenet, S. Gilmore, J. Hillston, and P. Stevens. Performance modelling with
UML and stochastic process algebra. In: UK Performance Engineering Workshop
(UKPEW), pp. 16 Univ. of Glasgow, UK, 2002.

9. C. Constantinescu. Impact of deep submicron technology on dependability of VLSI
circuits. In Dependable Systems and Networks, pp. 205–209. IEEE CS Press, 2002.

10. W. Damm, B. Josko, H. Hungar, and A. Pnueli. A compositional real-time seman-
tics of statemate designs. In Compositionality : the Significant Difference (COM-
POS), LNCS 1536: 186–238, 1998.

90 D.N. Jansen, H. Hermanns, and J.-P. Katoen

11. P. R. D’Argenio, J.-P. Katoen and E. Brinksma. An algebraic approach to the
specification of stochastic systems (extended abstract). In Programming Concepts
and Methods, pp. 126–147, Chapman & Hall, 1998.

12. R. Eshuis and R. J. Wieringa. Requirements-level semantics for UML state-
charts. In Formal Methods for Open Object-Based Distributed Systems (FMOODS),
pp. 121–140, Kluwer, 2000.

13. S. Gnesi, D. Latella, and M. Massink. A stochastic extension of a behavioural
subset of UML statechart diagrams. In Symposium on High-Assurance Systems
Engineering (HASE), pp. 55–64. IEEE CS Press, 2000.

14. N. Götz, U. Herzog and M. Rettelbach. Multiprocessor and Distributed System De-
sign: The Integration of Functional Specification and Performance Analysis Using
Stochastic Process Algebras. In Tutorial Proc. PERFORMANCE ’93, LNCS 729:
121–146, 1993.

15. D. Harel and E. Gery. Executable object modeling with statecharts. IEEE Com-
puter, 30(7): 31–42, 1997.

16. D. Harel and A. Naamad. The Statemate semantics of statecharts. ACM Trans-
actions on Software Engineering and Methodology, 5(4):293–333, 1996.

17. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser and M. Siegle. A Markov chain model
checker. J. on Software Tools and Technology Transfer, 4(2): 153–173, 2003.

18. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
Univ. Press, 1996.

19. G. Huszerl, I. Majzik, A. Pataricza, K. Kosmidis, and M. Dal Cin. Quantitative
analysis of UML statechart models of dependable systems. The Computer J., 45(3):
260–277, 2002.

20. D. N. Jansen, H. Hermanns, and J.-P. Katoen. A probabilistic extension of UML
statecharts : specification and verification. In Formal Techniques in Real-Time and
Fault-Tolerant Systems (FTRTFT), LNCS 2469: 355–374, 2002.

21. D. N. Jansen. Extensions of Statecharts with Time, Probability, and Stochastic
Timing. Ph.D thesis, Univ. of Twente, October 2003.

22. B. Jonsson et al.. Component-based design and integration platforms : Draft
roadmap of IST-2001-34820. Advanced Real-Time Systems, 2003.

23. P. King and R. Pooley. Derivation of Petri net performance models from UML
specifications of communications software. In Computer Performance Evaluation
(TOOLS), LNCS 1786: 262–276, 2000.

24. M. Z. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model
checking with PRISM: A hybrid approach. In Tools and Algorithms for the Con-
struction and Analysis of Algorithms (TACAS), LNCS 2280: 52–66, 2002.

25. C. Lindemann, A. Thümmler, A. Klemm, M. Lohmann, and O. P. Waldhorst. Per-
formance analysis of time-enhanced UML diagrams based on stochastic processes.
In Workshop on Software and Performance (WOSP), pp. 25–34, ACM Press, 2002.

26. N. Lynch and M. Tuttle. An introduction to input/output automata. CWI
Quaterly, 2(3): 216–246, 1989.

27. N. Lynch and F. Vaandrager. Forward and Backward Simulations : II. Timing-
Based Systems. Information and Computation, 128: 1–25, 1996.

28. P. Mitton and R. Holton. PEPA performability modelling using UML statecharts.
In UK Performance Engineering Workshop (UKPEW), 15 pp. Univ. of Durham,
UK, 2000.

29. A. N. Shiryaev. Probability, vol. 95 of Graduate Texts in Mathematics. Springer,
New York, 1996.

30. Object Management Group. UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms : Request for Proposal. 2002.

A QoS-Oriented Extension of UML Statecharts 91

31. Object Management Group. UML Profile for Schedulability, Performance, and
Time Specification. 2002.

32. R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes.
Nordic J. of Computing, 2(2): 250–273, 1995.

33. D. Tennenhouse. Proactive computing. Comm. of the ACM, 43(5): 43–50, 2000.
34. S.-H. Wu, S. A. Smolka and E. W. Stark. Composition and behaviors of probabilis-

tic I/O automata. Th. Comp. Sc., 176(1/2): 1–38, 1997.
35. H. Younes and R. Simmons. Probabilistic verification of discrete event systems

using acceptance sampling. In: Computer-Aided Verification (CAV), LNCS 2404:
223-235, 2002.

	Introduction
	textsc {Stodiscretionary {-}{}{}Chart}{}s
	Underlying Transition Model
	Formal Semantics
	textsc {Stodiscretionary {-}{}{}Chart}{}s in Action
	Conclusion

